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Abstract: Information-driven group maintenance is crucial to enhance the operational availability
and profitability of diverse industrial systems. Existing group maintenance models have primarily
concentrated on a single health criterion upon maintenance implementation, where the fusion of
multiple health criteria is rarely reported. However, this is not aligned with actual maintenance
planning of multi-component systems on many occasions, where multi-source health information
can be integrated to support robust decision making. Additionally, how to improve maintenance
effectiveness through a scientific union of both scheduled and unscheduled maintenance remains a
challenge in group maintenance. This study addresses these research gaps by devising an innovative
multiple-information-driven group replacement policy for serial systems. In contrast to existing
studies, both discrete-state information (hidden defect) and continuous degradation information are
employed for group maintenance planning, and scheduled postponed maintenance and unscheduled
opportunistic maintenance are dynamically integrated for the first time to mitigate downtime loss.
To be specific, inspections are equally spaced to reveal system health states, followed by the multi-
level replacement implemented when either (a) the degradation of the continuously degrading unit
reaches a specified threshold, or (b) the age of the multi-state unit since the defect’s identification
reaches a pre-set age (delayed replacement). Such scheduling further enables the implementation of
multi-source opportunistic replacement to alleviate downtime. The Semi-Markov Decision Process
(SMDP) is utilized for the collaborative optimization of continuous- and discrete-state thresholds, so
as to minimize the operational costs. Numerical experiments conducted on the critical structure of
circulating pumps verify the model’s applicability.

Keywords: maintenance optimization; inspection planning; replacement decision making; oppor-
tunistic replacement; availability; cost-effectiveness

MSC: 90B25

1. Introduction

Preventive maintenance is a critical element of asset health management, which has
a significant impact on ensuring the operational reliability and availability of industrial
plants [1,2], as well as enhancing their profitability [3,4]. According to the foundation of
maintenance decision making, preventive maintenance can be substantially partitioned into
two types, time-based maintenance (TBM) and condition-based maintenance (CBM) [5,6].
In recent decades, with the rapid advancement of sensor and data processing technology,
CBM has attracted considerable attention, with a series of field applications in areas such as
navigation, rail transit, and advanced manufacturing [7,8]. The core principle of CBM is to
collect multiple types of health information to support data-driven maintenance decision
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making, with full consideration of the system structure, operational conditions, and failure
mechanisms [9,10].

Inspection, as a fundamental part of CBM, provides crucial supporting information for
subsequent repair/spare part decisions [11,12]. Typically, there are two main types of health
information that can be identified through inspections [13]. The first type of health data
is continuous degradation information, which includes measurements such as blade crack
length, wear accumulation of rotating machinery, capacity reduction of lithium batteries, and
parameter drift of electronic devices [14]. The second type is discrete health status, which
is typically observed in multi-state plants. Among these, the most commonly encountered
pattern during inspection activities is two-stage deterioration, where two successive and
random stages occur before ultimate failure [15,16]. The former stage is called the defect
initialization stage, while the latter stage is called the defect expansion stage, whose duration
is also called the delay time [17,18]. Typical defects include dents, holes, cracks, out-of-control
quality, etc., which broadly exist in industrial plants such as in bearings, pumps, medical
equipment, and manufacturing lines [19]. The defective state, analogous to continuous
degradation, is usually unfatal and hidden, and its effective identification and removal are
closely related to inspection activities [20,21]. This highlights the importance of scheduling
and optimizing inspection plans, which significantly affects maintenance performance [22,23].

Despite the extensive research into CBM planning of critical components degrading
either continuously or discretely, the existing literature on group maintenance models has
primarily focused on a single failure mode, either degradation or sudden failure type [24,25].
There remains a lack of a unified group maintenance framework that examines the interaction
effect between two separate failure modes [26]. For instance, Gopalan et al. [27] and Malefaki
et al. [28] analyzed the degradation analysis and condition-based maintenance modeling ap-
proaches for two-component systems subject to gradual degradation. Zhang [29] studied the
optimal maintenance decision with regard to group maintenance of a two-component system
subject to sudden failure, with application to petrochemical enterprises. Wang et al. [6,30]
extended the single failure mode to competing failures, either degradation-based or shock-
induced. However, scheduled group maintenance was not considered in their work since
shock-induced failure does not hinge on inspection outcome. Xu et al. [15] investigated
the group maintenance optimization of generalized multi-component systems subject to
imperfect inspections, which was also limited to degradation-based failure mode.

After conducting a detailed literature review, we identified four significant research
gaps that remain to be addressed. Firstly, the majority of current group maintenance models
made maintenance decisions solely based on a single type of health information, either ac-
cumulated degradation or hidden failure/defect. There is a scarcity of group maintenance
frameworks that sufficiently utilize both continuous and discrete health information to (a)
improve the robustness of maintenance decision making and (b) enhance system effective-
ness [31]. However, as for realistic industrial systems such as wind turbines, gas pumps,
and aircraft, both continuous degradation information and discrete-state information (for
instance, defect information) are extensively seen through condition monitoring of crucial
mechanical/electronic components. It is crucial to schedule group maintenance with suffi-
cient consideration of both information arising from different failure modes, so as to develop
more effective maintenance strategies [32,33]. Secondly, there are few studies that have
investigated how inspection information can be used to integrate both (a) scheduled group
maintenance (GM) and (b) unscheduled opportunistic maintenance (OM), with the goal of
reducing downtime loss. Given that preventive actions for system components may vary
depending on their health conditions, an effective integration of GM and OM is essential to
capture the interaction between separate maintenance activities to alleviate maintenance
downtime losses to a maximum extent [34,35]. Thirdly, most group maintenance models as-
sume immediate maintenance, particularly for two-component systems [36]. This may be a
sub-optimal option for multi-state plants since the potential of the remaining lifetime is not
sufficiently exploited, leading to over-maintenance [37,38]. Also, immediate maintenance is
unable to provide extra chances for opportunistic maintenance [39,40]. Fourthly, there is no
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high-efficiency algorithm to deal with such constrained maintenance interaction problems.
The commonly adopted renewal–reward theory, although facilitating single-component
maintenance modeling, confronts the renewal asynchrony challenges when applying to the
OM-GM interaction model [41]. Simulation algorithms such as Monte Carlo, on the other
hand, are challenged by the computation burden and model interpretability.

