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Abstract: MRI segmentation and analysis are significant tasks in clinical cardiac computations. A
cardiovascular MR scan with left ventricular segmentation seems necessary to diagnose and further
treat the disease. The proposed method for left ventricle segmentation works as a combination of the
intelligent histogram-based image enhancement technique with a Light U-Net model. This technique
serves as the basis for choosing the low-contrast image subjected to the stretching technique and
produces sharp object contours with good contrast settings for the segmentation process. After
enhancement, the images are subjected to the encoder–decoder configuration of U-Net using a
novel lightweight processing model. Encoder sampling is supported by a block of three parallel
convolutional layers with supporting functions that improve the semantics for segmentation at
various levels of resolutions and features. The proposed method finally increased segmentation
efficiency, extracting the most relevant image resources from depth-to-depth convolutions, filtering
them through each network block, and producing more precise resource maps. The dataset of MICCAI
2009 served as an assessment tool of the proposed methodology and provides a dice coefficient value
of 97.7%, accuracy of 92%, and precision of 98.17%.

Keywords: left ventricular segmentation; MRI; deep learning; image enhancement technique;
histogram

MSC: 68U10

1. Introduction

The world is facing a huge amount of human death mainly caused by cardiovascular
diseases (CVD), i.e., 17.3 million deaths every year, which may reach the limits of more
than 23.6 million by 2030 [1]. It dramatically impacts both developed and non-developed
countries, no matter the countries with higher income. CVD comprises heart failure,
ischemic heart diseases, peripheral arterial disease, stroke, and many other vascular condi-
tions, which are key contributors to life reduction [2,3]. Around 9.6 and 8.9 million males
and females passed away due to CVD in 2019, i.e., an estimated one-third of the total
deaths worldwide.

For diagnosing cardiac diseases, it is necessary to quantify Left Ventricle (LV) func-
tion. Since precise LV contours [4] provide much information regarding its size and shape,
segmenting LV is critical in estimating the key diagnostic indicators [5]. Numerous seg-
mentation methods are used to increase the robustness and correctness of results. LV
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segmentation from cardiac magnetic resonance images provides significant supplementary
data for the analysis and treatment follow-up of CVD ailments, the fundamental cause of
death worldwide [6].

Customarily, the LV segmentation expedition is accomplished physically, which is
monotonous, tedious and needs lots of human involvement and expertise to produce seg-
mentation results [7]. Moreover, occasionally the specialists/clinicians neglect to contract
an enormous arrangement of information. So, the specialists presented a semiautomatic
framework for the procedure’s part to surface the outcomes. These systems are undoubt-
edly taking many times and need experts with full concentration. Furthermore, accuracy
in results and fastness require the automaticity of systems. One step towards this is semi-
automatic systems, but nowadays, technological advancement opens the door to moving
to the fully automatic system.

The automatic algorithms can deal with tedious searches and manage enormous
information measures to investigate the local and worldwide capacity of heart MRI-LV by
computing clinical parameters like EF (Ejection Fraction), ESV (End Systolic Volume), EDV
(End Diastolic Volume) and myocardial mass [8].

The difficulties in automatically segmenting the Left Ventricle incorporate managing
the existence of papillary muscles in feeble edges around the epicardium of the Left
Ventricle, which will be managed properly without the consideration of manual adjustment
of conclusive outcomes. At long last, the changeability in the state of the endocardium and
epicardial forms crosswise over cuts and stages, which make the myocardium exposure
much more complex, will likewise be considered in the proposed work. To put it plainly,
the proposed framework will lessen the measure of time required for the examination of
heart work and segmentation. A few major steps for the proposed method include data
preparation, preprocessing, and the light U-Net model. The major contributions made in
this proposed method correspond to the following steps.

Contributions

• An image normalization method is performed prior to processing. The efficiencies of
the proposed algorithm are strongly impacted by the enhancement of image contrast.
Improving an image’s contrast is surely a prerequisite for image processing.

• Intelligent Contrast Stretching and Histogram Equalization improves an image that
has already undergone preprocessing with unsharp masking.

• The Encoder path implanted layers with convolutional blocks and reducing the batch
layer while in next layer removing the activation layer as well.

• Afterward, up-sampling enlarges the feature batch back to its actual size. The signifi-
cant contribution of the proposed technique is to provide 99% precise results of the
epicardium layer.

• The test dataset includes LVOT (Left Ventricle Outflow Tract) images of both endo-
cardium and epicardium.

