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Abstract: In a thin heterogeneous porous layer, we carry out a multiscale analysis of Smoluchowski’s
discrete diffusion–coagulation equations describing the evolution density of diffusing particles that
are subject to coagulation in pairs. Assuming that the thin heterogeneous layer is made up of
microstructures that are uniformly distributed inside, we obtain in the limit an upscaled model in the
lower space dimension. We also prove a corrector-type result very useful in numerical computations.
In view of the thin structure of the domain, we appeal to a concept of two-scale convergence adapted
to thin heterogeneous media to achieve our goal.
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1. Introduction and the Main Results

The use of the Smoluchowski equation has proved very efficient in modeling several
natural and physical phenomena in chemistry, astrophysics, aerosol science, physics, engi-
neering and biological sciences, just to cite a few. Some applications arise in the modeling
of polymerization in chemistry, the motion of a system of particles that are suspended in a
gas, the behavior of fuel mixtures in engines (in engineering science), the formation of stars
and planets (in physics) and red blood cell aggregation. In this work, we are particularly
interested in its application to the aggregation and diffusion of particles.

More precisely, we are concerned with the application of the Smoluchowski equation in
the modeling of Alzheimer’s disease (AD), as it is a system of partial differential equations
aimed at describing the evolving densities of diffusing particles subject to coagulation in
pairs. Recently, the crucial role of the Smoluchowski equations in the multiscale modeling
of the evolution of AD at different scales has been considered in [1–4], where the authors
proposed a suitable mathematical model for the aggregation and diffusion of β-amyloid
(Aβ) in the brain affected by AD at the micro-scale (that is, at the size of a single neuron)
and at the primary step of the disease when small amyloid fibrils are free to move and
merge. We also refer to [5–8] for some other works in the same direction. In the model
considered in [2], a tiny part of cerebral tissue is viewed as a bounded domain Ω ⊂ R3,
which is perforated by removing from it a set of periodically distributed holes of size ε
(the neurons). Moreover, the production of Aβ in monomeric form at the level of neuron
membranes is modeled using a non-homogeneous Neumann condition on the boundary of
the porosities.

In the current work, we consider the model stated in [2] but, this time, in a thin porous
layer. This is motivated by the fact that Alzheimer’s disease particularly affects the cerebral
cortex (responsible for language and information processing) and hippocampus (essential
for memory), which represent very thin layers of brain tissue and contain thousands and
millions of neurons. Here, we describe a very small layer of brain tissue by using a highly
heterogeneous thin porous layer in which the heterogeneities are due to the number of
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millions of neurons that the brain tissue can contain. To be more precise, our model problem
at the micro-level is stated below.

Let Ω be a bounded open Lipschitz connected subset in R2. For 0 < ε < 1 to be freely
fixed, we set

Ωε = Ω× (−ε, ε) =
{
(x, x3) ∈ R3 : x ∈ Ω and − ε < x3 < ε

}
.

We denote by Z = Y × I the reference layer cell, where Y = (0, 1)2 and I = (−1, 1). Let
Z f ⊂ Z be a compact set in Z with a smooth boundary, which represents a generic neuron,
and let Zs = Z\Z f be the supporting cerebral tissue (often called the solid part in the
literature of porous media).

Let us set a notation that is used throughout this work. Let 0 < ε ≤ 1. For any set
S ⊂ R3 and any k ∈ Z3 (with Z denoting the integers), we set

Sε,k =
{

x ∈ R3 : x = ε(k + y) for y ∈ S
}

.

With this in mind, let Kε = {k ∈ Z2 × {0} : Zε,k ⊂ Ωε}, and set Tε = ∪k∈Kε
Zε,k

f . We define
the thin porous layer by

Ωε = Ωε\Tε (points in Ωε lying off Tε).

The boundary of Ωε is divided into two parts: the outer boundary ∂DΩε = ∂Ωε and the
inner boundary Γε = ∂Tε. We also denote by Γ = ∂Z f so that Γε = ∪k∈Kε

Γε,k. Finally
we denote by ν the outward unit normal to Γε. We assume that Ωε is connected and that
|Zs| > 0, where |Zs| stands for the Lebesgue measure of Zs in R3. The ε-model reads as
follows: for m = 1, uε

1 solves the PDE

∂uε
1

∂t − div(d1∇uε
1) + uε

1

M
∑

j=1
a1,juε

j = 0 in Qε = (0, T)×Ωε

∂uε
1

∂ν = 0 on (0, T)× ∂Ωε
∂uε

1
∂ν = εψε on (0, T)× Γε

uε
1(0, x) = 0 in Ωε;

(1)

for 1 < m < M, uε
m solves the PDE

∂uε
m

∂t − div(dm∇uε
m) + uε

m
M
∑

j=1
am,juε

j = f ε
m in Qε

∂uε
m

∂ν = 0 on (0, T)× ∂Ωε

uε
m(0, x) = 0 in Ωε;

(2)

and for m = M, uε
M solves the equation

∂uε
M

∂t − div(dM∇uε
M) = gε in Qε

∂uε
M

∂ν = 0 on (0, T)× ∂Ωε

uε
M(0, x) = 0 in Ωε,

(3)

where

f ε
m =

1
2

m−1

∑
j=1

aj,m−juε
j u

ε
m−j, gε =

1
2 ∑

j+k≥M
j<M, k<M

aj,kuε
j u

ε
k and ψε(t, x) = ψ(t, x,

x
ε
) ((t, x) ∈ Qε). (4)

We assume the following:
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Hypothesis 1 (H1). The coefficients ai,j are positive constants and satisfy ai,j = aj,i (1 ≤ i, j ≤ M)
with aM,M = 0, and the diffusion coefficients di are positive constants that become smaller as j
becomes large;

Hypothesis 2 (H2). The function ψε is defined by ψε(t, x) = ψ(t, x, x
ε ) ((t, x) ∈ Qε), where

ψ ∈ C1([0, T]; C1(Ω; C1
per(Y; C1(I)))) with 0 ≤ ψ ≤ 1 and ψ(0, x, y) = 0 for (x, y) ∈ Ω× Z.

In (H2), C1
per(Y; C1(I)) denotes the space of functions in C1

loc(R
2; C1(I)) that are Y-

periodic. In (1)–(3), ∇ stands for the usual gradient operator, while div denotes the di-
vergence operator with respect to the variable x; T is a positive number representing the
final time. The unknowns are the vector value functions uε : Qε → RM, uε = (uε

1, . . . , uε
M),

where the coordinate uε
m ≥ 0 (1 ≤ m < M) stands for the concentration of m-clusters, that

is, the clusters made of m identical elementary particles, while uε
M takes into account the

aggregation of more than M− 1 monomers. It is worth noting that the meaning of uε
M is

different from that of uε
m (m < M), as it aims to describe the sum of densities of all the large

assemblies. It is assumed that the large assemblies exhibit all the same coagulation proper-
ties and do not coagulate with each other. We also assume that the only reaction allowing
clusters to form large clusters is a binary coagulation mechanism, while the movement of
clusters leading to aggregation arises only from a diffusion process described by the con-
stant diffusion coefficient dm (1 ≤ m ≤ M). The kinetic coefficient ai,j arises from a reaction
in which an (i + j)-cluster is formed from an i-cluster and a j-cluster. Therefore, they can
be interpreted as coagulation rates. Finally, f ε

m (1 < m < M) represents the formation of
m-clusters via the coalescence of smaller clusters, and gε accounts for the formation of large
clusters via the coalescence of other large ones that have the same coagulation properties.

Our main aim in this work is to investigate the limiting behavior as ε → 0 of the
solution uε to (1)–(3) under the assumptions (H1)–(H2). This falls within the scope of a
multiscale analysis through the homogenization theory in thin porous domains.

