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Abstract: As a consequence of the application advanced maintenance practices, the theoretical proba-
bility of failures occurring is relatively low. However, observations of low levels of market intelligence
and maintenance management have been reported. This comprehensive study investigates the deter-
minants of maintenance practices in companies utilising hydraulic machinery, drawing on empirical
evidence from a longitudinal questionnaire-based survey across the West-Balkan countries. This
research identifies critical predictors of technical and sustainable maintenance performance metrics
by employing the CA-AHC (Correspondence Analysis with Agglomerative Hierarchical Clustering)
method combined with non-parametric machine learning models. Key findings highlight the signifi-
cant roles of the number of maintenance personnel employed; equipment size, determined on the
basis of nominal power consumption; machinery age; and maintenance activities associated with
fluid cleanliness in influencing hydraulic machine maintenance outcomes. These insights challenge
current perceptions and introduce novel considerations with respect to aspects such as equipment
size, maintenance skills and activities with the aim of preserving peak performance. However, the
study acknowledges the variability resulting from differing operational conditions, and calls for
further research for broader validation. As large-scale heterogeneous datasets are becoming main-
stream, this research underscores the importance of using multidimensional data analysis techniques
to better understand operational outcomes.

Keywords: multidimensional data analysis; correspondence analysis; agglomerative hierarchical
clustering; random forest; hydraulic system; machine learning
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1. Introduction

Nowadays, companies regard maintenance functions as a strategic move for gaining a
competitive advantage [1]. The rise of AI (Artificial Intelligence) and ML (Machine Learn-
ing) tools provides a “bright avenue” for the growth of Predictive Maintenance (PdM) [2,3].
However, data-driven and sustainable PdM practices face serious difficulties [4], mainly
because most systems still rely on RAM (Reliability, Availability and Maintainability) [5]
metrics. Additionally, many believe that adopting PdM will significantly reduce down-
time [6], improve production flows, and enhance performance [7], ultimately resulting in
a failure to fulfil these expectations [8]. Such issues can largely be attributed to problems
regarding maintenance strategy selection [9], implementation suitability [10], industrial
environment [11], asset management risks [12], and other technological and organisational
issues, leading to poor decision making.

Moreover, the availability, as an integral part of OEE (Overall Equipment Effective-
ness) [13], with MTBF (Mean Time Between Failure) and MTTR (Mean Time To Repair) as
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core parameters, is usually perceived as, if not necessarily being, the most critical Mainte-
nance Performance Indicator (MPI) [14]. There are a myriad of factors affecting availability
metrics; however, most of them strongly depend on the knowledge and skills of maintain-
ers [15], the efficacy of decision making [16,17], the alignment of maintenance practice with
organisational policies, the use of advanced techniques in the diagnosis and prognosis of
machines [18,19], reliability modelling and optimisation capabilities [20], the quality of
maintenance activities [21], and many other aspects. These multiple interrelated issues
are primarily addressed as a single entity on a unit, system or company level. Thus, there
is a lack of studies comparing MPIs across different industrial domains. The research
(case) studies usually encompass smaller companies, with no evidence concerning their
large-scale application. Moreover, existing studies usually do not include qualitative data
(e.g., lubrication, monitoring), since such information is hard to synthesise, process and
maintain over time. This is primarily the case in asset-intensive industries with heavy-duty
machinery, such as hydraulic power systems, where maintenance research is concerned
mainly with diagnostic and prognostic aspects [22], thus needing more evidence regarding
the impact of latent factors on MPIs. (Note: See Abbreviation)

Nevertheless, entering the digitalisation and cloud-computing era, many companies
have started to rely on Big Data and Visual Analytics [23] to assess business issues by
utilising large-scale multivariate data analysis (MDA) [24]. MDA’s benefits include its
ability to incorporate large-scale heterogenous data—unstructured text, categorical data,
numerical data, logs, binary data—and project it in a lower-dimensional subspace, which
is necessary to be able to investigate the latent indicators [25] impacting operational per-
formance. Although it has been little engaged with respect to maintenance management,
visual analytics utilising MDA is being used to map the landscape of other fields, such
as business management, disaster management, and many others [26,27]. As such, in
this study, MDA is used to allocate features impacting MPIs via a questionnaire-based
survey considering companies utilising hydraulic machinery (Figure 1). The survey in-
cluded closed- and open-ended questions in order to extract the features impacting MPIs.
To achieve this, we conducted a Systematic Literature Review (SLR) to extract the items
needed for the survey based on the proposed Research Questions (RQs).
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The first research question—RQ1: “What are the most commonly used maintenance
performance metrics and/or indicators?”—is used to extract relevant maintenance perfor-
mance indicators (MPIs) that will be used to build the survey items. The second research
question—RQ2: “What are the existing applied maintenance activities under hydraulic
systems maintenance practice?”—is designed to extract relevant information regarding the
applied maintenance activities, condition monitoring practices, and tools for managing
hydraulic machinery. Next, using both open-ended and closed-ended survey questions,
since most companies do not have fully implemented CMMSs (Computerised Maintenance
Management Systems), it is expected that the responses will include multidimensional data
(e.g., text, categorical, numerical). To address these high-dimensional datasets, various
dimensionality-reduction techniques must be used to obtain the feature subspace. Finally,
the reduced feature subspace is projected against MPIs to allocate the essential features
using ML regression algorithms.