An analytic overview of previous research is depicted in further segments. Then, the
novel contribution is introduced as an intelligent image enhancement technique that will
not apply to all images from the dataset but only to the low-contrast images, which require
preprocessing. Afterward, a novel deep learning model which utilizes the stock U-Net
model as the backbone and is optimized to a lightweight model is mentioned along with
its results and analytical discussion.

2. Related Work

Diseases related to the heart are the leading cause of death nowadays. Certain advance-
ments are being made continuously to detect cardiac illness on time. Automatically limiting
the cardiovascular MR images to specific areas of LV is an essential step to automated
procurement post imaging and planning analysis, for example, function and segmentation
examining errands. Cardiovascular MRI adds a useful asset for analyzing the capacity and
imaging the heart structure [9]. The diseases are either detected by manual or automated
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segmentation analysis. Manual delineation is slow and tedious because of the huge amount
of data acquisition. So, automated segmentation is the demand which is quick, precise, and
helps to encourage cardiac problems analysis [10].

Basic image-based methodologies [11,12] involving threshold, shape models, active
contours, region-based techniques, level sets, and graph-based techniques are used to
develop automatic segmentation systems and succeeded in attaining over 90 percent of seg-
mentation results. Image segmentation using thresholding is easier; however, the approach
is powerful for segmenting images having lighter objects on darker backgrounds [13,14].
Segmentation of images in medical is yet a main issue due to the lack of contrast among
tissues and the contextual, substantial noises and boundaries of indistinct objects. In recent
eras, methods of profile-based image segmentation with ASM (active shape model) [15,16]
and AAM (active appearance model) [17,18] have drawn much devotion. ASM has exposed
its potential in object detection and extraction of features.

Atlas-based methodologies are used to convert the segmentation problem into a regis-
tering problem [19,20]. Among the most recent research [21], ACM is applied to MICCAI
2009 cardiac dataset, another Global Local Region-Based ACM, in combination with wa-
tershed [22]. Similarly, a combination of extended random walk and high-speed random
walk [23] and the ACM-based technique, along with region-based segmentation [24], ob-
tained a good dice value of 0.986. The level sets-based technique [25] showed good results
for segmentation. Another two-layered level set using a circular shape constraint [26] shows
DM (Dice Metric) (Endo: 0.92, Epi: 0.94) and APD (Endo: 1.77, Epi:1.85). The multi-atlas-
based segmentation [27] technique is used for myocardium segmentation. Many efforts
have been adapted in the vast field of cardiology, including AI (Artificial Intelligence), ML
(Machine Learning), CV (Computer Vision) and DL (Deep Learning) constitute a set of
tools to increase the effectiveness of the cardiologist [28]. The most commonly used AI
methodologies are neural networks [29]. These DL methods are being used for automatic
image segmentation of the heart for evaluation of cardiac functions and mass parameters
via various numbers of datasets [30,31] and providing effectiveness in results.

DL has recently demonstrated better performance and enormous potential in a number
of sectors. CNN (Convolutional Neural Network) is among the extensively used DL tech-
niques [32–37]. As a result of the quick growth of AI, particularly DL, image segmentation
techniques have accomplished appropriate results [38]. DL provides several benefits over
conventional ML and CV techniques in relation to segmentation accuracy and speed [39].
The application of DL to segment medical photos can, therefore, efficiently assist clinicians
in confirming the size of sick tumors, quantitatively evaluating the effect before and after
therapy, and significantly decreasing their burden. When it comes to image classification,
DL plays a vital role. Due to the dominance regarding accuracy when trained with large
amounts of data, DL has achieved much popularity. DL has two phases; encoding and
decoding. The encoding phase was utilized for cardiac MR image portrayal and classifi-
cation of the pixel-level data, and the phase of decoding was utilized to reestablish the
first image’s resolution. The red color indicates the region of LV more readily shows the
segmentation [40].

Recently, DL has shown extraordinary potential and good performance in different
fields. Among DL techniques, CNN is the most broadly utilized [32,37,41–50]. Until now,
CNN structures are best considered for entire image cataloguing. Still, CNNs can likewise
be utilized for the segmentation of images. CNN-based segmentation algorithms have
abilities to solve numerous issues, particularly in the analysis of medical images, as they
have shown their extraordinary accuracy [51] and robustness in the past recent years [52,53].
With the advancements in CNN [54–60], the majority of the fields in pattern identification
and CV experience a tremendous improvement and revolution, including image cataloging,
object recognition and image segmentation.