Most structures in nature exhibit multiscale features both in space and time. In biologi-
cal sciences, modeling and simulation have proven to be useful and necessary in describing
and explaining many biological processes. To meet the challenge of their complexity, and
in order to numerically model such features and capture these multiscale phenomena
as correct as possible, mathematical modeling and theoretical concepts combined with
the development of efficient algorithms and simulation tools must be emphasized and
promoted. One such mathematical concept that has seen tremendous development dur-
ing the past 50 years is the theory of homogenization. Roughly speaking, homogenization
consists of replacing the generally complicated study of heterogeneous and composite
phenomena, often modeled using (nonlinear) partial differential equations (PDEs) with
variable coefficients, by the study of equivalent homogeneous phenomena with the same
overall properties but modeled using PDEs with non-oscillating coefficients, which is ideal
for numerical analyses, interpretation and predictions, hence the important role of this step.
Homogenization offers a rigorous mathematical framework allowing for the modeling
and analysis of composites in various environments. This is especially the case when the
environment is represented by a domain that is the union (or the complement of the union)
of subdomains of a very small size, say, a domain containing infinitely many holes such
as the one under consideration in this work. That is why the macroscopic model that is
derived in this work is more relevant in practice than the microscopic one.

There is a huge literature on homogenization in fixed or porous media. A few works
deal with the homogenization theory in thin heterogeneous domains; see, e.g., [9–15]. As
for homogenization in thin heterogeneous porous media, very few results are known up
to now. We may cite [9–12,14]. Concerning the Smoluchowski equation as stated in this
work, to the best of our knowledge, the only work dealing with its homogenization is the
study in [2], in which the considered domain is a uniformly perforated one that is not
thin. Our contribution in this work is twofold: (1) The domain Ωε is a thin heterogeneous
porous layer. This renders the homogenization procedure not easy to handle. Indeed, to
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achieve our goal in Theorem 1 below, we make use of the partial mean integral operator Mε

(see below for its definition) associated with the extension operator, while in [2], even the
extension operator is not used. (2) We prove in Theorem 2 a corrector-type result allowing
us to approximate each uε

m by a function of the form vε
m(t, x) = um(t, x) + εu1

m(t, x, x/ε),
where the functions um and u1

m do not depend on ε. We summarize our main results below.

Theorem 1. Assume that (H1)–(H2) hold. For any ε > 0, let uε = (uε
m)1≤m≤M be the unique

solution of (1)–(3) in the class (C1+ α
2 ,2+α(Qε))M, (α ∈ (0, 1)). Let also Mε and Eε respectively

denote the partial mean integral operator and the extension operator defined by (37) (see Section 3)
and in Lemma 1 (see Section 2). Then, as ε→ 0, one has, for any 1 ≤ m ≤ M,

MεEεuε
m → um in L2(Q)-strong, (5)

Mε∇Eεuε
m → ∇xum in L2(Q)2-weak, (6)

MεEε
∂uε

m
∂t
→ ∂um

∂t
in L2(Q)-weak, (7)

where u = (um)1≤m≤M ∈ [L∞(Q) ∩ L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω))]M is the unique solu-
tion of system (8)–(10) below:

θ ∂u1
∂t − divx(d1 A∇xu1) + θu1

M
∑

j=1
a1,juj = d1ψ̃ in Q = (0, T)×Ω

A∇xu1 · n = 0 on (0, T)× ∂Ω
u1(0, x) = 0 in Ω;

(8)

If 1 < m < M,
θ ∂um

∂t − divx(dm A∇xum) + θum
M
∑

j=1
am,juj − θ

2

M
∑

j=1
aj,m−jujum−j = 0 in Q

A∇xum · n = 0 on (0, T)× ∂Ω
um(0, x) = 0 in Ω;

(9)

and 
θ ∂uM

∂t − divx(dM A∇xum)− θ
2 ∑

j+k≥M
j<M, k<M

aj,kujuk = 0 in Q

A∇xuM · n = 0 on (0, T)× ∂Ω
uM(0, x) = 0 in Ω.

(10)

Moreover, u ∈ (C1+ α
2 ,2+α(Q))M and is such that

um > 0 in Q, m = 1, . . . , M. (11)

In (8)–(10), n is the outward unit normal to ∂Ω and the matrix A = I2 +∇yω, where I2 is the
2× 2 identity matrix and ω = (ωi)i=1,2, with ωi being the unique solution (up to the addition of
function vi ∈ H1

#(Y; H1(I)) such that vi = 0 in Zs) in H1
#(Y; H1(I)) = {u ∈ H1

per(Y; H1(I)) :´
Zs

udy = 0} of the cell problem{
divy(ei +∇yωi) = 0 in Zs, (ei +∇yωi) · ν = 0 on Γ,
ωi(., y3) is Y-periodic,

(12)

where, here, ν stands for the outward unit normal to Γ, and ei is the ith vector of the canonical basis
in R3; the functions ψ̃ and θ are respectively defined by ψ̃(t, x) =

´
Γ ψ(t, x, y)dσ(y), (t, x) ∈ Q

and θ = |Zs| (the Lebesgue measure of Zs in R3).
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The partial mean integral Mε considered in Theorem 1 is defined, for function φ, by

Mεφ(t, x) =
1
2ε

ˆ ε

−ε
φ(t, x, ζ)dζ for (t, x) ∈ Q.

System (8)–(10) is the upscaled model arising from the ε-model (1)–(3). It is posed in a
two-dimensional space, leading to an expected dimension reduction problem, as usually is
the case for the homogenization theory in thin domains. Moreover, the Neumann boundary
behavior in (1) now plays the role (in the upscaled model) of the source term in the leading
equation in (8) so that, in the case of (1), the limiting equation does not have the same form
as the original equation posed in the ε-model. For (9) and (10), apart from the diffusion
term, they are similar to the ε-equations in (2) and (3).

Now, let ωi (i = 1, 2) and um (1 ≤ m ≤ M) be as in Theorem 1. We set

u1
m(t, x, y) =

2

∑
j=1

ωj(y)
∂um

∂xj
(t, x) ≡ ω(y) · ∇xu1(t, x) for (t, x, y) ∈ Q× Z, (13)

where ω = (ω1, ω2). We have u1
m ∈ L2(Q)⊗ H1

#(Y; H1(I)), where H1
#(Y; H1(I)) stands for

the space of u functions in H1
loc(R

2; H1(I)) that are Y-periodic and satisfy
´

Zs
u(y)dy = 0.

With this in mind, the second main result is a corrector-type result and reads as follows:

Theorem 2. For each 1 ≤ m ≤ M, assume that u1
m defined by (13) belongs to L2(0, T; H1(Ω))⊗

C1
# (Y; H1(I)), where C1

# (Y; H1(I)) = {u ∈ C1
loc(R

2; H1(I)) : u is Y-periodic and
´

Zs
udy = 0}.

Then, as ε→ 0, one has

ε−
1
2

∥∥∥uε
m − um − ε(u1

m)
ε
∥∥∥

L2(0,T;H1(Ωε))
→ 0 (14)

where (u1
m)

ε(t, x) = u1
m(t, x, x/ε) for (t, x) ∈ Qε.

The result in Theorem 2 allows us to approximate uε
m in Qε by function vε

m of the form
vε

m(t, x) = um(t, x) + u1
m(t, x, x/ε) for (t, x) ∈ Qε. Theorem 2 is new in the literature of

the homogenization of the Smoluchowski equation and is very important as far as the
quantitative homogenization theory of such kind of equations is concerned.

