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Abstract: Selective laser sintering (SLS) is one of the most popular 3D molding technologies; however,
the manufacturing steps of SLS machines are cumbersome, and the most important step is focused on
molding testing because it requires a lot of direct labor and material costs. This research establishes
advanced hybrid mathematical classification models, including random forest (RF), support vector
machine (SVM), and artificial neural network (ANN), for effectively identifying the SLS yield of the
sintering results from three sintered objects (boxes, cylinders, and flats) to achieve the key purpose of
reducing the number of model verification and machine parameter adjustments, thereby saving a lot
of manufacturing time and costs. In the experimental process, performance evaluation indicators,
such as classification accuracy (CA), area under the ROC curve (AUC), and F1-score, are used to
measure the proposed models’ experience with practical industry data. In the experimental results,
the ANN gets the highest 0.6168 of CA, and it is found that each machine reduces the average
sintering time by four hours when compared with the original manufacturing process. Moreover, we
employ an oversampling method to expand the sample data to overcome the existing problems of
class imbalance in the dataset collected. An important finding is that the RF algorithm is more suitable
for predicting the sintering failure of objects, and its average sintering times per machine are 1.7,
which is lower than the 1.95 times of ANN and 2.25 times of SVM. Conclusively, this research yields
some valuable empirical conclusions and core research findings. In terms of research contributions,
the research results can be provided to relevant academic circles and industry requirements for
referential use in follow-up studies or industrial applications.

Keywords: selective laser sintering; random forest; support vector machine; artificial neural network;
oversampling method

MSC: 03C13; 18B05

1. Introduction

In this section, we introduce why selective laser sintering (SLS) is studied and describe
the important problems encountered in the manufacturing process of SLS machines. Then,
we illustrate the relevant industrial application research of SLS and machine learning (ML)
techniques, and we also explain the purpose of the relevant research.

1.1. Research Problems and Research Motivation

With the progress of the times, ordinary 2D printers can no longer meet customers’
needs for storing memories or data, and even 3D additive manufacturing (3D-AM) can
improve people’s quality of life significantly. The inventor of the first 3D molding machine
focused on using this excellent device to shorten the time for product design; at that
time, it took about 5 to 8 weeks from plastic mold opening to plastic injection for the
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traditional manufacturing process, but now it could be shortened to several hours through
the 3D-AM printing device and we could know instantly whether the product design was
successful and available. With the advent of the information technology era, a variety of
3D-AM technologies have surfaced, from the simplest fused deposition modeling (FDM) to
stereolithography (SLA), SLS, and finally direct metal laser sintering (DMLS) techniques.
These technologies have their own advantages and difficulties; in particular, SLS becomes
an excellent technology among them at this stage. The justified reason is that SLS has a
variety of materials to choose from, and each material has different characteristics. These
characteristics are highly dependent on the sintering temperature, and thus the temperature
has become one of the many factors that need to be overcome in the SLS manufacturing
process. However, the application use of SLS is very wide, particularly in pharmaceutical
manufacturing [1]; there will be different usages according to the properties of different
materials [2]. Interestingly, in order to make SLS with more industrial applications, there is
even a study [3] that points out the coloring research of extra functions for SLS to increase
the multi-application of SLS.

The so-called SLS [4,5] has the function of using laser and Galvo scanning systems
(GSS) to draw the outline of objects (e.g., boxes, cylinders, and flats) on specific materials [6],
and it is stacked layer by layer; following that, the noodles need to be heated through a
heating system and accurately maintained at an appropriate temperature. The temperature
setting needs to adjust different temperature values according to the different properties of
materials. Based on their different natures, some materials require lower temperatures but
have stronger toughness, and some materials require higher temperatures but have stronger
hardness. However, there have been some fatal problems for research. First, this technique
must build a heating system on the basis of a laser, and the laser system is very sensitive to
heat, which may cause the deflection of the GSS meter [7], resulting in dimensional size
errors of the molded object and in turn affecting the result of sintering. Second, in the SLS
technique, the accuracy of the motor, the scanning accuracy of the laser and GSS, and the
size of the laser power will deeply affect the sintering result or sintering quality [8,9]. SLS is
melted at high temperatures, which means that it will pollute the natural environment [10],
and thus it is an important issue for the difficulty addressed in how to recycle the powder
after high temperatures and to measure the strength of sintering after using the recycled
powder [11]. These are the SLS industry’s major problems that must be faced at present.
From an industrial perspective, if the use of these powder materials cannot be avoided now,
reducing unnecessary testing procedures by using an effective binary classification model
or technique will be an important issue. An accurate testing process can not only reduce
the use of manpower but also reduce the pollution generated during the testing process.
Thus, to construct such an effective classification technique motivates and rationalizes
this research.

Regarding binary classification models, some techniques from data mining and deep
learning [12,13] have been highly and widely used in various industrial application fields
with good performance. In particular, further data analysis can be done for the collected
industrial data to find more clues, and the importance of advanced models to industrial ap-
plications and data analysis is thus, further inspired. Based on the meaningful descriptions
mentioned above, this research has the interest of designing advanced binary models to
address the data analysis of industry applications. The accelerated triggering of the research
is highlighted in developing an effective prediction system for driving the research’s model
for identifying manufacturing processes in the SLS industry.

1.2. Relevant Research Purposes

In the research related to 3D printing and deep learning techniques, some of them
construct an identification mechanism to detect bed defects in powders through convolu-
tional neural networks (CNN) [14]. In this study, the related data of the sintering process
is collected and then put into the training mechanism of the CNN; after this training,
it is identified whether the sintered object is formed smoothly and successfully. In the
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study [15], a semi-supervised learning method is used to predict whether the model is
suitable for selective laser melting; the cases collected after actual sintering are thrown into
the training network. Different types of data are generated by a generative adversarial
network (GAN) to be evaluated due to the difficulty of actual sintering and the high cost
of materials, thereby resulting in a small number of experimental samples obtained for
the available data. In the study of Stathatos et al. [16], the laser power, speed, or energy
during sintering is trained with ML techniques, and then the trajectory and energy of each
laser sintering have an active optimization adjustment; finally, verification is performed
after all 3D objects are formed. In the study of Shen et al. [17], the energy density of the
object is estimated by sintering parameters such as laser intensity, scanning speed, scanning
interval, and layer thickness, so that the results of strength and scalability for the sintered
object can be predicted by supervised learning methods.

Through the above descriptions, this research takes the finished product from the SLS
machine as the research object and provides a comparison of the difference between the
old and new SLS production processes by analyzing the characteristic data for process
improvement. Thus, this research is based on the hybrid mathematical models [18,19] with
the following research purposes: (1) The research proposes a hybrid mathematical binary
classification model, including random forest (RF) [20], support vector machine (SVM) [21],
and artificial neural network (ANN) [21], due to their past superior performance, combined
with an oversampling method for the data used due to the problem of class imbalance.
(2) The method of cross-validation and the evaluation index of these algorithms are used for
the industry data application of identifying SLS production processes. (3) By the predictive
model, the sintering results are obtained in advance before the actual sintering, and the
machine parameters are adjusted in advance for the SLS equipment; it is a key point that
the actual sintering is not performed until it is predicted to be successful. (4) With this
research, the number of sintering times, the number of adjustments during sintering, and
the time and cost spent verifying the machine are reduced. (5) This research provides an
applicable contribution with practical industry value.

The structure of this research is divided into six sections, as follows: The Section 1 is the
introduction, which explores the research background and the prior industry applications
as the research base. The Section 2 is the technical background applications, including
reviews of the SLS techniques, the three well-known classification algorithms, the cross-
validation method, and the evaluation standard. The Section 3 is the step-by-step algorithm
of the hybrid mathematical binary classification model constructed in this research. The
content focuses on the introduction of the experimental process and explains how to
obtain data, build models, use an oversampling method, and compare sintering and
adjustment times. The Section 4 is the empirical results of the effectiveness analysis and
evaluation measurement after the demonstration; the Section 5 addresses research findings
and research limitations. Finally, the Section 6 is about the study’s contribution and
future prospects.

2. Related Technical Works

This section reviews and explores the relevant technical background of identifying
SLS, three classification algorithms, the cross-validation method, and evaluation indicators.

