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Abstract: In this paper, the two-step method is considered with the generalized Newton method as a
predictor step. The three-point Newton–Cotes formula is taken as a corrector step. The proposed
method’s convergence is discussed in detail. This method is very simple and therefore very effective
for solving large systems. In numerical analysis, we consider a beam equation, transform it into
a system of absolute value equations and then use the proposed method to solve it. Numerical
experiments show that our method is very accurate and faster than already existing methods.
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1. Introduction

Suppose an AVE of the form

Ax− |x| = b, (1)

where A ∈ Rn×n, x, b ∈ Rn and | · | represents an absolute value. The AVE

Ax + B|x| = b (2)

is the generalized form of Equation (1) for B ∈ Rn×n , which was first presented by Rohn [1].
The AVE Equation (1) has many applications in pure and applied sciences [2]. It is difficult
to find the exact solution of Equation (1) because of the absolute values of x. For some
works on this aspect, we refer to [3–5]. Many iterative methods were proposed to study the
AVE Equation (1), for example [6–15].

Nowadays, the two-step techniques are very poplar for solving AVE Equation (1).
Liu [16,17] presented two-step iterative methods to solve AVEs. Khan et al. [18] have
suggested a new method based on a generalized Newton’s technique and Simpson’s rule
for solving AVEs. Shi et al. [19] have developed a two-step Newton-type method with
linear convergence for AVEs. Noor et al. [20] have suggested minimization techniques for
AVEs and discussed the convergence of these techniques under some suitable conditions.
In [21], the two-step Gauss quadrature method was suggested for solving AVEs. When
the coefficient matrix A in the AVE Equation (1) has the Toeplitz structure, Gu et al. [22]
suggested the nonlinear CSCS-like method and the Picard–CSCS method for solving this
problem.

In this paper, the Newton–Cotes open method along with the generalized Newton
technique [23] is suggested to solve Equation (1). This new method is straightforward
and very effective. The proposed method’s convergence is proved under the condition
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that ‖A−1‖ < 1
10 in Section 3. To prove the effectiveness, we consider several examples

in Section 4. The main aim of this new method is to obtain the solution of (1) in a few
iterations with good accuracy. This new method successfully solves large systems of AVEs.
In most cases, this new method requires just one iteration to find the approximate solution
of Equation (1) with accuracy up to 10−13. The following notations are used. Let sign(x) be
a vector with entries 1, 0,−1, based on the associated entries of x. The generalized Jacobian
σ|x| of |x| based on a subgradient [24,25] of the entries of |x| is the diagonal matrix D
given by

D(x) = σ|x| = diag(sign(x)). (3)

svd(A) denotes the n singular values of A, ‖A‖ = (λ)
1
2 represents the 2-norm of A and λ is

the maximum eigenvalue of AT A in absolute. ‖x‖ =
√
(xT , x) is the 2-norm of the vector

x; for more detail, see [26].

2. Proposed Method

We develop a new two-step (NTS) method for AVE Equation (1) in this section. Let

J(x) = Ax− |x| − b. (4)

Then, J′(x) is given by:

J′(x) = σ(J(x)) = A− D(x). (5)

Consider the predictor step as:

γk =
(

A− D
(

xk
))−1

b. (6)

Let v be the solution of Equation (1). To construct the corrector step, we proceed
as follows: ∫ v

u
J′(x)dx = J(v)− J(u) = −J(u). (7)

Now, using the three-point Newton–Cotes formula, we have∫ v

u
J′(x)dx =

1
3

[
2J′
(

3u + v
4

)
− J′

(
u + v

2

)
+ 2J′

(
u + 3v

4

)]
(v− u). (8)

From Equations (7) and (8), we have

−J(u) =
1
3

[
2J′
(

3u + v
4

)
− J′

(
u + v

2

)
+ 2J′

(
u + 3v

4

)]
(v− u). (9)

Thus,

v = u− 3
[

2J′
(

3u + v
4

)
− J′

(
u + v

2

)
+ 2J′

(
u + 3v

4

)]−1
J(u). (10)

From Equation (10), the NTS method can be written as (Algorithm 1):

Algorithm 1: NTS Method

1: Choose x0 ∈ Rn.
2: For k, calculate γk =

(
A− D

(
xk
))−1

b.
3: Using Step 2, calculate

xk+1 = xk − 3
[
2J′
(

3xk+γk

4

)
− J′

(
xk+γk

2

)
+ 2J′

(
xk+3γk

4

)]−1
J
(

xk
)

.