To address the foregoing research gaps, we innovatively devised an inspection-driven,
multi-source group maintenance policy for serial systems subject to both continuous and
discrete deterioration processes. As opposed to previous studies, the information about (a)
continuous degradation accumulation and (b) discrete early warning signals is incorporated
to support the implementation of mutually interacted maintenance actions such as oppor-
tunistic maintenance and delayed maintenance. Through such information interaction, the
robustness and timeliness of group maintenance policies can be sufficiently ensured, which
ultimately improves the system service availability. Moreover, we are the first to schedule
defect-induced postponed maintenance within group-condition-based maintenance models,
which allows preventive maintenance to be postponed to future inspection windows upon
defect identification. As such, delayed replacement can be integrated with degradation-
based replacement to constitute cost-effective group maintenance planning that sufficiently
shares the set-up cost. Furthermore, we innovatively extract multiple maintenance opportu-
nities from (a) the corrective replacement of both units, (b) the threshold-based replacement
of degrading units, and (c) the delayed replacement of multi-state units. Through the
scheduling of such multi-source opportunistic maintenance, the economic and structural
dependence of the entire system can be fully harnessed to effectively mitigate system down-
time. To the best of our knowledge, this is the first effort to integrate delayed maintenance
and opportunistic maintenance within group maintenance models, which significantly
promotes system profitability and availability through (a) multiple-source information fu-
sion and (b) dynamic maintenance interaction. Ultimately, we devised a high-efficiency
optimization algorithm oriented to such multi-variables that leverages the Semi-Markov
Decision Process to solve the model convergence and computation burden problems caused
by conventional renewal theories. The applicability of the proposed model was validated by
numerical experiments on cycling pump systems experiencing both crack propagation and
corrosive pitting processes.

To summarize, this study contributes to group maintenance optimization from the
following four perspectives:

n Constructing an innovative group maintenance framework integrating both continu-
ous and discrete health information, which dynamically integrates (a) opportunistic
maintenance and (b) delayed maintenance to significantly enhance maintenance
effectiveness and availability;

n Allowing defect removals to be postponed so as to (a) exploit the remaining lifetime
potentials and (b) offer extra chances for the selection and implementation of cost-
effectiveness opportunistic maintenance;

n Scheduling multiple types of opportunistic maintenance arising from (a) threshold-
based replacement, (b) delayed replacement, and (c) corrective maintenance to suffi-
ciently control system downtime and enhance decision-making robustness;

n Realizing the high-efficiency optimization of maintenance interaction problems via the
Semi-Markov Decision Process, and demonstrating the model’s applicability through
numerical experiments on a circling pump.

The remainder of this paper is structured as follows. Section 2 introduces the basic
problem with regard to the basic system structure and unit failure mechanism. Section 3
designs the inspection-based maintenance policy. Section 4 formulates the maintenance
model under the SMDP framework. Section 5 illustrates the applicability via a numerical
experiment on a circling pump. Section 6 concludes the paper and lists some possible ex-
tensions.
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2. Problem Description

This paper is mainly divided into four parts: degradation modeling, replacement
policy, cost modeling, and optimization algorithm. Figure 1 is the research framework of this
paper. Starting from this section, the optimal replacement policy for two-unit series systems
considering discrete and continuous degradation information will be studied following the
research ideas shown in the framework.
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Figure 1. Research framework.

Consider a deteriorating system that consists of two critical units connected in series,
in that failure of each unit leads to an immediate system failure. The two units possess
independent deterioration mechanisms throughout their lifetime. Unit 1 is continuously
deteriorating with observable degradation trajectories through inspections. Such mech-
anisms are widely seen in diverse industrial plants, such as fatigue crack propagation,
battery capacity reduction, and wear accumulation [27]. Unit 1 is deemed as failed when
the accumulated degradation attains a pre-set threshold D, D > 0 according to industrial
standards or safety constraints. Unit 2 is a multi-state unit that encounters one or more
unfatal transition states prior to ultimate failure, which can be viewed as effective early-
warning signals supporting timely preventive maintenance. The hidden health information
of both units can only be identified by inspections, whose diagnosing outcomes support
group maintenance decision making.

In this study, the degradation process of Unit 1 is characterized by the Wiener process.
Wiener is a widespread stochastic process that captures non-monotone degradation behav-
iors, attributed to its good mathematical properties and physical interpretability [8]. Accord-
ingly, the underlying degradation process X(t) is formulated as X(t) = X0 + µ(t) + σW(t),
where X0 is the initial degradation, µ(t) = µt is the drift process, σ represents the diffusion
coefficient, and W(t) represents the standard Brownian motion. A prominent property of
such a process is that the degradation increment within any interval is an independent vari-
able following inverse Gaussian distributions. Notably, other forms of stochastic processes,
such as random walk and Gamma processes, are also applicable without model restriction.

On the other hand, the deterioration process of Unit 2 is specified as two-phase deteri-
oration, due to its generality and representativeness in inspection-based maintenance [40].
Such a process usually defines a non-fatal, identifiable defective state, during which the
unit remains operational but experiences significantly higher malfunction risk. In other
words, the random sojourn of the defect propagation process γb is statistically smaller than
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that of the defect initialization process γa. Representative instances of such defects include
dents, holes, stripping, over-vibration, overheating, out-of-control quality, etc.