The plan of this work is as follows: In Section 2, we investigate the well posedness
of (1)–(3) and provide useful uniform estimates. Section 3 deals with the treatment of the
concept of the two-scale convergence of thin heterogeneous domains. We prove therein
some compactness results that are used in the homogenization process. With the help of
the results obtained in Section 3, we pass to the limit in (1)–(3) in Section 4, where we prove
the first main result of the work, viz., Theorem 1. We also prove Theorem 2 in the same
section, and we close the work with a conclusion.

2. Well Posedness and Uniform Estimates

The current section deals with the existence and uniqueness of the solution to (1)–(3),
along with some useful a priori estimates. We begin with the following theorem:

Theorem 3. Assume that (H1)–(H2) hold true. For any ε > 0, system (1)–(3) possesses a unique
weak solution uε = (uε

m)1≤m≤M ∈ (C1+ α
2 ,2+α(Qε))M (α ∈ (0, 1) be fixed) such that

uε
m(t, x) > 0 for (t, x) ∈ Qε, m = 1, . . . , M.

Furthermore, there exists ε0 > 0 such that, for all 1 ≤ m ≤ M,

‖uε
m‖L∞(Qε)

≤ C, (15)
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‖∇uε
m‖L2(Qε)

≤ Cε
1
2 , (16)

∥∥∥∥∂uε
m

∂t

∥∥∥∥
L2(Qε)

≤ Cε
1
2 , (17)

and
‖ψε‖L2((0,T)×Γε) ≤ C‖ψ‖L2(0,T;C(Ω×Γ)), (18)

for all 0 < ε ≤ ε0, where C > 0 is independent of m and ε.

Proof. The well posedness of (1)–(3) has been addressed in [1,2,4,16]. We are concerned
here only with the uniform estimates (15)–(17), with estimate (18) being a classical result
arising from the trace result. We just emphasize that, since |Γε| = O(1) (|Γε| stands for the
Lebesgue measure of Γε), no scaling is needed in the left-hand side of (18). Now, for (15),
we follow exactly the same lines of reasoning as in [2] to obtain it. Both (16) and (17) remain
to be checked. We first consider (16). We distinguish the cases m = 1 and 1 < m ≤ M.

We start with m = 1. By multiplying (1)1 by uε
1 and integrating over Ωε, followed by

the use the divergence theorem, we obtain

1
2

d
dt

∥∥uε
1

∥∥2
L2(Ωε) + d1

∥∥∇uε
1

∥∥2
L2(Ωε) +

´
Ωε

(∣∣uε
1

∣∣2 ∑M
j=1 a1,juε

j

)
dx

= εd1
´

Γε ψ(t, x, x
ε )u

ε
1(t, x)dσε(x)

≤ εd1
2 ‖ψε(t)‖2

L2(Γε) +
εd1
2

∥∥uε
1(t)

∥∥2
L2(Γε),

(19)

where the last inequality above stems from Hölder’s and Young’s inequalities. We use a
well-known trace inequality to deduce the existence of a positive constant C1 independent
of ε such that

ε‖uε
1(t)‖

2
L2(Γε) ≤ C1

(ˆ
Ωε
|uε

1(t)|
2dx + ε2

ˆ
Ωε
|∇uε

1(t)|
2dx
)

. (20)

Therefore, by integrating (19) over (0, t) (t ∈ (0, T]) and taking into account (18) and (20),
we are led to

‖uε
1(t)‖

2
L2(Ωε) + d1(2− ε2C1)

ˆ t

0
‖∇uε

1(s)‖
2
L2(Ωε)ds (21)

≤ C1d1

ˆ t

0
‖uε

1(s)‖
2
L2(Ωε)ds + εd1C‖ψ‖L2(0,T;C(Ω×Γ)).

We therefore infer the boundedness of uε
1 in L∞(Qε) associated with (21) wherein there

exists ε0 > 0 such that (16) holds for m = 1 and
∥∥uε

1

∥∥2
L∞(0,T;L2(Ωε)) ≤ Cε

1
2 for all 0 < ε ≤ ε0,

where ε0 is chosen such that 2− ε2C1 ≥ 1, that is, ε0 ≤ C−
1
2

1 .
For 1 < m < M, we proceed as for m = 1 and multiply (2)1 by uε

m and integrate over
Ωε; then, one obtains

1
2

d
dt
‖uε

m(t)‖
2
L2(Ωε) + dm‖∇uε

m‖
2
L2(Ωε) +

ˆ
Ωε

(
|uε

m|
2

M

∑
j=1

am,juε
j

)
dx

=

ˆ
Ωε

f ε
muε

mdx ≤ ‖ f ε
m‖L2(Ωε)‖u

ε
m‖

2
L2(Ωε).
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By integrating over (0, t) for t ∈ (0, T], we obtain

‖uε
m(t)‖

2
L2(Ωε) + 2dm

ˆ t

0
‖∇uε

m(s)‖
2
L2(Ωε)ds ≤ 2‖ f ε

m‖L2(Qε)
‖uε

m‖
2
L2(Qε)

.

By using (15), we obtain at once

‖uε
m‖

2
L∞(0,T;L2(Ωε)) + ‖∇uε

m‖
2
L2(Qε)

≤ Cε
1
2 .

Finally, the proof of (16) for m = M is obtained exactly as the one for the case 1 < m < M
mutatis mutandis (replace f ε

m with gε).
Let us now prove (17). We proceed as above by distinguishing three cases.
For m = 1, we multiply (1)1 by ∂uε

1/∂t and use (1)2–(1)3 to obtain

ˆ
Ωε

∣∣∣∣∂uε
1

∂t

∣∣∣∣2dx +
d1

2
∂

∂t

ˆ
Ωε
|∇uε

1|
2dx = εd1

ˆ
Γε

ψε ∂uε
1

∂t
dσε(x)

−
ˆ

Ωε

(
uε

1
∂uε

1
∂t

M

∑
j=1

a1,juε
j

)
dx.

But

ˆ
Ωε

(
uε

1
∂uε

1
∂t

M

∑
j=1

a1,juε
j

)
dx ≤

∥∥∥∥∂uε
1

∂t

∥∥∥∥
L2(Ωε)

∥∥∥∥∥uε
1

M

∑
j=1

a1,juε
j

∥∥∥∥∥
L2(Ωε)

≤ 1
2

∥∥∥∥∂uε
1

∂t

∥∥∥∥2

L2(Ωε)
+

1
2

∥∥∥∥∥uε
1

M

∑
j=1

a1,juε
j

∥∥∥∥∥
2

L2(Ωε)

.

Thus, ∥∥∥∥∂uε
1

∂t

∥∥∥∥2

L2(Ωε)
+ d1

∂

∂t
‖∇uε

1‖
2
L2(Ωε) (22)

≤ 2εd1

ˆ
Γε

ψε ∂uε
1

∂t
dσε(x) +

∥∥∥∥∥uε
1

M

∑
j=1

a1,juε
j

∥∥∥∥∥
2

L2(Ωε)

.

By integrating (22) over (0, t) and using the boundedness property (15), we obtain after
integration by parts

´ t
0

∥∥∥ ∂uε
1

∂s (s)
∥∥∥2

L2(Ωε)
ds + d1

∥∥∇uε
1(t)

∥∥2
L2(Ωε) ≤ Cε

+2εd1
´

Γε ψεuε
1dσε(x)− 2εd1

´ t
0
´

Γε
∂ψε

∂s (s)u
ε
1(s)dσε(x)ds,

(23)

where we use the fact that ψ(0, x, y) = 0. Now, we use inequality (20); then, (23) becomes
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´ t
0

∥∥∥ ∂uε
1

∂s (s)
∥∥∥2

L2(Ωε)
ds + d1

∥∥∇uε
1(t)

∥∥2
L2(Ωε)

≤ Cε + εd1

(
‖ψε‖2

L2(Γε) +
∥∥uε

1

∥∥2
L2(Γε)

)
+εd1

´ t
0

(∥∥∥ ∂ψε

∂s (s)
∥∥∥2

L2(Γε)
+
∥∥uε

1(s)
∥∥2

L2(Γε)

)
ds

≤ Cε + Cε

(
‖ψ‖2

L∞(0,T;C(Ω×Γ)) +
∥∥∥ ∂ψ

∂t

∥∥∥2

L2(0,T;C(Ω×Γ))

)

+C
∥∥uε

1

∥∥2
L2(Ωε) + Cd1ε2

∥∥∇uε
1(t)

∥∥2
L2(Ωε) + C

∥∥uε
1

∥∥2
L2(Ωε) + Cε2

∥∥∇uε
1

∥∥2
L2(Qε)

.