4: If
∣∣∣∣∣∣xk+1 − xk

∣∣∣∣∣∣ < tol, then stop. Otherwise, go to step 2.
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3. Convergence

Now, we examine the convergence of the NTS method. The predictor step

γk =
(

A− D
(

xk
))−1

b (11)

is well defined; see Lemma 2 [23]. To prove that

2J′
(

3xk + γk

4

)
− J′

(
xk + γk

2

)
+ 2J′

(
xk + 3γk

4

)
(12)

is nonsingular, first we consider

φk =
3xk + γk

4
, δk =

xk + γk

2
, τk =

xk + 3γk

4
. (13)

Now

2J′
(

3xk + γk

4

)
− J′

(
xk + γk

2

)
+ 2J′

(
xk + 3γk

4

)

=2A− 2D

(
3xk + γk

4

)
− A + D

(
xk + γk

2

)
+ 2A− D

(
xk + 3γk

4

)
=3A− 2D

(
φk
)
+ D

(
δk
)
− 2D

(
τk
)

,

where D
(

φk
)

, D
(

δk
)

and D
(

τk
)

are diagonal matrices defined in Equation (3).

Lemma 1. If svd(A) > 1, then
(

3A− 2D
(

φk
)
+ D

(
δk
)
− 2D

(
τk
))−1

exists for any diagonal
matrix D defined in Equation (3).

Proof. If 3A− 2D
(

φk
)
+ D

(
δk
)
− 2D

(
τk
)

is singular, then(
3A− 2D

(
φk
)
+ D

(
δk
)
− 2D

(
τk
))

u = 0 (14)

for some u 6= 0. As svd(A) > 1, therefore, using Lemma 1 [23], we have

uTu < uT AT Au =
1
9

uT
((

2D
(

φk
)
− D

(
δk
)
+ 2D

(
τk
))(

2D
(

φk
)
− D

(
δk
)
+ 2D

(
τk
)))

u

=
1
9

uT
(

4D
(

φk
)

D
(

φk
)
− 4D

(
φk
)

D
(

δk
)
+ 8D

(
φk
)

D
(

τk
)
+ D

(
δk
)

D
(

δk
)

−4D
(

δk
)

D
(

τk
)
+ 4D

(
τk
)

D
(

τk
))

u

≤1
9

uT(9)u

=uTu,

which is a contradiction, hence 3A− 2D
(

φk
)
+ D

(
δk
)
− 2D

(
τk
)

is nonsingular.

Lemma 2. If svd(A) > 1, then the sequence of the NTS method is well defined and bounded with
an accumulation point x̃ such that

x̃ = x̃− 3
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

J(x̃), (15)
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or it is equivalent to(
2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))

x̃ =
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))

x̃− 3J(x̃). (16)

Hence, there exists an accumulation point x̃ with(
A− D̃(x̃)

)
x̃ = b, (17)

for some diagonal matrix D̃ whose diagonal entries are 0 or ±1 depending on whether the corre-
sponding component of x̃ is zero, positive, or negative as defined in (3).

Proof. The proof is the same as given in [23]. Thus, it is skipped.

Theorem 1. If
∣∣∣∣∣∣∣∣(2J′

(
φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

∣∣∣∣∣∣∣∣ < 1
9 , then the NTS method converges to a

solution v of Equation (1).

Proof. Consider

xk+1 − v = xk − 3
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

J
(

xk
)
− v

= xk − v− 3
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

J
(

xk
)

.

It is seen that(
2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))(

xk+1 − v
)
=
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))(

xk − v
)
− 3J

(
xk
)

. (18)

As the solution to Equation (1) is v, therefore

J(v) = Av− |v| − b = 0. (19)

From Equations (18) and (19), we have(
2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))(

xk+1 − v
)

=
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))(

xk − v
)
− 3J

(
xk
)
+ 3J(v)

=
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))(

xk − v
)
− 3
(

J
(

xk
)
− J(v)

)
=
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))(

xk − v
)
− 3
(

Axk −
∣∣∣xk
∣∣∣− Av + |v|

)
=
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
)
− 3A

)(
xk − v

)
+ 3
(∣∣∣xk

∣∣∣− |v|)
=
(
−2D

(
φk
)
+ D

(
δk
)
− 2D

(
τk
))(

xk − v
)
+ 3
(∣∣∣xk

∣∣∣− |v|).