Obviously, inspections are crucial and fundamental preventive maintenance activities,
as they report the hidden health state (either continuous or discrete) of both units, which
supports timely, state-driven maintenance planning. In the following sections, we use the
inspection outcomes to devise, formulate, and then optimize the group-level condition-
based maintenance policy.

3. Maintenance Planning

The core focus of maintenance policy is to minimize the operational cost of the entire
system by considering the following factors: (a) system structure, (b) unit failure behavior,
and (c) combinations of maintenance activities. In particular, for a serial system with both
structural dependency and economic dependency, group maintenance is more cost-effective
than individual maintenance. Group maintenance allows for the sharing of set-up costs
and the utilization of unavoidable maintenance downtime. In the remaining section, we
will outline the approach for scheduling an inspection-based group maintenance policy
that captures unit dependencies.

3.1. Basic Assumptions

In order to clarify the maintenance policy, some basic assumptions with regard to
failure characteristics, operational conditions, and maintenance activities are outlined, with
proper justifications or interpretations.

(a) Units 1 and 2 are as good as new when initially put into use. In other words, the initial
degradation accumulation of Unit 1 and the virtual age of Unit 2 are equal to 0. This is
a common assumption used to simply the maintenance problem, which can be easily
relaxed [26];

(b) Inspections are instantaneous, non-destructive, and perfect. In other words, both the
degradation severity (Unit 1) and the defective state (Unit 2) of the system can be accu-
rately reported. This is a widely accepted setting since well-prepared inspections, in
contrast to sensor-based condition monitoring, incur negligible measurement error [7];

(c) Maintenance, either corrective, preventive, or opportunistic, returns the unit back to
as-good-as-new status. This is equivalent to the effect of spare part replacement. In
the rest of the section, we use maintenance and replacement interchangeably;

(d) The time to execute maintenance activities is non-negligible, and these activities
require the stoppage of the entire system, and the downtime loss cannot be ignored.

3.2. Group Maintenance Scheduling

As addressed earlier, group maintenance is a more cost-effective selection for multi-
component systems compared with individual maintenance [5,42], due to its capacity to
(a) adequately harness unavoidable downtime and (b) save set-up and personnel costs. On
the other hand, for a multi-phase plant with a defective state, it is suggested to postpone
preventive maintenance when revealing the defect, instead of an immediate execution. Such
postponement ensures a sufficient exploration of the remaining lifetime potential.

In this study, we designed a novel inspection-based, multi-dimensional maintenance
policy, which is the union of four types of mutually interacting maintenance activities: (a)
threshold-centered replacement, (b) delayed replacement, (c) opportunistic replacement,
and (d) corrective replacement. In particular, opportunistic replacement is integrated with
the other three types of activities to form maintenance groups, so as to enhance maintenance
efficiency. Also, the provision of postponed maintenance offers more space and flexibility
for opportunistic maintenance. The specific scheme of the maintenance policy is outlined
below, and a specific situation of integrated maintenance activities is presented in Figure 2.
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• Regular inspection. Inspections are equally spaced within the lifetime horizon accord-
ing to an interval of ∆, ∆ > 0, with a cost CI per time unit. The function of inspection
is twofold, (a) reporting the latest degradation magnitude of Unit 1, and (b) revealing
the hidden defective state of Unit 2. Inspections are perfect and instantaneous, but
require stopping the system;

• Threshold-centered replacement (TR). Upon an inspection Ti = i∆, i = 1, 2, · · · , if
the degradation of Unit 1 exceeds a pre-specified control limit U, 0 < U < D, but does
not yet reach the failure threshold D, a TR is immediate with a cost Cp1 and time Tp1;

• Delayed replacement (DR). If Unit 2 is found defective upon an inspection, then its
preventive replacement is scheduled H inspection intervals later, equivalent to H∆
time units. Such replacement incurs a cost of Cp2 and time Tp2;

• Corrective replacement (CR). CR is triggered when (1) the degradation measurement
of Unit 1 at an inspection exceeds the failure threshold D, and (2) the defect of Unit
2 deteriorates to a complete failure. The incurred cost for each unit is Cc1 and Cc2,
respectively; the incurred time for each unit is Tc1 and Tc2, respectively;

• Opportunistic replacement (OR). OR is available for both units, whose acceptance
hinges on the entire system state. Here, two situations are possible:

(a) OR of Unit 1. If Unit 2 fails unexpectedly due to defect evolution or requires
replacement, Unit 1 is offered extra chances for OR. Specifically, if the degrada-
tion accumulation exceeds L, the chance is accepted and a cost Co2 is incurred;
otherwise, no action is taken;

(b) OR of Unit 2. If the degradation of Unit 1 exceeds either the pre-set replacement
threshold, while Unit 2 is waiting for DR, Unit 2 will be offered chances for
OR. To be specific, if the time elapsed since the defect identification exceeds
VT, 1 ≤ V < H, the chance for OR is accepted and a cost Co1 is incurred;
otherwise, no action is taken;

� Remark. The sufficient interaction and integration of OR with TR and DR addressed
in this maintenance policy is an effective and robust way to exploit unit dependencies
(structural dependency and economy dependency), so as to enhance operational
profitability by minimizing system downtime and downtime loss. For similar reasons,
predictive maintenance is a cost-effective solution for multi-phase units/systems due to
its nature of (a) avoiding excessive maintenance, (b) extending the remaining lifetime,
(c) allowing sufficient resource preparing, and (d) offering extra chances for OR.
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4. Model Formulation and Optimization

The objective of the maintenance model is to minimize the average cost per unit time
g(H, V, U, L), through the joint optimization of the degradation control limits L, U, and the
delayed interval numbers H, V. Thus, the optimization problem can be described as

g(H∗, V∗, U∗, L∗) = infg(H, V, U, L),
subjectto 0 < L < U < D, 1 ≤ V ≤ H.