It follows that
ˆ t

0

∥∥∥∥∂uε
1

∂s
(s)
∥∥∥∥2

L2(Ωε)
ds + d1(1− Cε2)‖∇uε

1(t)‖
2
L2(Ωε) ≤ Cε, (24)

where, in (24), we took advantage of (15) and (16). Hence, by choosing ε ≤ ε0 to be
sufficiently small so that 1− Cε2 ≥ 0, we obtain (17) for m = 1.

The proof of (17) in the case when 1 < m ≤ M follows the same lines of reasoning as
above, but it is much easier. It is therefore left to the reader. This completes the proof.

The following result whose proof can be found in Theorem 3 in [17] will be useful in
the sequel.

Lemma 1. There exists a bounded linear operator Eε : H1(Ωε) → H1(Ωε) such that, for all
v ∈ H1(Ωε), Eεv = v in Ωε and

‖Eεv‖L2(Ωε)
≤ C

(
‖v‖L2(Ωε) + ε‖∇v‖L2(Ωε)

)
,

and
‖∇Eεv‖L2(Ωε)

≤ C‖∇v‖L2(Ωε)

for a positive constant independent of both ε and v.

By virtue of Lemma 1, we may define the extension operator from L2(0, T; H1(Ωε))
into L2(0, T; H1(Ωε)) via the following statement: for v ∈ L2(0, T; H1(Ωε)), we have

(Eεv)(t) = Eε(v(t)) for a.e. t ∈ (0, T).

Then, on account of Lemma 1 and Theorem 3, we have

sup
1≤m≤M

(
‖Eεuε

m‖L∞(ΩT
ε )
+ ‖Eεuε

m‖L2(0,T;H1(Ωε))

)
≤ Cε

1
2 , (25)

where C > 0 is independent of ε and

ΩT
ε = (0, T)×Ωε. (26)

We also need an estimate of ∂uε
m/∂t in L2(ΩT

ε ). To this end, we proceed as in [18] and
consider the restriction operator Rε : L2(Ωε)→ L2(Ωε), Rεv = v|Ωε (the restriction of v to
Ωε). Then, it is a fact that Rε is a bounded linear operator as

‖Rεv‖L2(Ωε) ≤ ‖v‖L2(Ωε)
∀v ∈ L2(Ωε).



Mathematics 2023, 11, 3796 9 of 20

Now, if R∗ : L2(Ωε) → L2(Ωε) denotes the adjoint operator of Rε, then, for
v ∈ L2(0, T; L2(Ωε)) = L2(Qε), we define R∗ε v by

(R∗ε v)(t) = R∗ε (v(t)) for a.e. t ∈ (0, T).

Then, one has

〈R∗ε u, v〉 =
ˆ T

0
〈R∗ε (u(t)), v(t)〉dt =

ˆ T

0
〈u(t), Rε(v(t))〉dt

for all u ∈ L2(Qε) and v ∈ L2(ΩT
ε ). It is therefore easy to see that R∗ε v = χΩε v for all

v ∈ L2(Qε), or equivalently

R∗ε v = χΩε Eεv for all v ∈ L2(Qε), (27)

where χΩε stands for the characteristic function of Ωε in Ωε.

Lemma 2. Let the assumptions of Theorem 3 hold. It holds that∥∥∥∥χΩε
∂Eεuε

m
∂t

∥∥∥∥
L2(ΩT

ε )
≤ Cε

1
2 for all 0 < ε ≤ ε0, (28)

where C > 0 is independent of ε, and ε0 is defined in Theorem 3.

Proof. First, we have R∗ε ∂tuε
m = χΩε ∂tEεuε

m, where ∂t = ∂/∂t. Thus, it is sufficient to show
that

‖R∗ε ∂tEεuε
m‖L2(ΩT

ε )
≤ Cε

1
2 .

So, let ϕ ∈ L2(ΩT
ε ); then,

|〈R∗ε ∂tEεuε
m, ϕ〉| = |〈∂tEεuε

m, Rε ϕ〉| ≤ ‖∂tEεuε
m‖L2(Qε)

‖Rε ϕ‖L2(Qε)

≤ ‖∂tuε
m‖L2(Qε)

‖ϕ‖L2(ΩT
ε )
≤ Cε

1
2 ‖ϕ‖L2(ΩT

ε )
.

Whence the result.

3. Two-Scale Convergence of Thin Heterogeneous Domains

The two-scale convergence of thin heterogeneous domains has been introduced in [19]
and extended to thin porous surfaces in [12,17]. The notations used in this section are
the same as in the previous ones. Specifically, the domain Ωε is defined as above, that is,
Ωε = Ω× (−ε, ε). When ε → 0, Ωε shrinks to the “interface” Ω0 = Ω× {0}. We know
that Qε = (0, T)×Ωε and ΩT

ε = (0, T)×Ωε, and we set Q = (0, T)×Ω0, I = (−1, 1),
Y = (0, 1)2 and finally Z = Y× I. Let 1 ≤ p < ∞; by Lp

per(Y; Lp(I)), we denote the space

of functions in Lp
loc(R

2; Lp(I)) that are Y-periodic. Accordingly, we define W1,p
per(Y; W1,p(I))

as the subspace of W1,p
loc (Y; W1,p(I)) made of Y-periodic functions, and we set

W1,p
# (Y; W1,p(I)) =

{
u ∈W1,p

per(Y; W1,p(I)) :
ˆ

Z
u(y, y3)dy = 0

}
,

which is a Banach space equipped with the norm

‖u‖# =

(ˆ
Z
|∇u|pdy

)1/p
, u ∈W1,p

# (Y; W1,p(I)).

Any x in R3 writes (x, x3) or (x, ζ), where x = (x1, x2). We identify Ω0 with Ω so that
the generic element in Ω0 is also denoted by x instead of (x, 0).
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We are now able to define the two-scale convergence of thin heterogeneous domains
and thin boundaries.

Definition 1. (a) The sequence (uε)ε>0 ⊂ Lp(ΩT
ε ) (1 ≤ p < ∞) is

(i) Weakly two-scale convergent in Lp(ΩT
ε ) to u0 ∈ Lp(Q; Lp

per(Y; Lp(I))) if whenever ε→ 0,
one has

1
ε

ˆ
ΩT

ε

uε(t, x) f
(

t, x,
x
ε

)
dxdt→

¨
Q×Z

u0(t, x, y) f (t, x, y)dydxdt

for any f ∈ Lp′(Q; Cper(Y; Lp′(I))) (1/p′ = 1− 1/p); we denote this by “uε → u0 in
Lp(ΩT

ε )-weak 2s”;
(ii) Strongly two-scale convergent in Lp(ΩT

ε ) towards u0 ∈ Lp(Q; Lp
per(Y; Lp(I))) if, as ε→ 0,

one has uε → u0 in Lp(ΩT
ε )-weak 2s and

ε
− 1

p ‖uε‖Lp(Qε)
→ ‖u0‖Lp(Q;Lp

per(Y;Lp(I))); (29)

we denote this by “uε → u0 in Lp(ΩT
ε )-strong 2s”.