It follows that

xk+1 − v =
(

2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1[(

−2D
(

φk
)
+ D

(
δk
)
− 2D

(
τk
))(

xk − v
)

+3
(∣∣∣xk

∣∣∣− |v|)].
Thus, we know∣∣∣∣∣∣xk+1 − v

∣∣∣∣∣∣ =∣∣∣∣∣∣∣∣(2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1[(

−2D
(

φk
)
+ D

(
δk
)
− 2D

(
τk
))(

xk − v
)

+3
(∣∣∣xk

∣∣∣− |v|)]∣∣∣∣∣∣.
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This leads to∣∣∣∣∣∣xk+1 − v
∣∣∣∣∣∣ ≤∣∣∣∣∣∣∣∣(2J′

(
φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣[(−2D
(

φk
)
+ D

(
δk
)
− 2D

(
τk
))(

xk − v
)

+3
(∣∣∣xk

∣∣∣− |v|)]∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣(2J′

(
φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

∣∣∣∣∣∣∣∣[∣∣∣∣∣∣−2D
(

φk
)
+ D

(
δk
)
− 2D

(
τk
)∣∣∣∣∣∣∣∣∣∣∣∣xk − v

∣∣∣∣∣∣
+3
∣∣∣∣∣∣∣∣∣xk

∣∣∣− |v|∣∣∣∣∣∣]. (20)

Since D
(

φk
)

, D
(

δk
)

and D
(

τk
)

are diagonal matrices, therefore∣∣∣∣∣∣−2D
(

φk
)
+ D

(
δk
)
− 2D

(
τk
)∣∣∣∣∣∣ ≤ 3, (21)

We also use the Lipchitz continuity (see Lemma 5 [23]), that is∣∣∣∣∣∣∣∣∣xk
∣∣∣− |v|∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣xk − v
∣∣∣∣∣∣. (22)

From Equations (20)–(22), we have∣∣∣∣∣∣xk+1 − v
∣∣∣∣∣∣ ≤ ∥∥∥∥(2J′

(
φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

∥∥∥∥[3∥∥xk − v
∥∥+ 6

∥∥xk − v
∥∥]

= 9
∣∣∣∣∣∣∣∣(2J′

(
φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣xk − v
∣∣∣∣∣∣

<
∣∣∣∣∣∣xk − v

∣∣∣∣∣∣. (23)

In Equation (23), the supposition
∣∣∣∣∣∣∣∣(2J′

(
φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

∣∣∣∣∣∣∣∣ < 1
9 is used.

Hence xk converges linearly to the solution of Equation (1).

Lemma 3. Let
∣∣∣∣A−1

∣∣∣∣ < 1
10 and D

(
φk
)

, D
(

δk
)

, D
(

τk
)

be non-zeros. Then, for any b, the

NTS method converges to the unique solution of Equation (1) for any initial guess x0 ∈ Rn.

Proof. Since
∣∣∣∣A−1

∣∣∣∣ < 1
10 , therefore, Equation (1) is uniquely solvable for any b see ([2],

Proposition 4). Since A−1 exists, therefore, by Lemma 2.3.2 [26], we have

∣∣∣∣∣∣∣∣(2J′
(

φk
)
− J′

(
δk
)
+ 2J′

(
τk
))−1

∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣3A− 2D

(
τk
)
+ D

(
δk
)
− 2D

(
τk
)∣∣∣∣∣∣

≤

∣∣∣∣∣∣(3A)−1
∣∣∣∣∣∣∣∣∣∣∣∣−2D

(
φk
)
+ D

(
δk
)
− 2D

(
τk
)∣∣∣∣∣∣

1−
∣∣∣∣(3A)−1

∣∣∣∣∣∣∣∣−2D
(
φk
)
+ D

(
δk
)
− 2D

(
τk
)∣∣∣∣

≤
1
3

∣∣∣∣A−1
∣∣∣∣3

1− 1
3

∣∣∣∣A−1
∣∣∣∣3

<
1
10

1− 1
10

=
1
9

.