It is mostly DL techniques that use CNN [61], in addition to variants and hybrid tech-
niques such as Dense R-CNN, dual-attention, up-sampling, dilated convolution, bilinear
interpolation [62], Multi-channel DL [63], CNN, and multi-scale features with a dynamic
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pixel-wise weight model for LV segmentation [55]. Moreover, FCNNs (Fully Convolutional
Neural Networks) [64] show good dice (Epi: 0.94 ± 0.02, Endo: 0.96 ± 0.02) results. There
has also been a YOLO-based network generated for LV segmentation [65]. ACNN (Anatom-
ically Constrained CNN) [37] and FCNN [45] also produce good segmentation outputs.

3. Data and Method

The processing flow of the deep learning-based novel technique is shown in Figure 1.
The major starting procedure includes the preparation of data, i.e., resizing of input images
and pixel-wise normalization of resized images.
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Figure 1. Phases of the Light U-Net model.

Then contrast adjustment of these images is done using Novel Intelligent Histogram
Based Decision (IHBD). The next step is to train the network with the novel Light U-
Net model-optimized algorithm using 2-D convolution in a distinctive hierarchal fashion.
Normalization and activation are also performed in layers. The training model works to
produce delineations of endocardium and epicardium. In the end, testing of the trained
model is performed for extracting the segmentation of LV contours from the images of
the dataset.

For evaluation purposes, the dataset of the MACCAI 2009 challenge was used. It
is composed of dicom short axis, 1.5 T MR images of 45 different patient cases. Patients
included are heart failure, ischemic heart failure, non-ischemic heart failure, and some
normal patients are also included. The dataset provides ground truths as well. The total
number of images in the dataset is 7365, including all diastolic and systolic images ranging
between the complete slices of the heart.

3.1. Preprocessing: Intelligent Contrast Stretching and Histogram Equalization

The absolute requirement of image processing is the contrasting enhancement of an
image. Improving visual parameters and reducing illumination issues of LV in a gray
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image is significant for achieving promising results. Since the data was in its raw form
and presented very blurry images, the first step was to normalize the image’s pixels. The
images mostly had good contrast, but in the case of a few images, the contrast was either
very high or very low, which could cause less segmentation accuracy.

To deal with this issue, the IHBD (Intelligent Histogram-Based Decision) method is
proposed, which can decide whether the image has low contrast. Once dataset images are
classified into a low-contrast image set, these images are passed to the image enhancement
module. [66]. Figure 2a shows the images with ground truth drawn from the dataset having
different contrasts. Figure 2b represents the histogram of these images. A horizontal axis
is assigned for the color scale representation, while the vertical values on the axis depict
the frequency of image pixels for that specified shade. Most of the information is occupied
by unilluminated areas of the generated histogram. The very first step is to generate a
histogram for all input images. Then, from the histogram, a limit value as a bin low and a
peak limit value is calculated for the input image. Furthermore, a function is performed to
classify the images into low-contrast ROI and normal ROI by performing a comparison with
each other, depending upon the image’s bin values. This is the point of decision-making
using the bin values from the histogram of input images. If the value of the low bin limit
is higher than the heuristic value (a value of 10 or a higher limit less than the speculative
constant 240), then the image is treated as a normal image, and if not, the image is treated
as a low-contrast image.
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Then, after this decision is made, the problem of less distinctive shades in the images
is handled through a contrast stretching approach. Similarly, the ROIs with normal con-
trast are forwarded to the novel segmentation process without passing it to the contrast
stretching step. Ultimately, the “bin high and low limit” can be selected from the histogram
features as the most relevant to this decision-making. The function of contrast stretching
is accomplished through MATLAB by the stretch lim function. The histogram details the
comparison of low-contrast and high-contrast images, as shown in Figure 2b.

Table 1 shows that normal sample images from the dataset have a smaller number of
bins, and the low-contrast images have a large number of bins. Low-contrast images have
less separation of values from the low limit to the high limit, while normal images have
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more value separation. Hence, the sequence of steps for the decision-making using IHDB
is clearly mentioned in Algorithm 1.

Algorithm 1. Algorithm for IHBD.

Input: Image (I)
Output: Segmented endocardium and epicardium contours
Begin
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Table 1. Histogram Values for Low-Contrast and Normal Images.

Type of Image Feature Sample 1 Sample 2 Sample 3

Low-Contrast Image

Bin Counts 95 166 148

Bin Edges 96 167 149

Bin Limits 20 34 46

High Limit 210 200 194

Bin Width 2 1 1

Normal Image

Bin Counts 51 64 51

Bin Edges 52 65 52

Bin Limits 0 63 0

High Limit 255 255 255

Bin Width 5 3 5

The process of IHBD is performed on the whole dataset as Emaxi represents a maximum
number of images i from the dataset and hence all images are separated into low-contrast
and normal images.