(b) The sequence (uε)ε>0 in Lp((0, T)× Γε) is weakly two-scale convergent in Lp((0, T)× Γε)
towards u0 ∈ Lp(Q× Γ) if, whenever ε→ 0, one has

ˆ
(0,T)×Γε

uε(t, x) f
(

t, x,
x
ε

)
dσε(x)dt→

¨
Q×Γ

u0(t, x, y) f (t, x, y)dσ(y)dxdt

for all f ∈ Lp′(0, T; C(Ω × Γ)) that is Y-periodic in y; we denote this by “uε → u0 in
Lp((0, T)× Γε)-weak 2s”.

Remark 1. It is easy to see that, if u0 ∈ Lp(Q; Cper(Y; Lp(I))), then (29) is equivalent to

ε
− 1

p ‖uε − uε
0‖Lp(ΩT

ε )
→ 0 as ε→ 0, (30)

where uε
0(t, x) = u0(t, x, x/ε) for (t, x) ∈ ΩT

ε .

We start with the following important result that should be used in the sequel; see
Lemma 3.2.3 in [20] for the proof.

Lemma 3. Let ψ ∈ Lp(0, T; C(Ω× Γ)), which is Y-periodic in y. Then, by letting ψε(t, x) =
ψ(t, x, x/ε) for (t, x) ∈ (0, T)× Γε, we have

(i) ‖ψε‖Lp((0,T)×Γε) ≤ ‖ψ‖Lp(0,T;C(Ω×Γ));

(ii)
´ T

0
´

Γε ψ(t, x, x/ε)dσε(x)dt→
˜

Q×Γ ψ(t, x, y)dxdσ(y)dt.

Throughout this work, the letter E stands for any ordinary sequence (εn)n≥1 with
0 < εn ≤ 1 and εn → 0 when n → ∞. The generic term of E is merely denoted by ε, and
ε→ 0 means εn → 0 as n→ ∞. This being so, we have the following compactness results.

Theorem 4. (i) Let (uε)ε∈E be a sequence in Lp(ΩT
ε ) (1 < p < ∞) such that

sup
ε∈E

ε−1/p‖uε‖Lp(ΩT
ε )
≤ C

where C is a positive constant independent of ε. Then, up to a subsequence E′ of E, the sequence
(uε)ε∈E′ weakly two-scale converges in Lp(ΩT

ε ) to some u0 ∈ Lp(Q; Lp
per(Y; Lp(I))).

(ii) Let (uε)ε∈E be a sequence in Lp((0, T)× Γε) such that

‖uε‖Lp((0,T)×Γε) ≤ C,
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with C > 0 being independent of ε. Then, we may find a subsequence E′ of E such that the sequence
(uε)ε∈E′ weakly two-scale converges in Lp((0, T)× Γε) towards some function u0 ∈ Lp(Q× Γ).

In Theorem 4 above, the proof of part (i) can be found in [21], while the proof of part
(ii) can be found in [20] (see also [12,17]).

Theorem 5. Let (uε)ε∈E be a sequence in Lp(0, T; W1,p(Ωε)) (1 < p < ∞) such that

sup
ε∈E

(
ε−1/p‖uε‖Lp(ΩT

ε )
+ ε−1/p‖∇uε‖Lp(ΩT

ε )

)
≤ C

where C > 0 is independent of ε. Then, up to a subsequence E′ extracted from E, we may find a
vector function (u0, u1) with u0 ∈ Lp(0, T; W1,p(Ω)) and u1 ∈ Lp(Q; W1,p

# (Y; W1,p(I))) such
that, when E′ 3 ε→ 0, we have

uε → u0 in Lp(ΩT
ε )-weak 2s,

∂uε

∂xi
→ ∂u0

∂xi
+

∂u1

∂yi
in Lp(ΩT

ε )-weak 2s for i = 1, 2, (31)

and
∂uε

∂x3
→ ∂u1

∂y3
in Lp(ΩT

ε )-weak 2s. (32)

For the proof of Theorem 5, we refer to [21].

Remark 2. If we set

∇xu0 =

(
∂u0

∂x1
,

∂u0

∂x2
, 0
)

,

then (31) and (32) are equivalent to

∇uε → ∇xu0 +∇yu1 in Lp(ΩT
ε )

3-weak 2s.

The following result is sharper than its homologue in Theorem 5.

Theorem 6. Let (uε)ε∈E be a sequence in L2(0, T; H1(Ωε)) such that

sup
ε∈E

ε−
1
2

(
‖uε‖L2(0,T;H1(Ωε))

+ ‖uε‖H1(0,T;L2(Ωε))

)
≤ C, (33)

where C is a positive constant independent of ε. Finally, suppose that the embedding H1(Ω) ↪→
L2(Ω) is compact. Then, up to a subsequence E′ of E, there is a vector function (u, u1) ∈
(L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)))× L2(Q; H1

#(Y; H1(I))) such that, as E′ 3 ε→ 0,

uε → u in L2(ΩT
ε )-strong 2s, (34)

∇uε → ∇xu +∇yu1 in L2(ΩT
ε )

3-weak 2s, (35)

and
∂tuε → ∂tu in L2(ΩT

ε )-weak 2s. (36)

Proof. First, owing to Theorem 5, we derive the existence of a subsequence E′ of E and of a
vector function (u, u1) ∈ L2(0, T; H1(Ω)))× L2(Q; H1

#(Y; H1(I))) such that, as E′ 3 ε→ 0,

uε → u in L2(ΩT
ε )-weak 2s,
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∇uε → ∇xu +∇yu1 in L2(ΩT
ε )

3-weak 2s,

and
∂tuε → ∂tu in L2(ΩT

ε )-weak 2s.

Now, (34) remains to be proved. To this end, we set

Mεuε(t, x) =
1
2ε

ˆ ε

−ε
uε(t, x, x3)dx3 for (t, x) ∈ Q. (37)

Then, we easily see that Mεuε ∈ L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)) with

sup
ε∈E

(
‖Mεuε‖L2(0,T;H1(Ω)) + ‖Mεuε‖H1(0,T;L2(Ω))

)
≤ C. (38)

Then, from (38), we derive the existence of a subsequence of E′ still denoted by E′ and of
the function u0 ∈ L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)) such that, as E′ 3 ε→ 0,

Mεuε → u0 in L2(0, T; L2(Ω))-strong. (39)

We recall that (39) stems from the compactness of the continuous embedding L2(0, T; H1(Ω))
∩ H1(0, T; L2(Ω)) ↪→ L2(0, T; L2(Ω)).

Now, from the Poincaré–Wirtinger inequality, it holds that

ε−
1
2 ‖uε −Mεuε‖L2(0,T;L2(Ωε))

≤ Cε‖∇uε‖L2(0,T;L2(Ωε))
,

so that
ε−

1
2 ‖uε −Mεuε‖L2(0,T;L2(Ωε))

→ 0 as E′ 3 ε→ 0. (40)

Thus, the inequality

ε−
1
2 ‖uε − u0‖L2(ΩT

ε )
≤ ε−

1
2 ‖uε −Mεuε‖L2(ΩT

ε )
+ ε−

1
2 ‖Mεuε − u0‖L2(ΩT

ε )

associated with the equality

ε−
1
2 ‖Mεuε − u0‖L2(ΩT

ε )
=
√

2‖Mεuε − u0‖L2(Q)

yields (with the help of (39) and (40))

ε−
1
2 ‖uε − u0‖L2(ΩT

ε )
→ 0 as E′ 3 ε→ 0.

This shows that uε → u0 in L2(ΩT
ε )-strong 2s, and so u0 = u. The proof is complete.