Hence, by Theorem 1, the NTS method converges to the unique solution of Equation (1).
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4. Numerical Result

In the section, several examples are taken to prove the efficiency of the suggested
method. We use Matlab R2021a with a core (TM) i5@ 1.70 GHz. The CPU time in seconds,
number of iterations and 2-norm of residuals are denoted by time, K and RES, respectively.

Example 1 ([9]). Consider

A = tridiag(−1.5, 4,−0.5) ∈ Rs×s, x ∈ Rs and b = (1, 2, · · · , s)T . (24)

A comparison of the NTS method with the MSOR-like method [9], generalized Newton
method (GNM) [23] and RIM [11] is given in Table 1.

Table 1. NTS method verses MSOR-like method and RIM.

Method s 1000 2000 3000 4000 5000 6000

K 24 25 25 25 25 25
RIM CPU 7.084206 54.430295 150.798374 321.604186 581.212038 912.840059

RES 7.6844 × 10−7 4.9891 × 10−7 6.3532 × 10−7 7.6121 × 10−7 8.8041 × 10−7 9.9454 × 10−7

K 30 31 32 32 33 33
MSOR-Like CPU 0.0067390 0.0095621 0.0215634 0.0541456 0.0570134 0.0791257

RES 5.5241 × 10−7 7.0154 × 10−7 5.8684 × 10−7 9.0198 × 10−7 5.6562 × 10−7 7.4395 × 10−7

K 5 5 5 5 5 5
GNM CPU 0.0059651 0.007333 0.0115038 0.0330345 0.0551818 0.0783684

RES 3.1777 × 10−10 7.8326 × 10−9 2.6922 × 10−10 3.7473 × 10−9 8.3891 × 10−9 5.8502 × 10−8

K 1 1 1 1 1 2
NTS method CPU 0.001816 0.003410 0.018771 0.0326425 0.031539 0.069252

RES 9.6317 × 10−12 2.3697 × 10−11 4.1777 × 10−11 6.2756 × 10−11 8.20814 × 10−11 5.9998 × 10−11

Table 1 shows that the NTS method finds the solution of Equation (1) very quickly. The
RES of the NTS method shows that the new method is more accurate than all the methods
stated in Table 1.

Example 2 ([16]). Consider

A = round(s× (eye(s, s)− 0.02× (2× rand(s, s)− 1))). (25)

Choose a random x ∈ Rs and b = Ax− |x|.

We compare the NTS method with INM [7], the GQ method [21] and TSI [16] in Table 2.

Table 2. Numerical results for Example 2.

Method s 200 400 600 800 1000

K 3 3 3 4 4
TSI RES 7.6320 × 10−12 9.0622 × 10−12 1.9329 × 10−11 4.0817 × 10−11 7.1917 × 10−11

CPU 0.031619 0.120520 0.32591 0.83649 1.00485

K 3 3 3 4 4
INM RES 2.1320 × 10−12 6.6512 × 10−12 3.0321 × 10−11 2.0629 × 10−11 8.0150 × 10−11

CPU 0.012851 0.098124 0.156810 0.638421 1 0.982314

K 2 2 2 2 2
GQ method RES 2.1415 × 10−12 4.4320 × 10−12 1.0515 × 10−11 1.9235 × 10−11 2.8104 × 10−11

CPU 0.013145 0.038734 0.162439 0.204578 0.276701

K 1 1 1 1 2
NTS method RES 1.0637 × 10−12 4.0165 × 10−12 1.0430 × 10−11 2.0644 × 10−11 2.1660 × 10−11

CPU 0.012832 0.071124 0.153001 0.201356 0.274165

It is clear that the NTS method converges in one iteration in most cases. The other two
methods require at least three iterations to find the solution of Equation (1) to achieve the
given accuracy.
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Example 3 ([7]). Let

A = tridiag(−1, 8,−1) ∈ Rs×s, b = Ae− |e| f or e = (−1, 1,−1, · · · , )T ∈ Rs, (26)

where the initial vector is taken from [7].