2.1. SLS Technology with Its Applications

The SLS [22] is to use a laser to select the area to be formed, while the unformed
area should be in powder form. For the SLS applications, some core features (factors)
have been determined. If the temperature [23] controlled by the heater is too high, the
unsintered area agglomerates, and this increases the difficulty of picking up items. If the
temperature is controlled too low, the temperature of the area to be formed is pulled due
to the contrast with the air temperature in the sintering chamber, causing the object to
bend; in a slight case, the size of the formed object is inconsistent and wrong, and in a
serious case, the object is unable to form [24]. However, if during the sintering process of
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an object [25], high temperatures and low temperatures appear alternately, or even if the
temperature distribution is uneven during the sintering process on the same plane, it causes
some problems, such as insufficient strength of the object, inaccurate size of the object,
and even failure to form the object. Thus, the layout and control of the heater are very
important. Furthermore, each material has a different temperature range. Some materials
have a high temperature and a small operating range, but they have high strength after
molding; conversely, some materials have a low temperature and a large operating range,
but they have strong toughness after molding. Under such circumstances, it becomes a
very important issue to ensure that each material can be controlled within the range of its
properties [26]. In summary, it is better that the smaller the temperature change, the smaller
the range of temperature distribution [27]. Except for the above influences, it is also a
factor that the laser is not powerful enough to penetrate the powder, which causes sintering
defects. Importantly, there are three research directions defined. (1) The energy definitely
affects the shape of the object, so we can use the instrument to collect the intensity of the
laser energy as a very useful feature, which is used to dig out the relationship between
the laser energy and the sintering result. (2) Another factor that affects the sintering result
is the spot size of the laser. When the spot size is larger and the path overlap is higher,
the energy density is stronger and the sintering speed is faster. Conversely, the smaller
the spot size, the more compact the path is planned, so the sintering speed is slower but
the sintered objects are finer. Thus, we identify the spot size as one of the features to
predict the sintering result. (3) The galvanometer system often has pin distortion and barrel
distortion, which affect the size of a single plane of the object, and the error of the single
size is continuously amplified throughout the sintering process, which causes dimensional
(size) errors of the overall object. Thus, we also collect the error amount as a feature to
judge the sintering result.

For the manufacturing process of SLS [28,29], two key processes are identified. First,
the target temperature must be set at the beginning of the process, and the temperature
of the sintering chamber is raised and stably controlled at the target temperature through
the controller to control the heater; this process is called preheating. Second, accordingly,
wait for the temperature to reach a certain point and then start sintering. During the
sintering process, powder needs to be supplied to the powder surface structure, and
then reheating and laser scanning are performed; this process is called sintering. After
the graphics on each layer hit the powder surface through the laser, the temperature
needs to be lowered. Since the difference between the sintering temperature and the
room temperature is too large, if it is taken out directly, the object is directly cooled
and deformed, so it takes a long time for natural cooling to cool it. Figure 1 shows the
entire SLS process flow. By sintering these objects, it is possible to know whether the
molding is successful or not. Thus, we use the following three directions to identify it:
(1) Measure the size of the sintered cube; the horizontal (X) axis and the vertical (Y) axis
are both 30 mm ± 0.3 mm, and it is a sintered benchmark for success within this size
range. (2) Observe whether the lines are completely connected and whether the lines are
broken. If there is no break, the test is passed. (3) Observe the sintered gap. If the gap
cannot be clearly seen, it means that the details of the gap cannot be clearly displayed,
which means that the sintering has failed.

With the above sintering process and application of SLS [30,31], it is clear that SLS is a
specific technology that requires long-term, precise control to complete. If the number of
sintering times is reduced in the verification process, the verification cost is greatly reduced.
We collect the sintering data as featured attributes for training to judge the sintering results,
and we conduct a repair process on samples that have failed sintering.

2.2. Classification Algorithms

This section reviews the three mathematical classification algorithm models: RF, SVM,
and ANN for supervised training to predict the SLS result, respectively.
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2.2.1. Random Forest

In the field of classification applications, RF belongs to the Bagging training method.
The Bagging concept is to randomly select training samples from the training data and put
them back after selection, which means that there is a chance to draw out the same sample
again next time, and even the selection of features during growth is random. This training
method determines the diversity of the RF, and the combined results are more accurate.
After the features are selected, a decision tree is built one by one, and finally, after a series of
feature selection (FS) and tree growth, the result is a lot of trees, which are the so-called RFs
model. RF is a combination of multiple decision trees, but there is no connection between
different decision trees; decision trees determine the correct features by choosing the degree
of disorder or entropy and determine the direction of tree growth, and the complexity or
entropy must converge to grow. Every time a node is passed, it is in the messiest state at
the beginning, and the messiness gets smaller and smaller. Importantly, RF can solve the
overfitting problem that other classification methods have [32]. The overfitting problem is
to closely match a specific data set so that it cannot be well adapted to other data, resulting
in the original correct result being classified in the wrong category. If the RF wants to
avoid overfitting, it needs to meet two conditions: one is that the trunk of the tree must be
larger and must reflect the law of the big tree, and the other is that the randomness must be
sufficient. Otherwise, if the sampling is biased towards a certain feature, trees of different
properties cannot be obtained, and an overfitting problem occurs.

Moreover, due to the wide range of industrial applications for RF classifiers, some
researchers had used RFs to predict real-life problems faced in different fields, such as the
analysis of the surface roughness and mechanical properties of 316L samples produced
by SLS [18], the ML prediction of SLS-AM part density [33], and the prediction for the 3D
printability of SLS formulations [34]. In the study of Jaime et al. [35], the user is guided to
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choose which classification method is more suitable for different types of data sets, and
how many samples do a RF need? Interestingly, the research results of Oshiro et al. [36]
just illustrated and verified this application issue. In the study of Peng et al. [37], various
types of in situ monitoring and defect detection methods (e.g., RFs) and their applications
are reviewed for the SLS processes.

This research chooses RF as one of the training algorithms first based on the fact
that it can avoid overfitting problems. The second reasonable reason is that there is not
enough training data, and RF can process it with good performance. It is evidence that the
characteristics of multiple trees for RFs can be established through the “big tree rule” to
strengthen the training data.

2.2.2. Support Vector Machine

SVM is a very popular classification method with a wide range of applications. SVM
can be used to detect network attack traffic [38]; particularly, the enhanced SVM method is
used to classify porosity defects during the SLS process [39]. SVM is a supervised learning
method based on the linear classification method; it can add support vectors to increase the
tolerance of misclassification, and it adds kernel functions to solve nonlinear classification
problems that linear classification methods cannot solve. SVMs have a place in ML by
virtue of their ability to calculate linearly separable dichotomies, solve linearly inseparable
kernel functions, and develop robust and rigorous mathematical theories. The importance
and process of SVM are highlighted as follows:

(1) SVM is mainly divided into two types of hard cutting and soft cutting. Although both
methods hope that the farther the boundary distance between them is the better, hard
cutting does not allow other support vectors to appear between the support vectors,
which will easily cause the problem of overfitting.

(2) When encountering linear inseparability, it is necessary to increase the dimension
by one level through the kernel function; thus, the two-dimensional feature space
is mapped into a three-dimensional feature space through the kernel function, then
the support vector is found, and further, the hyperplane is found for processing
the classification of features. So far, many calculation methods for kernel function
algorithms have been announced, such as linear kernel function, polynomial kernel
function, and Gaussian kernel function, which are studied and explored, and each
kernel function has its corresponding parameters and suitable application occasions.

(3) We know that when all data is mixed together, it is impossible to distinguish them
in a straight line from the perspective of a real-life situation. Accordingly, the SVM
maps the feature space from the original dimension to a higher-dimensional feature
space through the kernel function, and after mapping to a higher-dimensional space,
we use different angles to observe the distribution of each feature [40].

Since SLS is a nonlinear system, this research expects to predict the yield of SLS by
using the characteristics of SVM and kernel function to obtain good classification results,
and the use of SVM is based on its past outstanding performance.