(1)

In this study, we strive to solve the maintenance problem under the Semi-Markov Deci-
sion Process (SMDP) framework, which has been proven an efficient and steady analytical
approach to renewal problems with generalized state sojourn time [9,37]. To this end, the
one-step transition probabilities of each unit are calculated, based on which the system
transition probabilities are derived. Then, the expected sojourn time and cost of the system
are provided, and the optimal maintenance strategy minimizing the cost is searched via a
random search approach.

4.1. State Transition of Unit 1

We begin with the state transition of Unit 1. To this end, we first investigate its stochastic
degradation behavior. Let {X(t) : t ∈ R+} represent the degradation process of Unit 1. Then,
the degradation trajectory, starting from brand-new status, is formulated as

X(t) = µ(t) + σW(t), (2)

where W(t) represents the standard Brownian motion; µ(t) = µt is the drift process; σ is
the diffusion coefficient.

It is well acknowledged that the Wiener process is an independent incremental process.
Therefore, for 0 < T1 < T2 < . . . < Tk < ∞, the degradation increments X(T1)− X(T0),
X(T2)− X(T1), and · · ·X(Tk)− X(Tk−1) are independent, Gaussian-distributed random
variables. Therefore, when Unit 1 is within the interval [Tk, Tk+1], the increment X(Tk)−
X(Tk−1) yields N

(
µ(Tk − Tk−1), σ2(Tk − Tk−1)

)
, which is equivalent to N(∆, σ2∆).

To simplify the problem, we discretize the degradation state place of Unit 1 into
Ω1 = {0, 1, 2, 3, · · · i, · · · , F1 − 1, F1}, where F1 means the failure state, 0 represents the
brand-new state, and i denotes the discrete degradation state. To be clear, the degradation
increment per state is ε, 0 < ε < S. Accordingly, Unit 1 is defined to be in state 1 when
its deterioration is within (0, ε]. Likewise, Unit 1 is in state i if its degradation is within
((i− 1)ε, iε]. Remember that the failure threshold of Unit 1 is D; in other words, D = F1ε.

Let P1
i,j(t) denote the state transition probability of Unit 1 from state i to state j, j ≥ i

within time t. When Unit 1 is known to be operable at time Tn, the one-step transition
probability within a single inspection interval is written as

P1
i,j(∆) = P1

i,j(Tk+1 − Tk) = P{X(Tk+1) = jε|X(Tk) = iε}

= P(lb < X(Tk+1)− X(Tk) < ub) =
∫ ub

lb
1

σ
√

2π∆
e−

(x−µ∆)2

2σ2∆ dx,
(3)

where the lower bound lb = max{0, (j− i− 1)ε}, and the upper bound ub = (j− i)ε.
As aforementioned, replacement is required when the degradation of Unit 1 exceeds

U at an inspection. In particular, CR is immediate if the degradation exceeds D; otherwise,
TR is immediate. Unit 1 will be restored to as-good-as-new status after replacement. Then,
the one-step transition probabilities from state i to state 0 are given as

P1
i,0(Tc1) = P(X(Tk+1) = 0

∣∣∣X(Tk) = iε ≥ D) = 1, (4)

and
P1

i,0(Tp1) = P(X(Tk+1) = 0
∣∣∣D ≥ X(Tk) = iε ≥ U) = 1. (5)
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4.2. State Transition of Unit 2

Let {Z(t) : t ∈ R+} denote the discrete deterioration process of Unit 2, which is par-
titioned into two phases. We denote its state space as Ω2 = {(0, a), (1, a), · · · (k, a), · · · ,
(Θ− 1, a), (Θ, b), · · · , (Θ + V, b), · · · , (Θ + H, b), (0, F2), · · · , (Θ + H, F2)}, where (k, a) and
(k, b) represent the discrete age state of Unit 2 under the normal and defective state, re-
spectively; Θ represents the defect of Unit 2 found in the Θ-th inspection; F2 denotes the
ultimate failure state.

Now we start to calculate the state transition for Unit 2. First, consider the situation
that Unit 2 remains normal during the one-step transition from state k to k + 1. Then, its
transition probability is

P2
(k,a)(k+1,a)(Tn, Tn+1) = Pr{Z(Tn+1) = (k + 1, a)|Z(Tn) = (k, a)} =

Rγa((k + 1)∆)
Rγa(k∆)

, (6)

where Rτa(.) = 1− Fτa(.) is the survival function of the normal stage. Similarly, the one-step
transition from state k to k + 1 in the defective state is

P2
(k,b)(k+1,b)(Tk, Tk+1) = Pr{Z(Tk+1) = (k + 1, b)|Z(Tk) = (k, b)} =

Rγb((k + 1)∆)
Rγb(k∆)

, (7)

where Rγb(.) is the survival function of the defective stage. Moreover, the probability of
Unit 2 transforming from normal status to defective is

P2
(k,a)(k+1,b)(Tk, Tk+1) = Pr{Z(Tk+1) = (k + 1, b)|Z(Tk) = (k, a)}

=

(k+1)∆∫
k∆

fγa (t)Fγb ((k+1)∆−t)dt

Rγa (k∆) .
(8)

4.3. System Transition Probability

As addressed, {X(t) : t ∈ R+} and {Z(t) : t ∈ R+} represent the deterioration process
of both units. In this study, the SMDP framework is employed to solve the maintenance
optimization problem. To this end, we first define the state set and action set of the system,
as stated below.