Table 2 shows that in the case of endocardial contour, 2495 images are low-contrast,
and 4870 images are normal images, which clearly shows that 33.87% of the data has
low-contrast images in the case of endocardial contour. In the case of epicardial contour
images, 2247 are low-contrast images, and 5118 images are normal images, which shows
that 30.5% of images are low-contrast images. Hence the low-contrast images need to
be normalized.

Table 2. Distribution of Images into Low-Contrast and Normal Images.

Sr. No. Type
Images

Total Low Contrast Normal

1 Epicardium 7365 2495 4870

2 Endocardium 7365 2247 5118
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The histogram equalization uses pixels edge points data. A variational platform is
generated depending upon existing differences in the intensity of ROI pixels and shade
variations of its neighbor pixels. The following Equation (1) is used for generating the
variational map Pi.

Pi(e, f ) =


SI (x, y), i f S (x, y) = g and
(|S(x, y)− S (x, y− 2)| > thresh)
0, elsewhere

(1)

where Pi is a variational platform, SI represents the input image sample at x and y position,
S represents the set of all images g represents the distinct intensity range for the low-contrast
image, and it ranges between ‘0’ to Q− 1. Q represents the frequency of different intensities.
After deep analysis, thresh is selected to have a value of ‘15’ for this case. Histogram is
figured using a variational platform as in Equation (2).

HE (Pi) = ∑M
j=1 ∑N

k=1(Pi (j, k)) f or 0 ≤ i ≤ Q− 1 (2)

where HE (Pi) depicts the histogram of the variational platform. M represents rows, and
N represents columns of pixels in SI input image. Next, a probability density function (pdf)
for R(i) from the histogram, which can be quantified using Equation (3), which normalizes
the count values.

R(i) =
HE(Pi)

∑L−1
q=0 HE

(
Pq
) , f or 0 ≤ i ≤ Q− 1 (3)

Variational platform Pi is iterated with q, and T(i) denoting cumulative distribution
function (CDF) is computed using Equation (4) using a discrete function R(i).

T(i) =
k

∑
j=0

R(i), 0 ≤ k ≤ Q− 1 (4)

where pdf is iterated with samples ranging to k from the R(i) as in Equation (3). Here W(i)
is a mapping function that is calculated through CDF, as given in Equation (5).

W(i) = (Q− 1)× T(i) (5)

The W(i) is iterated with the probability distribution function and multiplied by the
cumulative distribution function. Finally, the structure of the enhanced image is preserved
using a guided filtering process.

The proposed intelligent contrast stretching is demonstrated in Figure 3. Low-contrast
images are shown in row Figure 3a; all images are clearly dark, having pixels values closer
to 0. These images are processed through the image adjust function, which maps the
pixel values to equalize in weights within the acceptable limit of contrast, as shown in
Figure 3b. The final mapping of adjusted pixels on the image is shown in Figure 3c. Results
show prominent enhancement in contrast to images. A mathematical evaluation of these
images or the performance of this enhancement algorithm is tested through PSNR values
calculations as shown in Figure 3d. PSNR values are prominently showing remarkable
achievement as given images in Figure 3 have values as 54.95, 54.43, 54.2698 and 54.6299.
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3.2. Light Deep Learning U-Net Model

A generalized perspective of the proposed Light U-Net network is that the encoder
uses weights from the database [67]. The pre-trained encoder, built on structures, com-
bines spatial convolutions with 3 × 3 kernel size, ReLU activation, and layers of batch
normalization and inserts 256 × 256 pixel input images into the proposed model. In this
instance, the encoder will filter and learn the properties of the images, feeding the network
using compact depth-to-depth convolution. By reducing the number of parameters, these
inverted blocks make it simpler and quicker to train the model.

A pre-trained network has the added benefit of improving the model’s performance
and accelerating convergence. The up-sampling procedures are performed in the decoding
route to expand the feature map back to its original size. This approach involves concate-
nating the characteristics between the encoder and decoder blocks, as well as passing them
via a 3 × 3 convolution layer, batch normalization, and sigmoid activation. In order to
construct the segmented map, the last block in the network contains a 1 × 1 convolutional
layer and a sigmoid activation. The stepwise description of the proposed model is depicted
in Figure 4. This U-Net is built on the basis of the architecture of CNN with suitable
adaptations to the nature of grayscale MR images. The root elements used as a building
block of the proposed Light U-Net model are also mentioned in Figure 4.