2.2.3. Artificial Neural Network

A neural network is an algorithm developed by simulating the nerves of a living
being. With the advancement of the times, research on various types of ANNs has begun
to grow exponentially; ANN has become synonymous with artificial intelligence. The
application examples and uses of ANNs have been quite extensive, such as using ANNs
to model solar energy systems [41], using ANNs to solve second-order boundary value
problems [42], illustrating the recent application of ANNs in the study of Oludare et al. [43],
and re-examining the similarity of ANN representations in the study of Kornblith et al. [44].
In particular, Stathatos and Vosniakos used ANNs for arbitrary long tracks in the laser-
based AM of the SLS process [16]. In the related field of studying ANNs, there are many
derived ANN models used for specific purposes in industry applications. CNN is used for
visual recognition of images; especially, the study of Westphal and Seitz [45] based on CNN
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and ML methods offers an alternative approach for addressing non-destructive quality
assurance and manufacturing files with good performance during part manufacturing of
SLS. Yuan et al. [46] also used CNNs to well recognize desired quality metrics from videos
in the SLS dataset.

The ANN consists of three routings, including an input layer, a hidden layer, and
an output layer, and the connecting line between each layer represents a weight. When
the weight is output by the activation function and reaches the threshold, it means that
the neuron is activated and the data is transmitted to the next level. As to the activation
function, it has many kinds of nonlinear functions, such as sigmoid and tanh, while the
linear function has ReLU. From reviewing the literature, most studies confirmed that
the linear activation function effectively solved the problems of gradient disappearance
and gradient explosion. If we modify the weight value to achieve the effect of learning,
backward propagation transfer is an important mechanism. In the process of supervised
learning, the system randomly gives each neuron a weight, and the ANN uses these weights
to calculate the first output value. However, the output value may be a messy value, in
which case we calculate the cost value through the output value. The cost value is the
squared difference between the predicted result and the actual result, and the smaller the
squared difference, the higher the accuracy rate. In each backward pass, it modifies the
weight value between each neuron from the back to the front based on the cost function,
then repeatedly executes the output result, calculates the cost value, and passes the back-
propagation network until the cost function is close to or equal to 0, and the complete
neural model is finished. Figure 2 shows a schematic diagram of backward transmission.
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Due to the power and versatility of the ANN, if we need to modify the model used, it
is only necessary to remove or add neurons. This advantage makes the application of the
ANN much higher than other algorithms; thus, this research organizes the ANN model to
identify SLS results to get good research results with supportability.

2.3. Cross-Validation Method

The commonly used cross-validation methods are quite extensive. We study the re-
liable accuracy estimation of K-fold cross-validation [47], optimize the cross-validation
method and apply it to time series data with the ANN model [48], use genetic algorithm
(GA) to optimize the SVM and K-means algorithms plus the K-fold crossover verification
method for the mapping of mineral perspectivity [49], and employ ANN, SVM, and RF
with hyperparameter tuning by GA optimization for the prediction of landslide suscepti-
bility [50], etc. They are all verified through the cross-validation method to verify real-life
issues. There are many effective types of cross-validation, including random example
validation, leave-one-out cross validation, test on training data, K-fold cross validation, etc.
They have attracted much concern about influencing performance from many researchers.
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2.4. Evaluation Indicators of Verification

Evaluation indicators are used for the main function of judging the quality of the clas-
sifier. Commonly used indicators include area under ROC (AUC), classification accuracy
(CA), F1-score, precision rate (PR), and recall rate (RR) used to measure the classification
model for further verification [45,51]. For these indicators, confusion matrix is a core role
and very versatile for different application fields, such as a CNN based on ML techniques
widely used to classify good and defective image data recorded for AM parts [45], altering
a SVM model with the FS method compared to those of the classical soft margin model
through the confusion matrix [52], and based on the confusion matrix by different metrics
for comparing two SVM models for AM [53]. They are described in detail as follows:

(1) Confusion matrix: it has four different prediction results, including true positive
(TP_C), true negative (TN_C), false positive (FP_F), and false negative (FN_F).

(2) CA: the main purpose of the CA rate is to evaluate the performance of the model with
a high value, but it cannot distinguish which category is the accuracy rate. Thus, if
there is no special requirement for a certain category, we use this indicator to judge
the model. The mathematical Formula (1) of the CA rate is formatted as:

CA =
TP_C + TN_C

TP_C + TN_C + FP_F + FN_F
(1)

(3) PR and RR: it is a key purpose that the PR and RR provide a more accurate analysis of
the samples for the binary of success or failure classes, respectively, which is helpful to
describe the model for the practical application of product production. The following
Formulas (2) and (3) are formatted for the PR and RR, respectively:

PR =
TP_C

TP_C + FP_F
or

TN_C
TN_C + FN_F

(2)

RR =
TP_C

TP_C + FN_F
or

TN_C
TN_C + FP_F

(3)

(4) F1-score: the F1-score reflects the weight and average of the PR and RR, and it reflects
the most balanced value of the PR and RR when neither of them get the best score.
The following mathematical Formula (4) of the F1-score is formatted. If the difference
between the two values of PR and RR is too large, this value will tend to be smaller.

F1 − Score =
PR × RR
PR + RR

(4)

(5) Receiver operator characteristic (ROC) and AUC: ROC represents the change in deci-
sion threshold between the TP_C rate and the FP_F rate. An important purpose of
calculating the ROC curve is to derive the AUC value. AUC is a probability, which
means that when randomly given a sample of successful cases, the classifier correctly
judging the value of a success is higher than judging the value of a failure. The
related research on AUC has focused on (1) using AUC to classify the performance of
unbalanced data for risk prediction of Chronic Obstructive Pulmonary Disease [54],
(2) performance metrics of AUC to identify these intrinsic properties of AM-focused
alloy design [55], and (3) using time-dependent AUC to address mortality or read-
mission prediction for hospitalized heart failure patients [56]. The AUC has three
evaluation results: (a) AUC = 1: it represents the perfect classification of the sample
data by this classifier; (b) 1 > AUC > 0.5: this represents better than random guessing;
and (c) AUC ≤ 0.5: it means that the sample data is not suitable for this classifier.

This research mainly uses the above-mentioned excellent evaluation indicators to
evaluate the model built and measure the analytical result after the cross-validation method
to determine whether these classifiers are suitable for the SLS production process.
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3. Materials and Methods

In this section, the research proposes a model to address the study topic used in
materials and methods, and the proposed model has the following four main stages:
(1) data collection stage: collect data through corresponding instruments and divide the
given data into training data and testing data; (2) model building stage: build a model
through training data with a cross-validation method and observe the real results of the
validation; (3) oversampling method stage: carry out an oversampling method on the
data to establish a classification model again and compare with the model results without
processing the oversampling technique; and (4) process improvement stage: through the
prediction results of the testing data, compare the sintering times and machine adjustment
times of the new and old processes to judge how much labor time is saved. Thus, the
proposed model has: data collection
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process improvement. Accordingly, the four stages are described in the following four
subsections, respectively.

3.1. Data Collection Stage

Data is an important part of AI, and data mining is an important technique of data
analysis. It can obtain information related to the target from some irregular data. We
introduce the data collection stage by experiencing this research object in the case of the
manufacturing process for the SLS industry, and thus the data acquisition and processing
flow are divided into the following core data features for defining the data collection:

(1) Core features for data collection are first identified: we first identify the core features,
such as the moving amount and inclination degree of the motor on the X and Y axes of
the construction platform, the power energy of the laser system at 50%, the spot size
of the laser, the scanning error of the galvanometer system, etc. We use the analysis
method for the above feature data to predict the success rate of product molding in
advance during the manufacturing process. Measure the movement of the vertical
motor through the dial gauge. When the platform moves down once, the distance
measured by the dial gauge should be 0.1 mm, and this value is recorded as a core
feature (factor) to be used as the basis for the classification model.

(2) Collect all data for a successful sintering module when the laser energy is 50%: laser
system measurements require specific and expensive instrumentation. We put the
light beam into the laser power meter, measured it through the probe, and converted it
into an electrical signal. The power meter integrates the read value and the converted
value and records the value on the connected computer through a USB port. This
value is measured when adjusting the laser galvanometer control system. In the
test production phase, since the energy distribution obtained by each laser with the
same energy is different, it is tested to see how much power the laser will output
when the laser energy is 50%. In the case of simulated maintenance, the measured
energy distribution is regarded as a set of modules to simulate the replacement of the
laser module, and the successful sintering module is replaced by the sintering failure
machine to observe the simulation result after repairing.