• System state set. Denote the system operational state as Sop = S1 ∪ S2, where S1 =
{(i, k, a)|0 ≤ iε < D, 0 ≤ k ≤ Θ}, and S2 = {(i, k, b)|0 ≤ iε < D, Θ ≤ k ≤ Θ + H}.
Moreover, let state sets S3 = {(F1, k, a)}, S4 = {(F1, k, b)} represent the state in
which Unit 1 fails while Unit 2 remains normal/defective, S5 = {(i, k, F2)|0 ≤ iε ≤ D}
represent the state in which Unit 2 fails while Unit 1 remains operational, and
S6 = {(F1, k, F2)} represent that both units fail. Clearly, the entire system state set is
the union of the above-mentioned scenarios, i.e., S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6;

• System action set. A maintenance decision is made at each inspection time Tn = n∆.
The set of maintenance actions is {0, 1, 2, 3}, where 0 means no maintenance action, 1
means corrective replacement action, 2 means preventive replacement action (including
TR of Unit 1 and DR of Unit 2), and 3 means opportunistic maintenance action. Let
A = (A1, A2) represent the maintenance action taken for both units. For instance,
when iε < U, k < Θ, this means both units are normally working, so no action is taken,
and (A1, A2) = (0, 0).

• System state transition. It is clear that the system transition probability can be derived
by multiplying the transition probabilities of Unit 1 and Unit 2. For instance, we define
P(i,n,a),(j,n+1,a)(A1, A2) as the transition probability from state (i, k, a) to state (j, k+ 1, a)
when action (A1, A2) is taken. Then, the probability P(i,k,a),(j,k+1,a)(0, 0) is derived as
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P(i,k,a),(j,k+1,a)(0, 0)
= P{X(Tk+1) = jε, Z(Tk+1) = ((k + 1)∆, a)|X(Tk) = iε < U, Z(Tk) = (k∆, a)}
= P1

i,j(Tk, Tk+1) ∗ P2
(k,a),(k+1,a)(Tk, Tk+1)

=
∫ (j−i)ε

max (0,(j−i−1)ε)
1

σ
√

2π∆
e−

(x−µ∆)2

2σ2∆ dx ∗ Rγa ((k+1)∆)
Rγa (k∆) .

(9)

Similarly, the transition probability from state (i, k, a) to state (j, k + 1, b) when taking
action (0, 0), denoted by P(i,k,a),(j,k+1,b)(0, 0), is calculated as

P(i,k,a),(j,k+1,b)(0, 0)
= P{X(Tk+1) = jε, Z(Tk+1) = ((k + 1)∆, b)|X(Tk) = iε < L, Z(Tk) = (k∆, a)}
= P1

i,j(Tk, Tk+1) ∗ P2
(k,a),(k+1,b)(Tk, Tk+1)

=
∫ (j−i)ε

max (0,(j−i−1)ε)
1

σ
√

2π∆
e−

(x−µ∆)2

2σ2∆ dx ∗

(k+1)∆∫
k∆

fγa (t)Rγb ((k+1)∆−t)dt

Rγa (k∆) .

(10)

where (i, k, a) represents that at the k-th inspection point, component 1 is in state i, and
component 2 is in a normal state. (j, k + 1, b) represents that at the (k + 1)-th inspection
point, component 1 is in state j, and component 2 is in a defect state.

Equations (9) and (10) represent the joint probability distribution function of the degrada-
tion of component 1 and the defect of component 2 within an inspection interval, respectively.

Moreover, when at least one unit requires maintenance at the decision point, the
system transition probability is equivalent to 1, since the maintained unit is restored to
as-good-as-new status after replacement. For instance, when Unit 2 is experiencing CR, and
Unit 1 takes the chance to execute OR, the state transition probability P(i,k,F2),(0,k+1,a)(3, 1)
is formulated as

P(i,k,F2),(0,k+1,a)(3, 1) = P{X(Tk+1) = 0, Z(Tk+1) = (0, a)|X(Tk) = iε ∈ (L, D), Z(Tk) = (k, F)} = 1. (11)

Other system transition probabilities can be derived in a similar manner. In the
following, we specify each state transition possibilities with regard to system renewals, and
derive the corresponding sojourn time and cost.

4.4. Expected Sojourn Time

Under the SMDP framework, the average maintenance cost g(H, V, U, L), as a function
of both time-based and condition-based decision variables, is determined by two crucial
indicators: (a) the expected sojourn time between two successive decision epochs, and (b)
the expected incurred cost over the sojourn time. Both indicators rely on the unit-level and
system-level renewal scenarios.

To be clear, let τ(i,k,a)(A1, A2) and τ(i,k,b)(A1, A2) denote the expected sojourn time
starting from state (i, k, a) and (i, k, b), where A1 and A2 represent the maintenance ac-
tion taken for Unit i, i = 1, 2. We conclude that four possible situations exist in sojourn
time analysis.

a. No maintenance action is taken

We first focus on the case of taking no maintenance action, which can be partitioned
into the following two cases: (a) Unit 1 has not reached the TR threshold, and Unit 2 is
normal-working; (b) Unit 1 has not reached the OR threshold, and Unit 2 remains defective
and waiting for delayed maintenance. Specifically, the expected sojourn under the first
scenario is
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τ(i,k,a)(0, 0) = ∆ ∗
L/ε

∑
j=0

Pi,j
1(∆) ∗

1−
(k+1)∆∫

k∆
fγa (x)Fγb ((k+1)∆−x)dx

Rγa (k∆) +

L/ε

∑
j=0

Pi,j
1(∆) ∗

(k+1)∆∫
k∆

(k+1)∆∫
x

(t−k∆) fγa (x) fγb (t−x)dtdx

Rγa (k∆) ,

(12)

where k ≤ Θ− 1, i ≤ U/ε. The left-hand term indicates that Unit 2 will not fail in the next
inspection cycle, and the right-hand term indicates that Unit 2 will fail randomly in the
next inspection cycle. Likewise, the expected sojourn of the right-hand term is