The encoder and decoder paths are preliminary to the U-Net architecture. Here,
for Light U-Net, both are utilized to achieve the desired training. The layers utilized
are the convolutional layer, max pooling, ReLU activation, sigmoid activation functions,
concatenation, and recollecting as up-sampling is applied to reach the endpoints of the
deep net model. The data propagate through these network paths of encoding, decoding
and successions.

For training, the original ROI is provided as input to the U-Net model. The encoder
block (Eb) and decoder block (Db) make up the U-Net. The encoder and decoder blocks
are constituted by two 3 × 3 convolutional layers that are repeated (double-conv). The
design of the encoder block contributes uniqueness as three convolutional layers are used
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in parallel and each with one less additional layer of batch normalization and activation
stepwise. When comparing Eb with Db, Db links a reverse convolution layer after double-
convolution, and Eb connects a max-pooling layer after double convolution. After applying
double convolution, a dense block transfers and adds a 1x1 convolutional layer to provide
the final segmentation output.
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The design of the model is depicted layerwise in Figure 4; a multiplexed convolutional
operation starts from the input, and the first convolutional block is a complete set of batch
normalization and activation functions. In parallel, the second convolutional block, as
a comparison to the first, skips batch normalization; similarly, following this reducing
pattern, the third block consists of only one convolutional layer. All these collectively
add up to the next layer and concatenate to the decoder block as well. The design of the
decoder side is in a smooth fashion, one above the other convolutional blocks with batch
normalization, activation and up-sampling. The design of the model is shown in Figure 4.

Finally, the softmax function and a 1 × 1 convolution layer are utilized for convexing
the extended feature set to 2 so it can produce the predicted segmentation, as mentioned in
Equation (6).

gx
i,j =

exp
(

sx
i,j

)
∑2

x′=1 exp
(

sx′
i,j

) (6)

where sx
i,j stands for the generated value of xth number channel at coordinates i and j of

the output map, gl
i,j stands for the SoftMax value of xth number of channels at i and j

coordinates of the output map, and x = 1, 2. The cross-entropy function yields the following
cost function (Equation (7)).

au =
128

∑
i=1

128

∑
j=1
−

2

∑
x=1

hx
i,j log

(
gx

i,j

)
(7)

where the ground truth channel is at the xth level is indicated by hx
i,j at the given loca-

tions. Then, the cost function is reduced using the gradient descent algorithm as given
in Equation (8).

Ť, č = arg
min
T, c

au (8)

where Ť, č are the symbols used for all U-Net parameters. A model was obtained that
was almost optimum after training. To obtain a dual-channel output of gεR2×128×128, the
unprocessed-ROI is inserted as raw input into the training zone of U-Net. The following
formula yields the final binary mask g as in Equation (9).

gi,j =

{
0, g1

i,j ≥ g2
i,j

1, g1
i,j ≤ g2

i,j
(9)

4. Results

The framework is implemented using the Spyder (Python 3.9) NN deep learning
framework as the training phase. Adam optimizer is also used as an optimizer. The time
taken by the system to perform each step is 2 s. In this approach, the starting learning rate
at a value of 0.001 was decomposed by 0.95 at each epoch, and the weight deterioration
(L2 regularization) was adjusted at 1 × 10−4. The experiments are executed on an NVIDIA
RTX 3070 GPU.

The TensorFlow [68] framework was used as a backend, and the Keras [69] library as a
frontend to construct the suggested model. The training and testing subsets of the MICCAI
2009 data set are each given a proportion of 70% and 30%, respectively. The training is
conducted using a 0.0001 learning rate, handling with a batch width of 16, the selected
optimizer being Adam, and the model is trained up to 100 epochs before convergent
executing 76 epochs. In order to further prevent overfitting, early stopping regularization
is applied to the validation subset, especially to the validation loss. It took 4 h to finish the
network’s training.

Formulated gauges help to measure the performance of newly explored techniques.
Among these standard measures, the most used are the dice metric (DM), accuracy, average
perpendicular distance (APD), the intersection of union (IoU), recall and precision. The
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dice metric reports the execution of unwavering quality in terms of manual segmentation
consequences and pixel-wise overlapping of the generated map. In the equation intersec-
tion, B represents the segmented points by novel approach, C is the sign used for manual
results of segmented points. Hausdroff distance (HD) is a measure that shows the distance
between the ground truth contour and the segmented region. Intersection-over-union (IoU)
is determined sequentially through the images between ground truth (GT) and predicted
segmentation (IP). The recall measures the similarity proportion between the algorithm-
calculated boundary and the boundary of ground truths. As in the equation below, the
RC
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4.1. Experiment 01: LV Endocardium Segmentation Results