The next result and its corollary are proved exactly as their homologues in Theorem 6
and Corollary 5 in [22] (see also [23]).

Theorem 7. Let 1 < p, q < ∞ and r ≥ 1 be such that 1/r = 1/p + 1/q ≤ 1. Suppose that
(uε)ε∈E ⊂ Lq(ΩT

ε ) weakly two-scale converges in Lq(ΩT
ε ) towards u0 ∈ Lq(Q; Lq

per(Y; Lq(I))) and
(vε)ε∈E ⊂ Lp(ΩT

ε ) strongly two-scale converges in Lp(ΩT
ε ) towards v0 ∈ Lp(Q; Lp

per(Y; Lp(I))).
Then, (uεvε)ε∈E is weakly two-scale convergent in Lr(ΩT

ε ) to u0v0.

Corollary 1. Assume the sequences (uε)ε∈E in Lp(ΩT
ε ) and (vε)ε∈E in Lp′(ΩT

ε )∩ L∞(ΩT
ε ) (with

1 < p < ∞, p′ = p/(p− 1)) satisfy the following:

(i) uε → u0 in Lp(Qε)-weak 2s;
(ii) vε → v0 in Lp′(Qε)-strong 2s;
(iii) (vε)ε∈E is bounded in L∞(Qε).

Then, uεvε → u0v0 in Lp(Qε)-weak 2s.
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4. Derivation of the Homogenized Problem: Proofs of the Main Results
4.1. Preliminary Results

In this subsection, we aim to provide further important convergence results that will be
very useful in the sequel. In that order, it is to be noted that Ωε can alternatively be defined
as follows: Ωε = ∪k∈Kε

Zε,k
s , where Kε = {k ∈ Z2 × {0} : Zε,k ⊂ Ωε} with Ωε = Ω× (−ε, ε)

and Zε,k = {ε(k + y) : y ∈ Z}. We set Λε = ∪k∈Kε
Z1,k

s , a periodic repetition of set Zs. We
denote by χε the characteristic function of Λε in Ωε: χε ≡ χΛε

. Then, it holds that

Ωε = {x ∈ Ωε : χε(
x
ε
) = 1},

so that χΩε(x) = χε(
x
ε ) for x ∈ Ωε.

Lemma 4. Let (uε)ε>0 be a sequence in Lp(ΩT
ε ) (p > 1 a real number), which is weakly two-scale

convergent in Lp(ΩT
ε ) to u0 ∈ Lp(Q; Lp

per(Y; Lp(I))). Then, as ε→ 0,

uεχε → u0χZs in Lp(ΩT
ε )-weak 2s. (41)

If further two-scale convergence is strong, then (41) holds in the strong two-scale sense.

Proof. Set vε(t, x, ζ) = uε(t, x, εζ) for (t, x, ζ) ∈ ΩT
1 . Then, since uε → u0 in Lp(ΩT

ε )-
weak 2s, it holds that ‖uε‖Lp(ΩT

ε )
≤ Cε1/2 (with C > 0 being independent of ε) so that

‖vε‖Lp(ΩT
1 )
≤ C. Hence, up to a subsequence, vε → v0 in Lp(ΩT

1 ) in the usual classical

two-scale weak sense, where v0 ∈ Lp(Q× I; Lp
per(Y)). Next, let f ∈ C(Q; Cper(Y; C(I))). By

passing to the limit (in the subsequence determined above) in the obvious equality

1
ε

ˆ
ΩT

ε

uε(t, x) f
(

t, x,
x
ε

)
dxdt =

ˆ
ΩT

1

vε(t, x, ζ) f
(

t, x,
x
ε

, ζ

)
dxdζdt,

we obtain at once u0 = v0.
This being so, by choosing f as above, one has

1
ε

ˆ
ΩT

ε

uε(t, x)χε

( x
ε

)
f
(

t, x,
x
ε

)
dxdt =

ˆ
ΩT

1

vε(t, x, ζ)χΛ1

(
x
ε

, ζ

)
f
(

t, x,
x
ε

, ζ

)
dxdζdt

≡ Jε.

Owing to the usual two-scale concept, we obtain, as ε→ 0,

Jε →
¨

ΩT
1×Y

u0(t, x, y, ζ)χZs(y, ζ) f (t, x, y, ζ)dxdydζdt, (42)

where, in (42), we used the fact that u0 = v0 as proven above. This concludes the proof.

The following result will be crucial in the homogenization process. From now on, we
set χs = χZs , the characteristic function of Zs in Z.

Proposition 1. Let (uε
m)1≤m≤M be the solution of (1)–(3). Given any ordinary sequence E,

there exist a subsequence E′ of E and functions (um, u1
m)1≤m≤M with um ∈ L2(0, T; H1(Ω)) ∩

H1(0, T; L2(Ω)) and u1
m ∈ L2(Q; H1

#(Y; H1(I))) such that, as E′ 3 ε→ 0,

χεuε
m → χsum in L2(ΩT

ε )-strong 2s, (43)

χε∇uε
m → χs(∇xum +∇yu1

m) in L2(ΩT
ε )

3-weak 2s, (44)
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and
χε∂tuε

m → χs∂tum in L2(ΩT
ε )-weak 2s. (45)

Proof. Since Eεuε
m = uε

m in Qε, we have

χεuε
m = χεEεuε

m. (46)

Next, appealing to (25) and (28), we are in a condition to apply Theorem 6: given se-
quence E, we may find a subsequence E′ of E together with a vector function (um, u1

m) ∈
(L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)))× L2(Q; H1

#(Y; H1(I))) such that, as E′ 3 ε→ 0,

Eεuε
m → um in L2(ΩT

ε )-strong2s, (47)

∇Eεuε
m → ∇xum +∇yu1

m in L2(ΩT
ε )

3-weak 2s, (48)

and
Eε∂tuε

m → ∂tum in L2(ΩT
ε )-weak 2s. (49)

After applying Lemma 4 and accounting for (46), we are finished.

4.2. Passage to the Limit

Assume that the functions um and u1
m are as in Proposition 1. Let ϕ ∈ C1(Q) and

ϕ1 ∈ C1(Q× I; C1
per(Y)), and define

Φε(t, x) = ϕ(t, x) + εϕ1(t, x,
x
ε
) for (t, x) ∈ ΩT

ε .

We use Φε as a test function in the variational form of (1)–(3):
1
ε

´
Qε

∂uε
1

∂t Φεdxdt + d1
ε

´
Qε
∇uε

1 · ∇Φεdxdt + 1
ε

´
Qε

uε
1

M
∑

j=1
a1,juε

j Φεdxdt

=
´ T

0
´

Γε ψ(t, x, x
ε )Φε(t, x)dtdσε(x);

(50)

For 1 < m < M,
1
ε

´
Qε

∂uε
m

∂t Φεdxdt + dm
ε

´
Qε
∇uε

m · ∇Φεdxdt + 1
ε

´
Qε

uε
m

M
∑

j=1
am,juε

j Φεdxdt

= 1
2ε

´
Qε

m−1
∑

j=1
aj,m−juε

j u
ε
m−jΦεdtdx;

(51)

and

1
ε

ˆ
Qε

∂uε
M

∂t
Φεdxdt +

dM
ε

ˆ
Qε

∇uε
M · ∇Φεdxdt =

1
2 ∑

j+k≥M,j<M,k<M

1
ε

ˆ
Qε

aj,kuε
j u

ε
kΦεdxdt. (52)

Let us first deal with (50). We note that it is equivalent to
1
ε

´
ΩT

ε
χε

∂uε
1

∂t Φεdxdt + d1
ε

´
ΩT

ε
χε∇uε

1 · ∇Φεdxdt + 1
ε

´
ΩT

ε
χεuε

1

M
∑

j=1
a1,juε

j Φεdxdt

=
´ T

0
´

Γε ψ(t, x, x
ε )Φε(t, x)dtdσε(x).