(3) Data on spot size is also collected: regarding the spot size of the laser, we use a
beam analyzer to measure the size of the laser beam. Each different type of beam
analyzer has a different measurement wavelength and energy range. Therefore, we
must first know the required laser specifications and then select the correct measuring
instrument; otherwise, the instrument itself is damaged. The size of the spot affects
the degree of detail when the object is formed. Generally speaking, the smaller the
size, the more delicate the object is formed, but the molding time is longer, and
vice versa. Importantly, the specification range of the spot size set by the machine
is 500 um~600 nm. The scanning error of the galvanometer system brings about
information about the error of the plane size. Due to the principle of the galvanometer
system, the system has a distortion problem, which affects the horizontal dimension
error of the sintered object. However, the method of measuring the error can use
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the weakest energy to print a dot every one centimeter on the white paper, fill the
preset scanning range, and calculate the distance between the dots through image
recognition. Then, record the values of the maximum error and the average error.

(4) The type data of boxes, cylinders, and flats and the total result are defined: judge
whether the sintering is a successful product by each sintered object, and the basis or
key point for judging is to measure whether the sizes of the box meet the specifications,
check whether the lines of the cylinder are complete, and whether the gap between
the flats is clear. Importantly, when one of the objects is marked as a failure, the total
result is marked and classified as a failure; otherwise, it is marked as a pass product.
After that, follow-up supervised learning models are used for this data.

(5) All data is collected and used: in this research object, Figure 3 shows the relationship
diagram for all the data. In this part, 10 copies of all data are made. In Figure 3, six
samples are randomly selected from each of these 10 copies as testing samples, and
the rest are used as training data. The training data is used to build a model, and the
cross-validation is used to obtain the verification evaluation index after the model is
built. The testing data is used to verify the prediction results of the models.
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3.2. Model Building Stage

This research uses Orange software to test the data and then verify the predictions.
Figure 4 shows the architecture diagram of the proposed model. In Figure 4, we see all the
processes and the main components of the prediction model structure. The main compo-
nents or results are training data (input elements), testing data, oversampling methods,
RF, SVM, ANN, cross-validation methods, and prediction results. The operation flow of
this model building stage is described in detail as follows: (1) The training data is inputted
first, and the form of the parameter is set, which determines whether the role of the value
is a feature or the marking result of each sintered object. (2) After these sample data are
inputted and transmitted into four components: the cross-validation method, RF, SVM, and
ANN. The set of parameters is also passed into the cross-validation method. (3) Take the
training data into RF, SVM, and ANN to build a classification model and directly output
these three algorithm parameters to the cross-validation method. (4) The cross-validation
method is set as a 10-fold, and AUC, CA, and F1-scores are achieved after this calculation
of these evaluation indexes is completed in order to preliminarily evaluate the superiority
of the classification model.

3.3. An Oversampling Method Stage

In the data of asymmetric categories (or classes), the CA rate is often high, but there
are some unrealistic situations, such as the class imbalance problem (resulting in an illusion
of high accuracy rates). To avoid this serious problem, an oversampling method to expand
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the experimental data is a feasible method for processing and addressing it. Oversampling
methods mean expanding the asymmetric data of the minority category to the same amount
of data as the majority category, so that the classification model is strengthened and the
prediction results are more reliable and feasible.
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After implementing this stage for an oversampling method for the expansion, we
understand that the experimental data becomes larger, which is conducive to subsequent
implementation and good use of the three classifiers of RF, SVM, and ANN to establish a
classification model again and use relevant test data for prediction.

3.4. Process Improvement Stage

Accordingly, after achieving the testing results of the previous step, the number of
sintering times and the number of adjustments are identified and compared. In this process
improvement stage, we have the following three main directions to address:

(1) Original verification process: Figure 5 shows the original verification process before
the prediction model is established. In Figure 5, after the machine is assembled, it
directly carries out sintering and directly observes the sintering result. If the sintering
result is a failure, it is repaired and adjusted directly. After the repair, the above
process continues to be repeated until the sintering result is successful. Thus, we
find that the minimum number of sintering is to start the sintering process after
the machine is assembled, and if the first sintering is successful, the verification is
completed promptly. However, if the result of the first sintering is a failure product,
it means that the second sintering process is required, and if the second sintering is
successful, the verification job is completed in two sintering processes. Interestingly,
the main goal of this research is to ensure that the verification is completed after the
first sintering, so as to avoid the waste of time and cost of the second sintering.

(2) Improved verification process: Figure 6 shows the improved process to solve the
above problems. The improved verification process is to first pass the prediction
results and then decide whether adjustments are required. In Figure 6, after the
machine is assembled, the sintering result is predicted first, and the parameters are
adjusted when the prediction is a sintering failure. The sintering is performed when
the sintering is predicted to be successful. The advantage of this approach is that only
the practical sintering failure occurs, in that only the predicted sintering is successful.
On the contrary, if it is predicted that the sintering process is a failure, it is adjusted in
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advance at the time of prediction; thus, the number of sintering times is reduced and
the probability of success in the first sintering is increased.

(3) Comparison results before and after process improvement: we use the following
methods to count the possible sintering times of the test data: First, we must optimize
the original verification process.

(a) Assume that the second sintering is definitely sintered successfully, and there
are six test samples in each test data set, of which three are sintered successfully
and three are sintered unsuccessfully. Thus, through the original verification
process in Figure 5, it is calculated that a total of nine sinterings were required in
the original process.

(b) In the new verification process in Figure 6, the rules for defining the number of
sintering times are set and presented as follows:

(i) Rule 1: The actual sintering success is also predicted as the sintering success,
only needing once sintering;

(ii) Rule 2: The actual sintering failure is also predicted as a sintering failure,
only needing sintering once (because the first sintering failure has been
predicted in advance);

(iii)Rule 3: The actual sintering is successful, but the predicted sintering is a
failure, requiring twice as much sintering;

(iv)Rule 4: The actual sintering failure is predicted to be a sintering success,
needing twice as much sintering.

(c) Judge the sintering times according to the above rules, and compare the sintering
times of the original process and the improved process. Accordingly, we need
to determine the number to adjust the parameters. Figure 7 shows the flow
of determining the number of parameters to adjust. When the predicted or
actual sintering fails, we perform adjustments according to the process shown
in Figure 7. Since no more actual sintering is done, we use some more objective
methods to measure it. In practice, for sintered objects, there are probably shapes,
such as boxes, cylinders, and flats, that are used to judge the results of sintered
objects. The main judgment process is described in the following three directions:
First, adjust according to the predicted sintering failure. If it is a box object, in
addition to adjusting the error of the galvanometer, it is necessary to adjust
the movement of the construction slot motor. Second, when the box object is
judged to have failed, two adjustments are required. Third, both cylinder and
flat objects only need to be adjusted once and then summed up for each object,
which becomes the total number of adjustments in the classification model. The
fewer the total number of adjustments, the higher the prediction accuracy.
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4. Empirical Results and Data Analysis Results for a Real Case Study

This section mainly explains the experimental results of random distribution data
collected, the cross-validation results of classifiers for each sintered object, the prediction
results of classifiers with/without an oversampling method for the given data, and compar-
ison results for the number of sintering and adjustment times for the original verification
process and the improved verification process for the purpose of performance evaluation
and data analysis. Lastly, the empirical summary from all the experiments and some
discussions are further addressed.

4.1. Collection Results of Sample Data

In this section, after the first stage of data collection in Section 3, all 65-sample data
with nine features is analyzed, and the detailed information of all samples of feature data
is displayed as Appendix A, Table A1. From Appendix A, Table A1, it is found that the
box objects have 25 failure cases and 40 successful cases they have 17 failure cases and
48 successful cases for cylinder objects; they have 18 failure cases and 47 successful cases
for flat objects; and for total-result objects, they have 37 failure cases and 28 successful
cases. Next, Table 1 shows the 10 samples of testing data performed each time with six data
points; the testing data is randomly and fairly selected from six of the 65 record samples
from the targeted data set each time, and the rest is used for training data. Importantly,
it is not guaranteed that the proportion of sintering failure and sintering success for each
selected object must be the same.
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Table 1. 10 testing samples for each validation with six data.