A hyperparameter that manages the quantity at the base of gradient descent for
iterations over the full training dataset is its quantity of epochs. When the subsequent cycle
of the same dataset simulation occurs, known as the next epoch, the weights that were
initially established will be subject to changes. Underfitting and Overfitting are the two
fundamental issues that plague epoch optimization. An optimization of gradient descent
iteratively adjusts the weights of the neural network. The network underfits the data if we
train it for only a few epochs. This indicates that the neural network is unable to detect the
data’s underlying trend. An increase in epochs eventually reaches an ideal state where we
will obtain the greatest accuracy on the training set, which consequently provides improved
results on the testing set. If we continue to increase the number of epochs after this point,
the data will become overfit. A hypermeter requires tuning, and we cannot predict in
advance how many epochs would be needed to achieve the optimum level of training.
To train the neural network, we can only employ a few heuristics and a fixed number of
epochs while keeping an eye on the precision of the testing results.

In Table 3, when 20 epochs were used, the initial values in terms of accuracy, dice
coefficient, IoU, loss and precision were low. With the upsurge in the number of epochs, the
values are increased continuously, gained precision and yielded good results. Increasing the
number of epochs, in the beginning, showed much difference in the values optimistically.
However, as the number of epochs reached nearly 60, the learning rate now showed
less increase and attained the maximum accuracy from a certain number of epochs. The
endocardium showed a 92.7% accuracy and precision ranging to 98.17%, i.e., a good result.
The dice coefficient reached up to 97.1%.
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The novel technique of deep learning shows promising results for all slices of the heart
and for all phases of the heartbeat, i.e., both systolic and diastolic. In addition, this novel
approach shows good results for the LVOT images as well, which are extremely difficult
images to segment. Randomly, a few images from different cases are selected to show the
visual results of the proposed novel deep learning model, which are shown in Figure 5.

Table 3. Results of endocardium segmentation using dataset through proposed model based on
epochs.

Epochs Accuracy% Dice
Coefficient% IoU% Loss% Precision%

20 0.911231 0.9444 0.9506 0.0163 0.9662
25 0.9115 0.9568 0.9551 0.0146 0.9681
30 0.9116 0.9577 0.9567 0.0139 0.9701
35 0.9116 0.9598 0.9569 0.0138 0.9707
38 0.9116 0.9608 0.9570 0.0138 0.9715
40 0.9117 0.9645 0.9571 0.0137 0.9751
42 0.9117 0.9662 0.9571 0.0137 0.9772
51 0.9119 0.9682 0.9598 0.0132 0.9798
60 0.9270 0.9712 0.9673 0.0120 0.9817
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Figure 5. Segmentation results of endocardium using novel Light U-Net segmentation model.

Figure 5 is divided into three columns. The first column shows the input image of LV
with the ground truth. The second column shows the mask being applied on the ground
truth images. Lastly, after the mask is applied, we get the results of the novel deep learning
algorithm Light U-Net applied on the ground truth images. The results are clearly showing
the remarkable performance of a novel deep-learning algorithm. Images from the basal
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slice, apical slice and LVOT are shown in the figure. The purpose of this comparison is
to show the difference and improvement achieved after the implementation of the novel
Light U-Net model against the U-Net model on endocardial images of the dataset. Figure 6
shows the performance range through graphical representation in terms of accuracy, dice
measure, IoU, loss, precision, and recall values of the endocardium against a number of
epochs. The blue and red lines in Figure 6 show the training and testing results of the novel
Light U-Net model, respectively, while the U-Net model’s training and testing are indicated
using green and purple lines, respectively. Here, in Figure 6a, the accuracy of the proposed
model can be clearly seen to improve and is more targeted than the U-Net model. Figure 6b
shows the dice coefficient curves. In the initial epochs, the dice coefficient has increased
spontaneously, but after crossing 15 epochs, the learning rate has slowed down, and the
maximum results are achieved at 60 epochs.
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Figure 6c provides the IoU results of the endocardium, which increases swiftly at the
start and provides the best results at 60 epochs. The loss values are lower over the training
data at the end of each epoch. In Figure 6d, our Light U-Net model provides the minimum
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loss at 60 epochs, and initially, until 30 epochs, the value of loss decreases gradually. The
proposed algorithm results of precision, as shown in Figure 6e, show a straight jump from
lower values to very high values in just a single epoch, after which the change is less as
the line in the graph is nearly straight. The recall values of the endocardium are given in
Figure 6f, and these curves show a strange order as the recall curve of the U-Net model first
decreases and then suddenly increases, while the Light U-Net model provides a complete
increase until 60 epochs.