τ(i,k,b)(0, 0) = ∆ ∗
S/ε

∑
j=0

Pi,j
1(∆) ∗

Rγb((k + 1)∆)
Rγb(k∆)

+
S/ε

∑
j=0

Pi,j
1(∆) ∗

(k+1)∆∫
k∆

(t− k∆) fγb(t)dt

Rγb(k∆)
, (13)

where k ≤ Θ + H − 1, i ≤ L/ε.

b. Only Unit 1 is replaced

When Unit 1 is experiencing TR or CR, Unit 2 will be decided whether to execute OR.
Here, the time to execute TR/CR is no less than that of OR, and thus, we omit OR execution
time. Notably, when maintenance action is determined at Tn, the subsequent decision point
Tn+1 is the maintenance completion time, as graphically represented in Figure 2. Thus, the
expected sojourn time when only Unit 1 is correctively or preventively repaired is equal to

τ(i,k,a)(2, 0) = τ(i,k,b)(2, 3) = Tp1 , (14)

and
τ(F1,k,a)(1, 0) = τ(F1,k,a)(1, 3) = Tc1. (15)

c. Only Unit 2 is replaced

Analogously, when DR or OR is executed on Unit 2, we will determine whether to
execute OR on Unit 1. The expected sojourn time with respect to such a case is given by

τ(i,k,b)(0, 2) = τ(i,k,b)(3, 2) = Tp2, (16)

and
τ(i,k,F2)

(0, 1) = τ(i,k,F2)
(3, 1) = Tc2. (17)

d. Both components are replaced

It is possible for both units to undergo preventive replacement at an inspection, when
(a) the degradation of Unit 1 is within (U, D) and TR is immediate, and (b) the accumulated
age of Unit 2 has reached the postponement threshold, and replacement is immediate. In
this case, the expected sojourn time is the maximum of these two preventive replacement
times, i.e.,

τ(i,k,b)(2, 2) = max(Tp1, Tp2). (18)

Similarly, the expected sojourn time when both units are experiencing corrective
replacement is

τ(F1,k,F2)
(1, 1) = max(Tc1, Tc2). (19)

The sojourn times when one unit experiences preventive replacement while the other
experiences corrective replacement are given by

τ(i,k,F2)
(2, 1) = max(Tp1, Tc2), (20)

and
τ(F1,k,b)(1, 2) = max(Tc1, Tp2). (21)
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4.5. Expected Cost

The maintenance cost arises due to the execution of inspections as well as replacements.
Let C(i,k,a)(A1, A2) denote the maintenance cost incurred starting from state (i, k, a) when
action (A1, A2) is taken. As mentioned in Section 3, the maintenance cost can be divided
into several components, including inspection cost, corrective maintenance cost, preventive
maintenance cost, and opportunistic maintenance cost. Analogous to Section 4.4, there are
four scenarios that need to be discussed.

a. No maintenance action is taken

Clearly, when no maintenance action is taken, the only cost incurred is the inspection
cost upon decision making. Remember that Unit 2 can either be normal or defective when
experiencing inspection. Therefore, the expected cost can be constructed as

C(i,k,a)(0, 0) = C(i,k,a)(0, 0) = CI . (22)

b. Only Unit 1 is replaced

When Unit 1 is experiencing TR or CR, Unit 2 is also offered a chance to execute OR.
Depending on whether OR is accepted, four situations are possible:

C(F1,k,a)(1, 0) = C(F,k,b)(1, 0) = CI + Cc1 (23)

C(F1,k,b)(1, 3) = CI + Cc1 + Co2, (24)

C(i,k,a)(2, 0) = C(i,k,b)(2, 0) = CI + Cp1, (25)

C(i,k,b)(2, 3) = CI + Cp1 + Co2. (26)

c. Only Unit 2 is replaced

Similarly, when Unit 2 is experiencing DR or CR, four situations are possible

C(i,k,F2)
(0, 1) = CI + Cc2, (27)

C(i,k,F2)
(3, 1) = CI + Cc2 + Co1, (28)

C(i,k,b)(0, 2) = CI + Cp2, (29)

C(i,k,b)(3, 2) = CI + Cp2 + Co1. (30)

d. Both components are replaced

Similar to Scenario C, there are four possible situations depending on whether each
unit is preventively or correctively replaced. The corresponding expected costs are

C(i,k,b)(2, 2) = CI + Cp1 + Cp2, (31)

C(F1,k,b)(1, 2) = CI + Cc1 + Cp2, (32)

C(F1,k,F2)
(1, 1) = CI + Cc1 + Cc2, (33)

C(U,k,F2)
(2, 1) = CI + Cp1 + Cc2. (34)



Mathematics 2023, 11, 3322 12 of 19

4.6. System Objective Function

With the state transition function constructed in Section 4.3 and the expected so-
journ/cost function constructed in Sections 4.4 and 4.5, the stationary probabilities can be
derived by solving the following set of equations:

π(j,k+1,a) = ∑ (i,k,a)∈SP(i,k,a),(j,k+1,a)π(i,k,a), (i, k, a) ∈ S
π(j,k+1,b) = ∑ (i,k,a)∈SP(i,k,a),(j,k+1,b)π(i,k,a) + ∑(i,k,b)∈S P(i,k,b),(j,k+1,b)π(i,k,b), (i, k, b) ∈ S
∑(i,k,a)∈S π(i,k,a)+∑(i,k,b)∈S π(i,k,b) = 1

(35)

P(i,k,a),(j,k+1,a)π(i,k,a) represents the stationary probability that the system state at the
k-th inspection is (i, k, a) and transforms to (j, k + 1, a) at the next point.