(53)

We have that

∇Φε(t, x) = ∇x ϕ(t, x) +∇y ϕ1((t, x,
x
ε
) + ε∇x ϕ1((t, x,

x
ε
).
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Thus, we may apply Proposition 1 to proceed to the passage to the limit in the first two
terms of the left-hand side of (53), using Φε as a test function in the two-scale concept.
Concerning the right-hand side of (53), we use Lemma 3 to pass to the limit therein. We
end up with the last term on the left-hand side, where the limit passage therein is more
involved. Indeed, we use there the strong two-scale convergence of χεuε

1 towards χsu1
associated with the weak two-scale convergence of χεuε

j (1 ≤ j ≤ M) towards χsuj to obtain
from Corollary 1 that, for 1 ≤ j ≤ M, we have, as E′ 3 ε→ 0,

χεuε
1uε

j = (χεuε
1)(χεuε

j)→ χsu1uj in L2(ΩT
ε )-weak 2s. (54)

Therefore, by using in that term the test function Φε and taking into account all the processes
described above after (53), we are led, as E′ 3 ε→ 0 in (53), to

˜
Q×Z χs

∂u1
∂t ϕdxdydt + d1

˜
Q×Z χs(∇xu1 +∇yu1

1) · (∇x ϕ +∇y ϕ1)dxdydt

+
˜

Q×Z χsu1
M
∑

j=1
a1,juj ϕdxdydt =

˜
Q×Γ ψϕdxdσ(y)dt

∀(ϕ, ϕ1) ∈ C1(Q)× C1(Q× I; C1
per(Y)).

(55)

We use the same process as for (53) to pass to the limit in (51) and in (52), and we obtain the
following:
For 1 < m < M,

˜
Q×Z χs

∂um
∂t ϕdxdydt + dm

˜
Q×Z χs(∇xum +∇yu1

m) · (∇x ϕ +∇y ϕ1)dxdydt

+
˜

Q×Z χsum
M
∑

j=1
am,juj ϕdxdydt = 1

2
˜

Q×Z χs
m−1
∑

j=1
aj,m−jujum−j ϕdxdydt

for all (ϕ, ϕ1) ∈ C1(Q)× C1(Q× I; C1
per(Y));

(56)

and

˜
Q×Z χs

∂uM
∂t ϕdxdydt + dM

˜
Q×Z χs(∇xuM +∇yu1

M) · (∇x ϕ +∇y ϕ1)dxdydt

= 1
2 ∑

j+k≥M,j<M,k<M

˜
Q×Z χsaj,kujuk ϕdxdydt

for all (ϕ, ϕ1) ∈ C1(Q)× C1(Q× I; C1
per(Y)).

(57)

We have proved the following result.

Theorem 8. The functions (um, u1
m)1≤m≤M determined by Proposition 1 solve variational prob-

lems (55)–(57).

Our next goal is to derive the system whose solution is (um)1≤m≤M. To this end,
we start by uncoupling Equations (55)–(57). We first consider (55), and we see that it is
equivalent to the following system consisting of (58) and (59) below:

¨
Q×Z

χs(∇xu1 +∇yu1
1) · ∇y ϕ1dxdydt = 0 ∀ϕ1 ∈ C1(Q× I; C1

per(Y)), (58)
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˜

Q×Z χs
∂u1
∂t ϕdxdydt + d1

˜
Q×Z χs(∇xu1 +∇yu1

1) · ∇x ϕdxdydt

+
˜

Q×Z χsu1
M
∑

j=1
a1,juj ϕdxdydt =

˜
Q×Γ ψϕdxdσ(y)dt ∀ϕ ∈ C1(Q).

(59)

Let us first consider Equation (58) and choose therein ϕ1 under the form ϕ1(t, x, y) =
φ(t, x)η(y) with φ ∈ C∞

0 (Q) and η ∈ C∞
per(Y)⊗ C1(I); then, (58) becomes

ˆ
Z

χs(∇xu1 +∇yu1
1) · ∇yηdy = 0 ∀η ∈ C∞

per(Y)⊗ C1(I). (60)

To solve (60), we instead consider the variation problem
ˆ

Z
χs(ej +∇yωj) · ∇yηdy = 0 ∀η ∈ C∞

per(Y)⊗ C1(I), (61)

where ej (j = 1, 2, 3) denotes the jth vector of the canonical basis of R3. Then, (61) is
equivalent to the cell problem{

−divy(ej +∇yωj) = 0 in Zs, (ej +∇yωj) · ν = 0 on Γ
ωj(., y3) is Y-periodic,

(62)

where ν stands for the outward unit normal to Γ. It is an easy task to see that (62) possesses
a solution in the space

H1
#(Y; H1(I)) =

{
u ∈ H1

per(Y; H1(I)) :
ˆ

Zs

udy = 0
}

that is unique up to the addition of a function vj such that vj = 0 in Zs. Now, by multiplying
(61) by ∂u1/∂xj (j = 1, 2) and summing up the resulting equations, and then comparing the
latter sum with (60), the following is yielded at once:

u1
1(t, x, y) =

2

∑
j=1

ωj(y)
∂u1

∂xj
(t, x) ≡ ω(y) · ∇xu1(t, x), (63)

where ω = (ω1, ω2).
Next, by going back to (59) and replacing u1

1 with the expression obtained in (63), we
obtain 

´
Q
(´

Z χsdy
) ∂u1

∂t ϕdxdt + d1
´

Q
(´

Z χs(I2 +∇yω)dy
)
∇xu1 · ∇x ϕdxdt

+
´

Q
(´

Z χsdy
)
u1

M
∑

j=1
a1,juj ϕdxdt =

´
Q
(´

Γ ψ(., ., y)dσ(y)
)

ϕdxdt

for all ϕ ∈ C1(Q),

(64)

where I2 is the identity 2× 2 matrix.
This being so, we set

θ =

ˆ
Z

χsdy = |Zs| > 0, A = I2 +∇yω and ψ̃(t, x) =
ˆ

Γ
ψ((t, x, y)dσ(y). (65)

Then, A is a 2× 2 symmetric positive definite matrix. Indeed, it is a fact that the entries of
A have the form

Aij =

ˆ
Zs

(ei +∇yωi) · (ej +∇yωj)dy, 1 ≤ i, j ≤ 2;
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this stems from (61), where we show that it is still valid for η ∈ H1
#(Y; H1(I)) and then

choose therein η = ωi. With the above notations in (65), we see that (64) is equivalent to
the problem 

θ ∂u1
∂t − divx(d1 A∇xu1) + θu1

M
∑

j=1
a1,juj = d1ψ̃ in Q

A∇xu1 · n = 0 on (0, T)× ∂Ω
u1(0, x) = 0 in Ω.

(66)

Proceeding as we did for (55), we easily show that (56) and (57) are equivalent to the
variational formulations of the following PDEs:

For 1 < m < M, (56) is equivalent to
θ ∂um

∂t − divx(dm A∇xum) + θum
M
∑

j=1
am,juj − θ

2

m−1
∑

j=1
aj,m−jujum−j = 0 in Q

A∇xum · n = 0 on (0, T)× ∂Ω
um(0, x) = 0 in Ω;

(67)

and for m = M, (57) is equivalent to
θ ∂uM

∂t − divx(dM A∇xuM)− θ
2 ∑

j+k≥M,j<M,k<M
aj,kujuk = 0 in Q

A∇xuM · n = 0 on (0, T)× ∂Ω
uM(0, x) = 0 in Ω.