4.2. Experiment 02: LV Epicardium Segmentation Results

The epicardium results are also the most important, as are the endocardium results.
Initially, 20 epochs provided an accuracy of 92.6% and a precision ranging to 98.6%. With
the upsurge in the number of epochs, it can be seen below in Table 4 that the epicardium
results are gaining precision and showing a positive change. Reaching 60 epochs shows
complete, accurate and precise values, i.e., with an accuracy of 93.7%, the precision reaches
99.9% and the dice coefficient, 97.1%. Thus, the positive change in the results was the result
of increasing the number of epochs.

Table 4. Results of epicardium segmentation using the dataset through the proposed model based on
epochs.

Epochs Accuracy% Dice
Coefficient% IoU% Loss% Precision%

20 0.9262 0.9453 0.9533 0.0241 0.9967
25 0.9264 0.9513 0.9552 0.0229 0.9970
30 0.9265 0.9592 0.9569 0.0218 0.9973
35 0.9264 0.9610 0.9567 0.0221 0.9970
38 0.9268 0.9625 0.9595 0.0202 0.9978
40 0.9269 0.9647 0.9598 0.0200 0.9978
42 0.9270 0.9654 0.9611 0.0192 0.9982
51 0.9273 0.9701 0.9621 0.0186 0.9986
60 0.9370 0.9721 0.9721 0.0150 0.9992

The results of the innovative deep learning method novel Light U-Net applied to
the ground truth images are obtained after the mask has been applied. The novel deep-
learning technique is producing promising outcomes for all heart slices and for both the
systolic and diastolic stages of the heartbeat. To demonstrate the visual results of the novel
proposed deep learning model, a few randomly selected images from various cases are
provided in Figure 7. The results clearly demonstrate the novel deep learning algorithm’s
outstanding performance.

Three columns make up Figure 7, as mentioned in the visual results of the endo-
cardium. The ground truth input image of LV is displayed in the first column. The mask is
applied to the images of ground truth shown in the second column of the figure. Addition-
ally, the LVOT images, which are difficult to segment, are also responding well to our novel
approach. This comparison shows the difference between the implementation of the Light
U-Net model against the stock U-Net model for epicardial contours.

Figure 8 provides the graphical trends of the epicardium against a number of epochs
using statistical performance measures as previously mentioned; in the endocardium, the
blue and red lines show the results of the novel Light U-Net model. On the other hand,
the results from the U-Net model are indicated using green and purple lines. The overall
trends in the graph show that the proposed model is yielding better results.
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4.3. Experiment 03: Comparison of Contours Results between Proposed Model and U-Net Model

A comprehensive demonstration of the workflow of the model and its end results is
necessary. Simple U-Net architecture is implemented on dataset mask images with ground
truth marked on images obtained through the data provided by the Sunnybrook code
of evaluation through MATLAB implementation. The resultant segmentation measures
produced from both the U-Net implementation and the proposed Light U-Net model are
shown in Table 5. For training, the values of the hyperparameters, dataset and evaluation
metrics images are used similarly for both models so performances can be compared.
Overall, the novel Light U-Net performs well on the LV segmentation challenge. It further
shows that the segmented analytical results from the proposed model are on the mark more
than those of a simple U-Net, as depicted in Table 5. It shows that using a novel Light
U-Net to confine the actual MRI is an essential step that lowers the formulation difficulty,
which consequently lowers the likelihood of segmentation errors.

Table 5. Novel Light U-Net and U-Net results comparison for endo- and epicardium contours.

Contours Model Epochs Accuracy Dice Coeff. IoU Precision Loss

Endocardium
U-Net 66 0.9069 0.9482 0.9022 0.9788 0.0278

Novel Light U-Net 42 0.9117 0.9779 0.9571 0.9973 0.0137

Epicardium U-Net 66 0.9196 0.9519 0.9096 0.9808 0.0455
Novel Light U-Net 30 0.9265 0.9772 0.9569 0.9973 0.0218

4.4. Left Ventricle Segmentation Results of MICCAI Dataset

The results for LV using a deep learning methodology are also evaluated using the
publicly available dataset, MICCAI 2009, which has short-axis MRI images that encapsulate
all images from the outflow tract to the apical of the heart with the ED to the ES phases of
the heart. Each patient’s data is in a separate folder, including the images of a full heart
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scan with phases of the heartbeat. This dataset is used for training the model and then its
testing. In Table 6 below, selecting 60 epochs provided the accuracy ranging to 0.932 along
with precision at 0.9985, Dice matrix at 0.988, IoU at 0.9695 and loss at 0.0135. These results
show that if the number of epochs is increased, then the results will be improved.