We compare the NTS method with GGS [8], MGS [6] and Method II [7].
As seen in Table 3, the suggested method approximates the solution of Equation (1) in

just one iteration. The residual shows that the NTS method is very accurate.

Table 3. Comparison of NTS method with GGS, MGS and Method II.

Methods s 1000 2000 3000 4000 5000

K 11 11 11 11 11
GGS RES 2.4156 × 10−9 2.7231 × 10−9 3.1872 × 10−9 3.2167 × 10−9 3.4538 × 10−9

CPU 0.514656 1.045221 1.153442 1.843198 5.652411

K 7 8 8 8 8
MGS RES 6.7056 × 10−9 7.30285 × 10−10 7.6382 × 10−10 9.57640 × 10−10 8.52425 × 10−10

CPU 0.215240 0.912429 0.916788 1.503518 4.514201

K 6 6 6 6 6
Method II RES 3.6218 × 10−8 5.1286 × 10−8 6.2720 × 10−8 7.2409 × 10−8 8.0154 × 10−8

CPU 0.238352 0.541264 0.961534 1.453189 2.109724

K 1 1 1 1 1
NTS method RES 4.9774 × 10−15 7.0304 × 10−15 8.6069 × 10−15 9.9363 × 10−15 1.1107 × 10−14

CPU 0.204974 0.321184 0.462869 0.819503 1.721235

Example 4. Consider the beam equation of the form

d2x
dr2 − |x| =

Sx
EM
− qr(r− L)

2EM
, (27)

with boundary conditions
x(0) = 0, x(L) = 0, (28)

where L = 120 in. is the length of the beam, the modulus of elasticity E = 3× 107 lb/in.2, the
intensity of uniform load q = 100 lb/ f t, the stress at the ends is 1000 lb and the central moment of
inertia M = 625 in.4.

We use FDM to discretize this equation. A comparison of the NTS method with the
solution by Maple is illustrated in Figure 1.

Figure 1. Deflection of beam for h = 2 (step size).
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Figure 1 shows the effectiveness and accuracy of the NTS method. Clearly, the deflec-
tion of the beam is maximum at the center.

Example 5 ([20]). Consider an AVE of the form

aii = 4s, ai,i+1 = ai+1,i = s, aij = 0.5, i = 1, 2, · · · , s. (29)

Choose a constant vector b, and the initial guess is taken from [20]. A comparison of
the NTS method with MM [20] and MMSGP [1] is presented in Table 4.

Table 4. The numerical results for Example 5.

MMSGP MM NTS Method
s K CPU RES K CPU RES K CPU RES

2 24 0.005129 5.6800 × 10−7 2 0.029965 1.2079 × 10−12 1 0.0032321 1.7763 × 10−15

4 37 0.008701 9.7485 × 10−7 4 0.027864 5.5011 × 10−8 1 0.008621 3.5527 × 10−15

8 45 0.009217 5.5254 × 10−7 6 0.045387 6.9779 × 10−8 1 0.004120 2.9296 × 10−14

16 66 0.012458 5.8865 × 10−7 7 0.356930 2.0736 × 10−8 1 0.006156 8.4072 × 10−14

32 55 0.031597 8.2514 × 10−7 8 0.033277 4.9218 × 10−8 1 0.005108 2.1645 × 10−13

64 86 0.085621 7.6463 × 10−7 9 0.185753 9.0520 × 10−9 1 0.008120 1.0088 × 10−12

128 90 0.521056 6.3326 × 10−7 9 0.452394 1.7912 × 10−8 1 0.362162 2.2822 × 10−12

We observe that the NTS method is very successful for solving Equation (1). Further-
more, the NTS method is very consistent when n increases (large systems), whereas the
other two methods need more iterations.

5. Conclusions

In this paper, we have used a two-step method for AVEs. In this new method, a
three-point Newton–Cotes open formula is taken as a corrector step, while a generalized
Newton method is taken as the predictor. The local convergence of the NTS method is
proved in Section 2. Theorem 1 proves the linear convergence of the proposed method. A
comparison shows that this method is very accurate and converges in just one iteration in
most cases. This idea can be used to solve generalized AVEs and also to find all solutions
of AVEs in the future.
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