1st Data No. 2nd Data No. 3rd Data No. 4th Data No. 5th Data No. 6th Data No.

1st test sample 4 12 23 43 48 57
2nd test sample 13 23 37 41 56 65
3rd test sample 12 24 34 47 52 64
4th test sample 9 18 33 38 43 56
5th test sample 5 22 30 43 55 63
6th test sample 14 21 34 41 48 58
7th test sample 6 11 26 40 55 58
8th test sample 1 24 36 41 53 62
9th test sample 4 8 9 39 44 63
10th test sample 3 10 35 44 46 50

4.2. Implementing Results of Cross-Validation Method

For the cross-validation results of the case study, we illustrate it with four research
objects: box, cylinder, flat, and the total-result into the following four parts, respectively.

(1) Results for box objects: Figure 8 shows the scores of various indicators in the cross-
validation method for the box objects. From Figure 8, it is observed that among the
three classification algorithms, the ANN (0.5777) and the RF (0.5761) have obtained
the top two higher CA rates, and the ANN (0.6016) is better than random guessing
in the evaluation of AUC (i.e., 1 > AUC > 0.5). Especially in the comparison of the
F1-score, it is obvious that among the three algorithms, the accuracy rate of predicting
sintering success is higher than the rate of predicting sintering failure.
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(2) Results for cylinder objects: Figure 9 shows the results for the cross-validation index
score of three algorithms used on the cylindrical objects. From Figure 9, we observe
that in this cylindrical object, the three algorithms have achieved a CA rate higher
than 0.65, the RF is as high as 0.712, and the performance of RF and SVM is better than
random guessing (i.e., 0.5). However, the AUC part of the ANN is lower than random
guessing for this cylindrical object. This situation is worthy of further research by
subsequent scholars. Moreover, what is more serious when compared with box objects
in Figure 8 is that the F1-score results of a sintering failure obtained by these three
algorithms are all lower than those obtained by boxes, and the possible reason is also
worthy of further investigation in the future.
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(3) Results for flat objects: The cross-validation results with score indicators for three
algorithms used in the flat objects, are shown in Figure 10. In terms of AUC, the three
algorithms are similar to random guessing, and in terms of CA rate, the ANN has the
highest accuracy rate of 0.6712; but in terms of F1-score, it is found that the F1-score
of a sintering failure for these three algorithms is close to 0, and even the ANN is
0, which means that in this confusion matrix, the number of samples successfully
predicted as a sintering failure is 0.
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(4) Results for total-result objects: As for the results of the total-result objects, Figure 11
shows their cross-validation results. In the AUC part, the ANN shows better perfor-
mance than random guessing; as for the CA rate, the ANN has the highest accuracy
rate, reaching nearly 0.6, which is higher than the classification performance of the
other two classifiers. After observing the F1-score, it is found that the results obtained
for this object are different from those obtained for the other three objects. In the
other three objects, the probability of sintering success is much higher than that of
sintering failure. However, it has the opposite case in this total-result object. That is,
a sintering failure is higher than a sintering success, but the gap in rate between a
sintering failure and a sintering success is not large.



Mathematics 2023, 11, 3204 16 of 30

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 32 
 

 

 
Figure 10. Cross-validation results for flat objects. 

 
Figure 11. Cross-validation results for total-result of all objects. 

Summarizing the above four results, we get the important results of implementing 
the cross-validation method, and there are fewer objects on the sintering failure of cylin-
ders (17) and flats (18), so that the cross-validation results may directly be classified as 
successful sintering. Although such results can get a relatively high accuracy rate, they 
cannot faithfully present the real situation; thus, we need to perform an oversampling 
operation for the given data on each sintered object to solve the imbalance problem for 
two classes (fail and pass), and then compare the difference between each verification in-
dex with/without an oversampling method. The comparison results are shown in the next 
section. 

4.3. Oversampling Results for Sintering Objects 
For the empirical results of testing sintering objects, we still differentiate four differ-

ent object purposes by identifying and illustrating their performance with/without an 
oversampling technique for the given data, respectively. 

AUC CA F1-score(PASS) F1-score(FAIL)
Ramdom Forest 0.4916 0.5896 0.5856 0.0787
SVM 0.5774 0.6032 0.5996 0.1019
Neural Network 0.5214 0.6712 0.6415 0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Flat objects with performing a cross-validation method

AUC CA F1-score(PASS) F1-score(FAIL)
RamdomForest 0.4279 0.515 0.3104 0.5457
SVM 0.4218 0.5219 0.3937 0.5347
NeuralNetwork 0.6484 0.5998 0.4937 0.5675

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Total-result objects with performing a cross-validation method

Figure 11. Cross-validation results for total-result of all objects.

Summarizing the above four results, we get the important results of implementing the
cross-validation method, and there are fewer objects on the sintering failure of cylinders (17)
and flats (18), so that the cross-validation results may directly be classified as successful
sintering. Although such results can get a relatively high accuracy rate, they cannot
faithfully present the real situation; thus, we need to perform an oversampling operation
for the given data on each sintered object to solve the imbalance problem for two classes (fail
and pass), and then compare the difference between each verification index with/without
an oversampling method. The comparison results are shown in the next section.

4.3. Oversampling Results for Sintering Objects

For the empirical results of testing sintering objects, we still differentiate four differ-
ent object purposes by identifying and illustrating their performance with/without an
oversampling technique for the given data, respectively.

(1) Box objects: Provide the testing data to the established model and experiment operations,
and observe the experimental results. Figure 12 shows a comparison of testing results
with/without using an oversampling technique for box objects. Figure 12 (above) is the
result obtained by verifying the no-oversampling data of samples for the box objects. In
particular, from Figure 12 (above), there are three key points identified. (a) The accuracy
rates of the three classification algorithms used are all above 0.6, and the highest are the
SVM (0.6334) and the ANN (0.6333); (b) Moreover, the scores of the F1-score are all around
0.6. (c) In terms of AUC, the ANN is the highest, followed by the RF, and finally the
SVM, and the SVM is even worse when compared to random guessing. To identify the
difference between with/without using an oversampling method, this experiment adds
the oversampling technique. Figure 12 (below) presents the empirical results with a data
oversampling method; as a result, there are some key points identified from it. (a) The
accuracy of the SVM and the ANN is improved to 0.6501 and 0.6668, respectively; from
the CA results, it is found that the data processed by the oversampling technique is more
helpful to the ANN in this box object. On the contrary, it is the least effective for RFs,
and the accuracy rate does not increase but decreases. With this interesting result, it is
a valuable issue to further explore in the future. (b) As an AUC indicator, the ranking
is SVM
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RF, just conversely without using an oversampling technique, and
the three algorithms are better than random guessing. (c) On the F1-score, the ANN and
SVM have improved, from 0.598 to 0.6644 and from 0.6085 to 0.6482, respectively. Finally,
summarizing the empirical results on this box object from Figure 12, there are better testing
results using an oversampling technique to conclude that the classification performance
has been significantly improved.
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Furthermore, Table 2 shows the classification results of box objects with/without
an oversampling technique for the sample sets that are successfully sintered. From the
comparison of statistical quantities, it is known that both the ANN and the SVM have one
case of data that directly predicts the result of the sample set as sintering success when
the 10 sample sets are not oversampled, while the RF has two cases of data. However,
in the prediction after the oversampling technique, none of the sample sets are predicted
as successful sintering, and the accuracy of the ANN is improved, which means that the
accuracy of the prediction of a sintering failure is improved.

Table 2. The information whose classification results are all successfully entered in the box sample set.