Table 6. Results of the proposed model for left ventricle segmentation.

Data Set Accuracy% Dice Coeff.% IoU% Loss% Precision% Recall%

Endocardium 0.9270 0.9712 0.9673 0.0120 0.9817 72.01
Epicardium 0.9370 0.9721 0.9721 0.0150 0.9992 82.09

Overall 93.2 97.1 96.95 0.013 99.045 77.05

4.5. Proposed Segmentation Results Comparison with Existing Techniques

To match the performance of the proposed technique, the standard, publicly available
dataset, MICCAI 2009, is used. For comparison, relevant state-of-the-art latest methods
are considered, such as ResU-Net, half-U-Net, multi-scale, multi-skip, dilated dense, and
a combination of CNN and U-Net. Table 7 below illustrates that the proposed method
obtained improved performance compared to existing methods.

Table 7. Performance comparison of existing methods with the proposed method.

Ref# Years Technique Dataset Results (Overall)

[70] 2022 Enhanced ResUnet MICCAI 2009 DM, APD 0.94 ± 0.04,
1.48 ± 0.33 mm

[71] 2022 Half-U-Net (U-Net Enabled Encoder Decoder) MICCAI 2009 Dice coefficient 0.93385
[63] 2021 U-Net combined with image sequence information MICCAI 2009 DM 93.785
[72] 2020 Dilated dense convolutional network MICCAI 2009 Dice coefficient 0.94 ± 0.02
[52] 2020 Combined CNN and U-Net MICCAI 2009 Dice coefficient 0.951

[73] 2019 Convolution based on Sparsity depth-wise U-Net
and residual learning MICCAI 2009 Dice coefficient 0.90

Proposed Intelligent image enhancement and novel Light
U-Net-based segmentation model MICCAI 2009 Dice coefficient 97.7%

5. Discussion

U-Net is suitable for segmentation problems. Pixel-level information can be preserved
by this U-Net and CNN architectures, which is the main reason for choosing these archi-
tectures for segmentation. The dataset of MICCAI 2009 images uses four different types
of patients with a whole scan of the heart from the apex to the base, and all systolic and
diastolic phase data are present in this dataset, along with its ground truths. Obtaining
results from the basic U-Net model does not provide better accuracy, so some modifications
can enhance the results. The proposed convolutional model was used as a base by adding
new layers in a unique minimizing hierarchy, which improved the results. Moreover,
enhancement of the data also adds to the good results. The comparison between the U-Net
and proposed Light U-Net segmentation models is depicted in the figure below. The input
image, along with its ground truth, is used by both models as shown in Figure 9a. Then, a
mask is applied in the second step as shown in Figure 9b. The difference in the results of
both models is depicted in the figure.

In Figure 9c, the U-Net model segmentation provides rough results, and the obtained
images have a distortion in them, while the proposed Light U-Net model as shown in
Figure 9d, shows a complete difference and provides enhanced results. Image number 3 in
the figure shows LVOT. The LVOT in the U-Net model has not been completely segmented,
and the results are not clear. In our model of Light U-Net, the LVOT image is segmented
very well and improved as compared to the U-Net model.
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6. Conclusions and Future Work

This innovative method contributes to processing and normalizing images by perform-
ing an intelligent histogram selection of images based on the novel enhancement technique.
The novel Light U-net model, having a parallel unique structure of convolutional layers
at the encoder side, contributes to the unique architecture of the model. Over the au-
thentic and well-known dataset, the method demonstrated excellent performance and
outperformed recent approaches by showing a dice coefficient value of 97.1%. The testing
accuracy of the dataset is 92%, and precision is up to 98.17%. The proposed method is
intended to eliminate manual and semiautomatic LV segmentation. Deep learning models
touching the borders of high levels of accuracy and precision pushed us to deploy neural
net learning methods. As per our expectations, the novel approach of U-Net along with the
novel enhancement technique, outperformed the recently developed algorithms.

The shape and size of the endocardium and epicardium at the slices of the apical
regions and at LVOT are not clearly predictable, which presents significant challenges to
the segmentation problem and our model also faces challenges at these stages that must
be handled in new techniques by adding or setting parameters for training the network;
the use of a vision transformer can also enhance the model. Increases in the testing and
training datasets may also contribute to better training configurations.
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