Accordingly, the stationary average maintenance cost is formulated as

g(H, V, U, L) =
∑ (i,k,a)∈SC(i,k,a)π(i,k,a) + ∑ (i,k,b)∈SC(i,k,b)π(i,k,b)

∑ (i,k,a)∈Sτ(i,k,a)π(i,k,a) + ∑ (i,k,b)∈Sτ(i,k,b)π(i,k,b)
. (36)

4.7. Solution Procedure

The proposed maintenance model contains multiple dependent decision variables,
which are difficult to solve via analytical approaches. To this end, we propose a heuristic
random search approach under the framework of the Ant Colony Algorithm. Ant Colony
Optimization, initially proposed by Marco Dorigo, is a high-efficiency probabilistic simulated
evolutionary algorithm employed to find optimal paths in graphs [43]. Its inspiration comes
from the behavior of ants to find paths in the process of searching for food. In the process
of movement, ants will leave something called pheromones, which gradually reduce as the
distance of movement increases. Therefore, the concentration of pheromones is often the
strongest around the home or food, and ants themselves will choose the direction according
to the pheromones. The main procedure of the optimization approach is outlined below:

• Step 1. Initialization parameters, including the degradation coefficients of Unit 1 and
Unit 2, and the time and cost needed to execute CR, TR, DR, and OR. Initialize the ant
amount W, the information heuristic factor α(α ≥ 0), the expectation heuristic factor
β(β ≥ 0), the objective function g, and the iteration times N. Initialize the solution set
(H∗, V∗, U∗, L∗);

• Step 2. Put the ant starting point in the current solution set. For each ant, the probability
Pij is transferred to the next point j, which places the vertex j in the current solution set;

• Step 3. Calculate the target value function g(H∗, V∗, U∗, L∗) for each ant;
• Step 4. Modify the trajectory strength by updating the process τij(t + 1) = ατij(t) +

(1− α)∆τij;
• Step 5. Reduce the number of iterations by one, i.e., N = N − 1. If N > 0, and there is

no degradation behavior, return to step 2. Otherwise, output the optimal parameters
(H∗, V∗, U∗, L∗).

5. Numerical Experiment

This section applies the proposed maintenance framework to the crucial mechanical
structure of the circulating pump. The circulating pump is a common component in larger-
scale systems used for transport reaction, absorption, separation, and absorption liquid
regeneration. The structure of the circulating pump consists of two safety-critical key
components: the main bearing and the impeller. These two components are connected in
series, meaning that if one of them fails, the entire pump will break down immediately.
The primary mode of degradation for the main bearing is fatigue fracture. This type of
degradation can be quantified by measuring the length of cracks that form in the bearing
over time. In contrast, the degradation process for the impeller can be broken down into
two distinct phases: cavitation and corrosive pitting. In particular, the degradation process
that occurs during the corrosive pitting phase is typically more severe than that during the
cavitation phase. This makes it intractable to monitor and detect these types of degradation
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processes in real time. Instead, the failure data as well as right-censored data can be
employed to capture the time-scale failure characteristics.

Through the goodness-of-fit test, Weibull distribution scales characterize the sojourns
of defect initialization and evolution processes [43], with scales λ1 = 0.78, λ2 = 0.83
and shapes k1 = 0.63, k2 = 1.65, respectively. Additionally, the bearing degradation
is described by the Wiener process, which has been widely adopted to characterize the
crack propagation process [18], with a failure threshold of 22.8 mm. Based on parameter
estimation outcomes, the drift and diffusion coefficients of the Wiener process are µ = 0.741
and σ = 0.012, respectively. The circulating pump is inspected per week to identify its
health state, including the bearing crack length and whether corrosive pitting is initialized.
The cost structure is set as follows. The CR, TR/DR, and OR costs for the main bearing
and impeller are 12,000, 6000, and 4500, respectively; the CR, TR/DR, and OR costs for the
impeller are 9000, 4000, and 3000, respectively; the inspection cost is 500 per time unit.

5.1. Optimization Results

The optimal combination of decision variables and the minimum average maintenance
cost is searched using the algorithm in Section 4.7. According to the optimization outcome,
the minimum cost is obtained when (1) Unit 1 (main bearing) is preventively replaced (TR)
when its crack length reaches 19.6 mm, or opportunistically replaced (OR) when the length
reaches 17.1 mm; (2) Unit 2 (impeller) is preventively replaced (DR) 9 weeks since the
identification of corrosive pitting, or opportunistically replaced (OR) if the chances arrive
within 7 and 9 weeks. The minimum cost regarding the optimal solution is 2941.5 per week.

Clearly, the optimization outcome is affected by several health-related factors of the
circulating pump, such as the propagation velocity/volatility of the bearing, as well as the
state sojourns of the impeller. Therefore, we conducted a sensitivity analysis on crucial
coefficients representing the deterioration severity of the system. Here, we mainly pay
attention to the variations in bearing degradation coefficients, as the impeller deterioration
can be analyzed in a similar way. First, we consider the sensitivity of the maintenance
cost to the diffusion parameter. As shown in Figure 3a, as the diffusion increases, the
optimal cost tends to decrease gradually, but this trend decreases gradually. Moreover, the
optimal cost increases gradually as the drift increases, also with a decreasing trend. From
Figure 4, the drift and diffusion parameters contributed significantly and almost equally to
maintenance performance. Therefore, the bearing degradation should be carefully identified
and controlled.
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For a better illustration of the collaboration effect, we tested the maintenance cost
variation with respect to both the drift and diffusion coefficients, as indicated in Figure 4.
From the diagram, a larger drift and a smaller diffusion coefficient contribute to a higher
cost. This is because the diffusion coefficient affects the degradation rate, in which case the
condition-based threshold will decrease, indicating that threshold-based maintenance (TR)
needs to be executed more regularly, resulting in higher maintenance-induced costs.