(68)

System (66)–(68) is the homogenized model arising from the microscale ε-problem
(1)–(3). It is posed in a two-dimensional space, leading to a dimension reduction problem.
We see in [2] that (66)–(68) possesses a unique solution. We are now in a position to prove
Theorem 1.

4.3. Proof of Theorem 1

The proof of (5)–(7) follows easily from (47)–(49) associated with the properties of oper-
ator Mε. The fact that (um)1≤m≤M solves (8)–(10) has been shown here above in Section 4.2.
Now, if we proceed as in [1] (see also [2]), we obtain the well posedness of (8)–(10) in the
space (C1+ α

2 ,2+α(Q))M, and, specifically, (11) holds true. Indeed, if we set F = (F1, . . . , FM),
where

F1(t, u) = d1ψ̃− θu1

M

∑
j=1

a1,juj,

Fm(t, u) = −θum

M

∑
j=1

am,juj −
θ

2

m−1

∑
j=1

aj,m−jujum−j for 1 < m < M,

FM(t, u) =
θ

2 ∑
j+k≥M

j<M, k<M

aj,kujuk.

Then, F satisfies the assumptions of the appendix in [1]. Hence, Theorems 7.1 and 7.2 of [1]
readily ensure the existence and uniqueness of the solution of (8)–(10) as claimed above.
Finally, the fact that the whole sequence [(uε

m)1≤m≤M]ε>0 converges towards (um)1≤m≤M
follows from the uniqueness of the solution of (8)–(10). This concludes the proof.

4.4. Proof of Theorem 2

First of all, we recall that (u1
m)

ε(t, x) = u1
m(t, x, x/ε) for (t, x) ∈ Qε. This being so, for

1 ≤ m ≤ M to be freely fixed, let rε
m = uε

m − um − ε(u1
m)

ε. Then, ∇rε
m = ∇uε

m −∇xum −
(∇yu1

m)
ε − ε(∇xu1

m)
ε. Assuming u1

m ∈ L2(0, T; H1(Ω))⊗ C1
# (Y; H1(I)), the functions u1

m,
∇yu1

m and ∇xu1
m belong to L2(Q; Cper(Y; L2(I))) so that they can be used as test functions

in the definition of the two-scale convergence (see Definition 1).
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This being so, let us first consider the case m = 1.
We have

d1‖∇rε‖2
L2(Qε)

= d1

ˆ
Qε

∇rε · ∇rεdxdt.

Thus, by taking into account (43) (or (47)), proving Theorem 2 amounts to showing that
ε−1‖∇rε‖2

L2(Qε)
→ 0 as ε→ 0. So, we have

d1

ε
‖∇rε‖2

L2(Qε)
=

d1

ε

ˆ
ΩT

ε

χε(∇uε
1 −∇xu1 − (∇yu1

1)
ε − ε(∇xu1

1)
ε) · (∇uε

1 −∇xu1

− (∇yu1
1)

ε − ε(∇xu1
1)

ε)

=
d1

ε

ˆ
ΩT

ε

χε∇uε
1 · ∇uε

1 −
d1

ε

ˆ
ΩT

ε

χε∇uε
1 · (∇xu1 + (∇yu1

1)
ε + ε(∇xu1

1)
ε)

− d1

ε

ˆ
ΩT

ε

χε(∇xu1 + (∇yu1
1)

ε + ε(∇xu1
1)

ε) · ∇uε
m

+
d1

ε

ˆ
ΩT

ε

χε(∇xu1 + (∇yu1
1)

ε + ε(∇xu1
1)

ε) · (∇xu1 + (∇yu1
1)

ε + ε(∇xu1
1)

ε)

= I1 − I2 − I3 + I4,

where in the series of equalities above, we omitted dxdt in the integrals just for the sim-
plification of the presentation. We use ∇yu1

1 and ∇xu1
1 as test functions to obtain at once

I2 →
¨

Q×Z
χs(∇xu1 +∇yu1

1) · (∇xu1 +∇yu1
1)dxdydt, (69)

I4 →
¨

Q×Z
χs(∇xu1 +∇yu1

1) · (∇xu1 +∇yu1
1)dxdydt (70)

and
I3 →

¨
Q×Z

χs(∇xu1 +∇yu1
1) · (∇xu1 +∇yu1

1)dxdydt. (71)

With regard to I1, one has

I1 = −1
ε

ˆ
ΩT

ε

χε
∂uε

1
∂t

uε
1 −

1
ε

ˆ
ΩT

ε

χεuε
1

M

∑
j=1

a1,juε
j u

ε
1 +

ˆ T

0

ˆ
Γε

ψ(t, x,
x
ε
)uε

1. (72)

By appealing to (54) and using once more the strong two-scale convergence of χεuε
1 towards

χsu1, we obtain

χεuε
1uε

j u
ε
1 = (χεuε

1)(χεuε
j u

ε
1)→ χsu1uju1 in L2(ΩT

ε )weak 2s. (73)

Also, the strong two-scale convergence of χεuε
1 associated with the weak two-scale conver-

gence of χε∂uε
1/∂t gives, owing to Corollary 1,

χε
∂uε

1
∂t

uε
1 → χs

∂u1

∂t
u1 in L1(ΩT

ε )weak 2s. (74)

Now, for the last term on the right-hand side of (72), we first notice that, from the well-
known trace inequality

ε
1
2 ‖uε

1(t, .)‖L2(∂Ωε) ≤ C
(
‖uε

1(t, .)‖L2(Ωε) + ε‖∇uε
1(t, .)‖L2(Ωε)

)
,

we have from (15) and (16)

‖uε
1‖L2((0,T)×Γε) ≤ C, (75)
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where C > 0 is independent of ε. It follows from part (ii) of Theorem 4 that (up to a
subsequence) the trace of uε

1 on (0, T)× Γε two-scale converges in L2((0, T)× Γε), and its
two-scale limit can be easily identified (by integration by parts) with the trace of u1 on
Q× Γ, i.e.,

uε
1|(0,T)×Γε → u1|Q×Γ in L2((0, T)× Γε)-weak 2s. (76)

Thus, by using ψ as a test function, we obtain, up to a subsequence,

ˆ T

0

ˆ
Γε

ψ(t, x,
x
ε
)uε

1(t, x)dσε(x)dt→
¨

Q×Γ
ψu1dxdσ(y)dt. (77)

Now, in view of the uniqueness of u1, the convergence result in (77) holds with the entire
sequence (uε

1)ε>0.
By collecting (73), (74) and (77), we obtain

I1 →
¨

Q×Z
χs

∂u1

∂t
u1 −

¨
Q×Z

χs

ˆ
ΩT

ε

χsu1

M

∑
j=1

a1,juju1 +

¨
Q×Γ

ψu1dxdσ(y)dt. (78)

Now, if we take u1 as a test function in the variational form of (66) and account for (78), we
see that

I1 →
¨

Q×Z
χs(∇xu1 +∇yu1

1) · (∇xu1 +∇yu1
1)dxdydt. (79)

By putting together (69)–(71) and (79), we obtain the result of the case m = 1.
The proof in the case 1 < m ≤ M is easier and follows the same steps as in the case

m = 1. Theorem 2 is therefore proved.

5. Conclusions

In this work, we provided a qualitative multiscale analysis of a micro-model of Smolu-
chowski equations in thin heterogeneous domains. Starting from a three-dimensional
problem, we proved that the upscaled equation is posed on a two-dimensional space,
leading to a dimension reduction problem. We also addressed an approximation issue by
proving a corrector-type result, showing that the solution uε

m can be approximated by the
function vε

m = um + ε(u1
m)

ε in Qε where um and u1
m solve equations that are independent

of ε. This is very useful in numerical computations and opens the door to the quantitative
homogenization of (1), which aims to find the rate of convergence in the approximation of
uε

m by vε
m.
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