ANN RF SVM

Un-oversampled 1 2 1
Oversampled 0 0 0

(2) Cylindrical objects: Figure 13 shows the comparison with/without using an oversam-
pling technique for testing the results of cylindrical objects. As shown in Figure 13
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(above), the accuracy rates of these three classification algorithms are all higher than
0.7, among which the highest CA rate is 0.7499 for RF, 0.7167 for ANN, and 0.70 for
SVM. In terms of the AUC evaluator, it is found that only the SVM is better than
random guessing; however, in the F1-score indicator, the ranking of the three classi-
fication algorithms is the same as that of the CA rate. That is RF
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SVM,
and all the scores are above 0.63. From Figure 13 (below), there are two key directions
identified. (a) After implementing the oversampling technique, it is found that only
the performance of the RF is improved, while both the performances of the SVM and
the ANN are reduced; this special case represents that when the model is changed,
there may be an overfitting problem with the prediction data. (b) Among them, there
exists one special thing: the accuracy of the RF remains unchanged, but the F1-score
and AUC show a decline in terms of most performances. This interesting point is also
worth further exploring the possible reasons in the future.
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Furthermore, Table 3 shows the classification results with/without an oversampling
technique of successful sintering for cylindrical objects in the sample set. From its statistical
outcome, in the 10 sample sets that have not been oversampled, both the ANN and the RF
have six cases that directly predict a successful sintering case of the sample set, while there
are five cases in the RF. However, in the prediction work after the oversampling technique,
the number of sample data points that were originally classified as successful sintering
has decreased significantly. In particular, the CA rate in the RF remains unchanged; this
interesting phenomenon represents that this classification model is good, and the empirical
result is more in line with the real situation and closer to the status quo.

Table 3. The information whose classification results are all successful sintering in the cylindrical
sample set.

ANN RF SVM

Un-oversampled 6 6 5
Oversampled 2 4 0

(3) Flat objects: Figure 14 shows the comparison of testing results for the flat objects
with/without treatment using an oversampling technique. From Figure 14 (above),
the accuracy rate and F1-score in the ANN without using an oversampling technique
are higher than those of the other two classification models; however, only in the
AUC indicator is it lower than the SVM, and it is inferior to random guessing. In
exploring the possible reasons, it is possible that due to the unbalanced categories
of the original training data, all classifiers predict the sintering result as successful,
resulting in higher accuracy. However, in practice, the expected results cannot be
achieved, which is compared and seen from the cross-validation method of flat objects.
In Figure 14 (below), after using the oversampling technique, it is strange that the
accuracy rates of the ANN and the SVM are greatly reduced to 0.4499 and 0.4334,
respectively; however, the RF is just the opposite, and its accuracy rate has slightly
improved from 0.6333 to 0.6499. Both the F1-score and AUC have also increased
slightly to 0.6262 and 0.5163, respectively. Moreover, from the above empirical results,
we discover a very interesting fact: on flat objects, when the data classes are more
unbalanced and after implementing the oversampling technique of data, the RF gets a
relatively good classification performance.
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Figure 14. Testing results for flat objects with/without using an oversampling technique.

Accordingly, Table 4 shows the classification results of sample sets for flat objects
with/without using an oversampling method with successful sintering. From Table 4,
we count that among the 10 un-oversampled sample sets, the results of eight, four, and
six sample sets of the ANN, RF, and SVM are directly predicted as successful sintering,
respectively. However, in the prediction, after implementing the oversampling technique,
the number of sample data points that are all classified as successful sintering is reduced.
In this flat object, the accuracy rate of the RF has increased, and this special case means
that the accuracy rate of predicting a sintering failure has increased, which implies that the
classification model is more in line with the reality of 3D-SLS for the case company.

Table 4. The information whose classification results are all successfully sintered in the flat sample set.

ANN RF SVM

Un-oversampled 8 4 6
Oversampled 0 2 2

(4) Total result of summarized objects: In yield prediction for SLS on the total result of
sintered objects, Figure 15 shows the comparison of testing results for summarized
objects with/without sample augmentation. Through Figure 15 (above), it is observed
that when there is no processing sample augmentation, the ANN performance is
higher than the other two listed models regardless of indicators of AUC, CA rate, and
F1-score; therefore, the prediction ability of the ANN model is the best performer.
However, in Figure 15 (below), the CA rate of the ANN after implementing the sample
data augmentation method has dropped to 0.5668, the F1-score has dropped to 0.525,
and the AUC has dropped to 0.5556. On the contrary, the indicators of AUC, CA
rate, and F1-score for the RF are increased to 0.5777, 0.5834, and 0.5468, respectively;
similarly, all the performances of the SVM are also improved. However, since there
is no serious class unbalance problem in the total result of summarizing objects, the
function of an oversampling technique is not performed; the data is directly expanded
to more than 200 items. Unfortunately, such an approach may lead to overfitting
problems in these models; in this total result of the cross-validation method, the ANN
has also achieved the best result in this research. Thus, we can clearly express that in
this model, the ANN can still be used as a predictive model, and in the overall result,
the best performance result is the ANN model.
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Figure 15. Test results for objects summary processed with/without sample data augmentation.

Subsequently, Table 5 shows the classification results of the total-result object sample
sets with/without sample data expansion for a successful sintering. From Table 5, no matter
whether sample data has been expanded or not, there is no sample of the sintering results,
which is classified into the sample set of a successful sintering. After data expansion, the
CA rate of the ANN has decreased significantly, while the accuracy of the RF and SVM has
increased, however, they are not higher than the un-augmented ANN.

Table 5. The information in which the classification results are all successfully sintered in the total-
result sample set.

ANN RF SVM

Un-oversampled 0 0 0
Oversampled 0 0 0

More importantly, this research thus concludes with two core directions for the overall
results. (1) It is unnecessary for the total-result objects to perform data expansion processing.
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(2) However, in the prediction results for box, cylinder, and flat objects, it is absolutely
necessary to perform data processing using an oversampling technique because it can
reduce the case that the sintering results are all predicted as successful sintering, and it can
make the predicted results closer to the actual situation of SLS and increase the plasticity
and credibility of these classification models.

4.4. Comparison Results for Sintering Times and Adjustment Times before and after the Modification of
Verification Process

Consequently, this research first calculates the comparison of sintering times for the
proposed model. To facilitate the follow-up comparison operation, we assume that the
sintering will be successful in the second sintering, then count the number of sintering
times based on the predicted results, and further compare the number of sintering times
obtained before and after the modification of the verification process. By the previous
testing sample data in Table 1, we know that there are six testing samples each time; in
the data set of the total-result objects, there are three samples of failed sintering and three
samples of successfully sintered. Looking at this combination again, the verification process
before modification needs to be sintered nine times (3 + 3 × 2) before the six samples are
successfully verified. As a result, Figure 16 shows the statistical results of sintering times
for each data set after the modification.
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From Figure 16, we get the number of sintering times for each classification model.
Interestingly, the number of sintering times for the ANN is reduced by one time (i.e., eight
times) on average in each sample set; especially in the first and second sample sets, the
sintering times of the verification process before and after the modification are the same,
except the seventh sample set is sintered once more after the modification than the verifica-
tion process before the modification, and the sintering times of other sample sets are the
same. Thus, it is less than nine times, so the average number of sintering times is calculated
as eight times for the ANN model. The average sintering times for the modified verification
process of the ANN outperform the verification process before the modification and that of
other classification models: RF and SVM. Especially, SVM (9.2 times) is even worse than the
original verification process (9.0 times) before the modification, and the potential reason is
also worthy of further exploration in the future.
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Subsequently, in the comparison of the number of adjustment times after quantifying
the oversampled data results, Figure 17 shows the number of prediction adjustment times
for the three classifiers on each testing data set. By observing Figure 17, we know that
among the 10 sample sets, the average number of adjustments for the RF is the least, and
each test sample set has an average adjustment of 10.7 times, while the average adjustment
times of the ANN and SVM are 11.7 times and 13.5 times, respectively. In terms of the
number of adjustment times, it is found that the RF model yields fewer adjustments than
the other two models; thus, RFs perform the best in terms of the number of adjustment
times for this research case.
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More importantly, through the above empirical results, the following key points are
sorted out: (1) It is found that the best verification process is to use the ANN that has not
been processed by the oversampling technique to forecast the total-result objects. (2) Use
the RF model obtained after an oversampling method to predict the sintering results for
each sintered object and to train out the parameters of the best model. (3) After doing
the above operations, the study models proposed are used to effectively carry out the
best verification process with the least number of sintering times and the least number of
adjustment times, which is one of the major contributions of this research for experiencing
industrial data analysis and application.