Figure 5 indicates the maintenance cost with respect to the (a) scale parameter and
(b) shape parameter of the corrosive pitting initialization process. It can be seen from the
figure that with the increase in the shape parameter and the decrease in the scale parameter,
the maintenance cost gradually increases. Moreover, the impact of the scale parameter
on the maintenance cost is larger than that of the shape parameter. This is due to the fact
that the scale parameter is more closely related to the initialization duration and affects
replacement executions more significantly.
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5.2. Policy Comparison

To highlight the superiority of the proposed maintenance policy in cost control, we
introduce three alternate policies for comparison, either widely used in maintenance
engineering or easy to implement.

n Policy 1. TR and CR are executed for Unit 1, but OR is ignored. Unit 2 undergoes TR,
DR, CR, and OR, which is aligned with the proposed policy;

n Policy 2. DR and CR are executed for Unit 2, but OR is ignored; Unit 1 remains the
same as the proposed policy;
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n Policy 3. Both units undergo TR, DR, and CR, and OR is omitted. Then, the policy
reduces to a conventional preventive maintenance policy without considering unit
dependencies.

The comparison result between these four maintenance policies is indicated in Table 1.
Clearly, the proposed policy outperforms the other heuristic policies, reducing the cost by
11.5%, 6.8%, and 13.7%, respectively. This indicates the profitability of (a) executing OM,
either PM-induced or CM-induced, and (b) allowing defect-induced maintenance to be
performed, since more maintenance opportunities can be integrated to reduce downtime.
Moreover, due to the existence of OM, a more radical (scheduled) maintenance policy is
possible, in that preventive maintenance can be arranged less frequently.

Table 1. The optimal maintenance costs under four different maintenance policies.

Policies H (Week) V (Week) S (mm) L (mm) Average Cost

Proposed policy 12 9 17.1 19.6 2941.5
Policy 1 12 9 16.5 18.4 3321.7
Policy 2 10 8 15.5 17.6 3154.9
Policy 3 9 7 15.2 16.8 3467.6

In order to test the robustness of the proposed policy, we conducted a sensitivity
analysis on some critical cost parameters of the circulating pump, such as the opportunistic
replacement cost as well as preventive replacement cost. We first tested the variation in
pump maintenance cost with respect to the OR cost of the main bearing. As clearly indicated
in Figure 6, the proposed policy outperforms the other three policies regardless of OR cost
variation. Notably, the optimal cost under Policy 1 and Policy 3 is not affected by OR cost,
due to the ignorance of maintenance opportunities. Also, the proposed maintenance policy
is less sensitive to OR cost than Policy 2.
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Likewise, the sensitivity of the optimal cost to the OR cost of the impeller can be
analyzed. As one can see from Figure 7, the proposed policy is more cost-effective than the
other policies, which is rarely affected by impeller OR cost. Also, the optimal cost is the least
sensitive to the OR cost due to the existence of multiple interacting maintenance actions,
which weakens the influence of a single maintenance action.
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Finally, we tested the influence of threshold-centered TR cost on the optimal mainte-
nance cost. To this end, we fixed the cost of OR and altered the scope of TR cost from 1000
to 6000. The test outcome is indicated in Figure 8. It is important to note that although the
optimal maintenance cost increases with the increase in TR cost under all four maintenance
policies, the cost-effectiveness of the prosed policy is not challenged by such variations,
since its cost-increasing velocity is slightly smaller than or equivalent to other policies. This
indicates the robustness of the maintenance policy and framework.
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6. Conclusions

An innovative maintenance optimization problem regarding a two-unit serial system
with both continuous and non-continuous degradation was investigated. Unlike previous
studies, three types of maintenance renewal activities, namely, threshold-based renewal,
postponement renewal, and opportunistic renewal, were integrated to enhance mainte-
nance efficiency and mitigate downtime loss, which can be quantitatively analyzed and
optimized via the Semi-Markov Decision Process. The applicability and cost superiorities
over other conventional maintenance policies are demonstrated through a case study of the
critical mechanical structure of a circulating pump. The comparative outcomes indicate
that the proposed policy outperforms some heuristic/conventional policies in downtime
mitigation and cost control, possessing better model robustness.
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In future research, there are three possible extensions to the current study. First, the
proposed maintenance model can be applied to more general and sophisticated multi-unit
systems [44,45]. Second, the system structure mode can also be extended, including but
not limited to serial, parallel, standby, and voting systems, with modified maintenance
policies [30]. Third, the failure interaction and load sharing between units can also be
integrated into the proposed model [40,46,47]. Last but not least, the statistical properties
of the proposed model can be further explored to enhance the robustness and applicability
of the maintenance policy.
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Notations and Abbreviations
CBM Condition-based maintenance
CDF Cumulative distribution function
PDF Probability distribution function
SMDP Semi-Markov Decision Process
PM Preventive maintenance
OM Opportunistic maintenance
TR Threshold-based replacement
DR Delayed replacement
CR Corrective replacement
OR Opportunistic replacement
∆, ∆ > 0 Periodic inspection interval
Tk = k∆, k = 1, 2, · · · Execution time of the k-th inspection
X(t), t > 0 Degradation process characterized by Wiener process
γa Random defect initialization time of Unit 2
γb Random delay time of Unit 2
D, D > 0 Failure threshold regarding degradation of Unit 1
U, 0 < U < D TR threshold regarding degradation of Unit 1
L, 0 < L < U OR threshold regarding degradation of Unit 1
H, H > 0 Threshold for DR interval of Unit 2
V, 0 < V < H Threshold for OR interval of Unit 2
CI Cost per inspection
CCi, i = 1, 2 Cost per corrective replacement for Unit i, i = 1, 2, · · ·
CPi, i = 1, 2 Cost per TR for Unit 1 and DR for Unit 2
COi, i = 1, 2 Cost per opportunistic replacement for Unit i, i = 1, 2, · · ·
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