4.5. Empirical Summary of All Results for the Experiments with Discussions

Totally, we use five directions to uniformly illustrate the primary outcome of the
empirical summary with some meaningful discussions and values after executing all the
experiments in this research, as follows:

(1) Key experimental results of objects: in the mathematical experiment operations based
on the cross-validation method, we have identified and summarized the following
four main points: (a) On the box objects: the evaluation indicators of the ANN are the
best, and the results of three indicators are AUC 0.50, CA rate 0.57, and F1-scores of a
sintering success of 0.61 and a sintering failure of 0.30. (b) On the cylindrical objects:
the evaluation indicators of RF are the best, and the three indicators are described
as AUC 0.54, CA rate 0.71, and F1-score of a sintering success of 0.74 and a sintering
failure of 0.23. (c) On the flat objects: ANNs have the best performance results, and the
evaluation indicators are AUC 0.52, CA rate 0.67, and F1-score of a sintering success
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of 0.64 and a sintering failure of 0. (d) On the total-result objects: the performance
results are the same as those of flat objects, and the experimental results of the ANNs
model are also the best. The evaluation indicators are identified as AUC 0.65, CA rate
0.60, and F1-scores of a sintering success of 0.50 and a sintering failure of 0.56.

(2) Gaps of the cross-validation method: regarding the cross-validation method, the result
for the gap of the F1-score between the sintering success and the sintering failure for
the three objects is too large, which means that most mathematical binary classification
models are still more inclined to classify the data as sintering success.

(3) Differences with/without using an oversampling technique: we obtain the following
four core values for the gaps with/without the oversampling technique: (a) In the case
of box objects: the best CA is to use the ANN model; after using the oversampling
technique, its CA is increased from 0.6333 to 0.6668, and the F1-score is increased
from the original 0.587 to 0.6644. (b) In the case of cylindrical objects: the highest
CA is 0.7499 in the RF, its AUC is increased from 0.4756 to 0.5657, and its F1-score
is increased from 0.6920 to 0.7038. (c) In the case of flat objects: the best CA is the
ANN when the samples have un-oversampled data. However, after implementing
the oversampling technique, the CA of ANN is not rising but falling, and even lower
than 0.5; interestingly, the RF has achieved the highest CA from 0.6333 to 0.6499, the
highest F1-score from 0.5847 to 0.6262, and the lowest AUC from less than 0.5 to 0.5163.
(e) In the case of total-result objects: the ANN model without sample data expansion
has the highest CA of 0.6168, AUC of 0.6222, and F1-score of 0.5857. However, after
expanding the sample data, the highest CA for the total-result objects is the RF model,
which has increased from 0.5333 to 0.5834; the F1-score has increased from 0.4898 to
0.5468; and the AUC indicator has also increased from 0.5389 to 0.5777.

(4) Reduction of time and times: After integrating the experiment results and comparing
them with the original manufacturing process time, it is found that each machine
reduces the sintering time by an average of four hours. Moreover, if the sampling of
the data used is expanded, it is more suitable to use the RF algorithm when predicting
the sintering failure of the objects, and its average number of sintering times per
machine is 1.70 times, which is better than 1.95 times for the ANN and 2.25 times for
the SVM.

(5) Results of sample data expansion: the result of the cross-validation method for the
total-result objects does not have the serious problem of class imbalance; thus, using
the sample data expansion method instead of the oversampling method is suitable.
Especially in this case, there are two core concerns identified. (a) This research
confirms that in each given data set, the ANN without sample expansion can reduce
the sintering verification by one time. (b) After processing the sample expansion
method, the RF for the failure prediction of objects gets a minimum of 10.7 times of
adjustments, which is lower than the 11.7 and 13.5 of the ANN and SVM, respectively.

5. Research Findings and Research Limitations

It is necessary to identify two types of research concerns for further aggregating the
study results mentioned above, including research findings and research limitations, in
order to benefit from and highlight the study issue of the SLS manufacturing process,
as follows.

5.1. Important Research Findings

In summarizing the empirical study results of this research in the field of industrial
data analysis, the following key research findings have been defined, and these findings
can provide a useful reference for relevant industry applications and academic circles.

(1) As a total result of object prediction, this research finds that it is not absolutely neces-
sary to carry out data expansion processing on samples. However, in the mathematical
prediction of experiment results for box, cylinder, and flat objects, it is necessary to
perform an oversampling technique because this technique can solve the problem that
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the sintering results are all predicted to be sintering successes, making the prediction
results more accurate and real. The closeness to the factual situation can increase the
plasticity and credibility of the mathematical classification model.

(2) In terms of the number of adjustment times in this research case, it is found that the
performance of the RF model is the best. Thus, it is recommended that follow-up
operators simulate and use the constructed RF model if they are more focused on
reducing the number of adjustment times for identifying the SLS yield.

(3) In the empirical results, it is found that the best verification process is to use the ANN
model that has not been processed by the oversampling technique as the prediction of
the total result for the objects sintered.

(4) In the CA for the modified verification process, it is found that the average performance
of the ANN is better than that before the modification, and its verification process of the
binary classification model is better than the other listed models, followed by the RF,
and finally the SVM; that is, in the ranking of ANN
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(5) If the sample data is processed by an oversampling technique, it is found that the

RF model in this research is the best to optimize the parameters used to predict
the sintering failure of each sintered object. After performing the above operations,
the proposed mathematical binary classification model effectively carries out and
appropriately obtains the best verification process with the least number of sintering
times and the least number of machine parameter adjustments for interested parties.

5.2. Research Limitations

The focus of this research is the SLS manufacturing process, and there are three
potential research limitations identified.

(1) Due to many shortcomings in sintering the SLS products, such as the high unit price
of machine equipment, the high construction cost of the sintering environment, and
the high sintering cost, these major defects result in a limited application value: the
sales volume of the machine (already a niche market) has shrunk even more, and even
this makes companies daunting. Due to the high costs of purchasing this equipment,
general business is discouraged. This special situation causes the sample data to be
relatively scarce; thus, the small amount of raw sample data has also become the first
main research limitation for this research.

(2) For manufacturers of SLS machines, the verification results of machine output are a
huge expense; thus, the data of each verification record is an expensive and valuable
experience. Given this reason, general SLS manufacturers mainly hope to reduce the
number of sintering times in order to lower the high verification cost of the machine
output. Thus, enhancing the one-time sintering greatly lowers the operating burden
on the manufacturer. The high verification cost creates a bottleneck problem in data
collection, and this problem is serious and is the second research limitation.

(3) The third research limitation is that the example of the research objects is only from a
certain SLS company, which may result in a lack of diversity of sample data and an
inference limitation of research results.

6. Conclusions and Future Research

To overcome the serious problems when forming the sintering of a standard SLS object,
this research has constructed a mathematical prediction system to reduce the time and cost
of sintering verification. The following two sections give the core highlights of empirical
conclusions with contributions and future prospects, respectively.

6.1. Empirical Conclusions with Industrial Contribution

After all the experiments, we have concluded that the following two key contributions
were integrated into the study conclusions:

(1) Industrial contribution: this research is mainly aimed at realizing an effective predic-
tion framework for identifying SLS yield, which is mainly used to reduce the sintering
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time cost and direct material cost of the verification process. The ability of proposed
mathematical binary classification models for each object is evaluated through the
cross-validation method, and their accuracy is verified by actual data collected from
a case study for industrial applications. Thus, through the above empirical results,
the number of sintering times is reduced. Importantly, although this research has not
provided an innovative technique, such a binary model constructed is rarely seen in
the SLS industry for 3D-AM issues, and it has made a great industrial contribution by
effectively reducing the verification cost of the SLS manufacturing process in practice.

(2) Applicable values: the proposed mathematical binary models in this research make
the prediction of the SLS yield more accurate to reduce the situation that the prediction
results are all predicted to be sintering success, and to be closed to the real case of
industries, it is proved that the mathematical binary model has the superiority of
its application performance in industrial manufacturing processes. Thus, it also has
significant applicable values based on the empirical results of industrial data analysis.

6.2. Future Research

Although the experimental performance of this research has research advantages
and benefits and the empirical results are remarkable, there are still some rooms for
improvement in the future, and these improvements can provide references for subsequent
directions to interested researchers or industry requirements, as follows:

(1) The first improvement is about the diversity of molding materials; these materials
have different material properties, molding parameters, and shrinkage rates. Since
the main material of this research is PA12 (Polyamide 12 powder for SLS printing
material) [10,30], subsequent researchers can use materials different from PA12, and
the new material may not be able to adapt to the optimized parameters of the pro-
posed binary classification model. Therefore, we suggest that new types of materials
are added into the proposed models as new features (factors), and after collecting
sample data, data retraining and data retesting are conducted to further measure the
classification performance and efficiency of the binary classification model.

(2) In the practical sintering application, since the sintering result is not only determined
by the dimensional size accuracy but also requires other measurements of unique
characteristics of different materials, such as the range of strength and toughness or
the density detection of the objects, these results directly or indirectly lead to molding
whether the object is successful. Thus, it is suggested that subsequent researchers can
collect the above different data, add it to the proposed models, and then re-predict
the forming results of the SLS manufacturing process.

(3) The biggest problem in this research is that the amount of SLS practical sample data is
insufficient, causing insufficient training data, which directly affects the prediction
results. Thus, it is recommended to collect more raw samples of data to retrain the
mathematical binary classification model and address future directions.

(4) In some large machine tools, it is a common problem that obtaining the sample data is
difficult; thus, it is suggested that the models of how to predict with a small amount of
data should be further focused in the future. It is a feasible alternative to use the GAN
method to create more fake sample data of a sintering failure to increase the sample
number for sufficiently training the binary model and improving its performance.

(5) For the RF algorithm, it also has a feature importance score, which can help gain
insight into which features are important. Thus, the RF can be used for the technique
of FS to reduce the dimensionality of data to select the best features [57]. For this
reason, the RF can be added to the proposed model to further remove irrelative
features, facilitate experiment operations, and measure its model performance in
the future.

(6) Finally, this research is still committed to constructing a set of classification frame-
works to judge sintering result strategies in a process-based structure of automatic
and intelligent methods. The purpose is that researchers can regard the proposed
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models as a basis to develop their future models for comprehensive comparison with
more techniques of the state of the art, such as Xgboost or K shot. Moreover, the estab-
lishment of the maintenance strategy for sintering enables the adjustment of machine
parameters to be more automatic and intelligent, with effective and efficient effects.

Author Contributions: Conceptualization, J.-R.C. and Y.-S.C.; Methodology, J.-R.C. and Y.-S.C.;
Software, J.-H.L. and Y.-H.H.; Visualization, J.-R.C., Y.-S.C. and Y.-H.H.; Writing—original draft,
J.-H.L., J.-R.C. and Y.-S.C.; Writing—review and editing, Y.-S.C. and Y.-H.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Science and Technology Council of
Taiwan for grant number NSTC 111-2221-E-167-036-MY2.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Information of 65 records of raw data.

Serial
No.

Z at 239.9 mm
Accuracy

Spot
Size
(um)

The Max. Error
of the X-Axis

Galvanometer

The Max. Error
of the Y-Axis

Galvanometer

Laser
Energy

50%
Box Cylinder Flat Total-

Result

1 0.09 525 0.22 0.31 23.35 fail pass fail fail
2 0.09 515 0.33 0.27 22.26 fail fail fail fail
3 0.11 555 0.28 0.28 20.72 pass pass fail fail
4 0.12 545 0.18 0.22 21.38 pass pass fail fail
5 0.10 545 0.27 0.31 22.79 pass pass fail fail
6 0.10 575 0.30 0.35 20.79 fail pass fail fail
7 0.10 555 0.23 0.24 18.02 pass fail fail fail
8 0.11 565 0.31 0.23 20.93 fail pass pass fail
9 0.10 545 0.24 0.31 21.46 fail fail pass fail

10 0.10 575 0.31 0.22 18.29 fail pass pass fail
11 0.10 565 0.19 0.26 21.62 fail pass pass fail
12 0.11 545 0.33 0.20 20.74 fail pass fail fail
13 0.09 535 0.25 0.31 20.47 fail pass fail fail
14 0.11 525 0.33 0.28 22.99 fail pass pass fail
15 0.11 505 0.25 0.26 22.20 pass pass fail fail
16 0.11 515 0.26 0.22 23.67 fail pass pass fail
17 0.12 535 0.34 0.33 22.23 fail fail fail fail
18 0.09 555 0.21 0.26 18.66 fail fail fail fail
19 0.11 555 0.23 0.20 22.09 fail pass pass fail
20 0.12 515 0.21 0.18 21.75 fail pass fail fail
21 0.11 535 0.27 0.29 21.88 fail fail pass fail
22 0.10 545 0.32 0.21 22.52 fail pass pass fail
23 0.08 555 0.24 0.32 20.25 fail pass pass fail
24 0.11 555 0.33 0.33 24.33 fail fail pass fail
25 0.10 525 0.27 0.24 22.18 fail pass pass fail
26 0.10 515 0.22 0.26 23.49 pass fail fail fail
27 0.10 545 0.33 0.28 23.18 pass fail fail fail
28 0.12 535 0.25 0.31 19.58 fail pass pass fail
29 0.10 535 0.28 0.27 21.52 fail pass pass fail
30 0.12 515 0.21 0.25 23.36 pass fail pass fail
31 0.11 545 0.18 0.14 22.23 pass fail pass fail
32 0.11 525 0.26 0.22 20.89 pass fail pass fail
33 0.09 535 0.26 0.20 22.45 fail fail fail fail
34 0.10 565 0.23 0.30 23.32 pass fail fail fail
35 0.10 545 0.18 0.15 22.41 pass fail fail fail
36 0.09 515 0.21 0.33 23.75 fail fail pass fail
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Table A1. Cont.

Serial
No.

Z at 239.9 mm
Accuracy

Spot
Size
(um)

The Max. Error
of the X-Axis

Galvanometer

The Max. Error
of the Y-Axis

Galvanometer

Laser
Energy

50%
Box Cylinder Flat Total-

Result

37 0.10 545 0.20 0.18 25.86 fail fail pass fail
38 0.10 535 0.32 0.26 20.52 pass pass pass pass
39 0.10 525 0.32 0.21 21.03 pass pass pass pass
40 0.10 555 0.27 0.26 19.90 pass pass pass pass
41 0.10 525 0.28 0.32 21.56 pass pass pass pass
42 0.11 525 0.18 0.27 22.19 pass pass pass pass
43 0.09 545 0.30 0.31 21.13 pass pass pass pass
44 0.10 535 0.26 0.23 22.50 pass pass pass pass
45 0.10 545 0.21 0.23 22.30 pass pass pass pass
46 0.12 555 0.27 0.255 21.13 pass pass pass pass
47 0.11 525 0.24 0.24 22.08 pass pass pass pass
48 0.10 555 0.18 0.24 25.09 pass pass pass pass
49 0.11 575 0.28 0.20 22.80 pass pass pass pass
50 0.11 615 0.25 0.28 24.72 pass pass pass pass
51 0.11 535 0.26 0.26 22.97 pass pass pass pass
52 0.10 525 0.24 0.28 26.70 pass pass pass pass
53 0.12 515 0.30 0.26 24.54 pass pass pass pass
54 0.11 545 0.26 0.21 22.87 pass pass pass pass
55 0.10 545 0.17 0.24 23.65 pass pass pass pass
56 0.11 515 0.22 0.23 22.34 pass pass pass pass
57 0.10 575 0.24 0.26 23.81 pass pass pass pass
58 0.11 555 0.26 0.32 22.07 pass pass pass pass
59 0.11 515 0.30 0.30 21.83 pass pass pass pass
60 0.10 565 0.27 0.25 21.88 pass pass pass pass
61 0.11 545 0.18 0.26 21.60 pass pass pass pass
62 0.09 525 0.15 0.26 21.27 pass pass pass pass
63 0.11 595 0.23 0.26 21.68 pass pass pass pass
64 0.10 595 0.27 0.32 22.61 pass pass pass pass
65 0.10 535 0.20 0.20 23.67 pass pass pass pass
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