The rest of the study is structured as follows. The methodology describes the survey
design, including the SLR, the development of the survey items and survey questions, raw
data extraction, data wrangling and the ML regression algorithms used to allocate the most
critical features impacting the MPIs. The evidence from the longitudinal study, carried
out over three years, helped us to gain insights into potential relationships between the
MPs (Maintenance Practices) applied and the output results. The third chapter presents
the results of the MDA and the extrapolated feature subspace through CA-AHC (Corre-
spondence Analysis with Agglomerative Hierarchical Clustering). Using CA-AHC, we
generated components by combining MPs with their associated CFTs (Component Failure
Types) and RCFs (Root Causes of Failure) in order to benchmark the MPs. Based on the
obtained results, the fourth chapter includes a discussion and analysis of ML post hoc
analysis in which features extracted using ML techniques are considered. Finally, the study
recapitulates the evidence and provides concluding remarks, describing the implications of
this study as well as future research directions.

2. Methodology
2.1. Systematic Literature Review for Extraction of Relevant Performance Indicators

Following the PRISMA (Preferred Reporting Items for Systematic Review and Meta-
Analysis) guidelines, we conducted a Systematic Literature Review (SLR) to prepare the
items needed to construct the survey. Namely, since we are interested in gathering factors,
metrics and/or indicators for measuring the performance of hydraulic machine mainte-
nance, we used the eligibility criteria in Table 1. Based on the eligibility criteria, the search
strategy and the obtained search results are given in Table 2. In the following, we briefly
describe the SLR and the indicators extracted and used to build the survey items (Figure 2).

After finishing the SLR, the final sample included 27 articles. Based on the retrieved
articles, almost all articles, without exception, highlighted Availability, MTTR, and MTBF
as the three most essential MPIs (Figure 2). However, MTTR and MTBF are parameters that
need to be input in order to derive Availability estimates.

Table 1. Inclusion & Exclusion (I&E) criterias.

I/E Criteria Subcriteria Description of Criteria

Inclusion Time Frame (TF) Time frame search includes all published articles up to 31 December 2018.
Full-Text Paper (FTP) Published editorials, abstracts, presentations, will not be included.

English Language (EL) All published articles must be published in English language.
Exclusion Non-Related (NR) Articles that are not research studies (e.g., procedures, forewords).

Loosely Related (LR) Articles that are not associated with MPIs.
Partially Related (PR) Articles that deal with MPIs but lack primer or case study.
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Table 2. Results based on the search strings.

Search Strings and Criteria SD SCOPUS WOS Results

“maintenance performance metrics” 41 225 20 119
“maintenance performance indicators” 46 71 2 286

“time between failure” AND “time to repair” AND “hydraulic system” 13 4 0 17
Removing duplicate studies −53

Removing articles based on the inclusion criteria −162
Removing articles based on the exclusion criteria −157

Unavailable articles and those without institutional access −23

Total articles 27
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Earlier work [28,29] was mostly dedicated to allocating and benchmarking MPIs using
different types of frameworks [30], and was performed by Parida, A. et al. [29,31,32], Kumar,
U. et al. [33], and Van Horenbeek and Pintelon, L. [34,35]. Most frameworks are designed
as secondary data on the basis of an overview [36] with multicriteria decision-making
tools [37] such as AHP (Analytical Hierarchy Process) [38], ANP (Analytical Network
Process) [39,40], and ELECTRE [41]. Considering the practical application of the use of
MPIs, most of the work is being formed in the context of industrial manufacturing [42–46],
business organisations [47], specific production case studies [48], or even in healthcare [49].
Thus, since there is still an ongoing debate regarding framework appropriateness and
maintenance practice suitability [50,51] in different types of industry, most of the research
still emphasises the availability metric of the maintenance function, since it is an integral
part of the OEE (Overall Equipment Effectiveness) [52,53]. Although most of the indicators
are concerned with economic and technical evaluation metrics, due to recent environ-
mental concerns, many are incorporating sustainability indicators [53,54] as maintenance
indicators.

The recent work on MPIs utilises a broad range of MPIs and performance metrics
(Figure 3), presumably due to the computational ability of machine learning techniques that
can translate large-scale heterogenous datasets into a low-dimensional feature space. On
the basis of the SLR, we used the performance metrics and the performance of associated
maintenance activities to derive the information we required to reach a consensus regarding
the relationship between maintenance and operation activities and performance. Next,
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since in the SLR we did not find evidence of addressing specific types of failure or root
causes of failure and their overall impact on maintenance performance; we decided to
include these output metrics. Finally, as recent work has started utilising sustainability
metrics, we also included lubricant waste as one of the essential output metrics regarding
the operational performance of hydraulic machinery.
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2.2. Study Design and Data Wrangling

The study design consists of three parts: (1) survey design; (2) survey raw data pro-
cessing and data wrangling; and (3) feature subspace extraction and data analysis (Figure 4).
The survey design consists of the SLR-based extraction of MPIs (Figure 4a); the survey
realisation workflow (Figure 4b); the geographical representation of the survey results
(Figure 4c); company characteristics (Figure 4d); strategic and operational level of main-
tenance activities (Figure 4e); maintenance performance metrics and indicators extracted
(Figure 4f); CA considering feature subspace (Figure 4g); AHC clustering (Figure 4h); extrac-
tion of features by importance using ML (Machine Learning) algorithms considering output
MPIs (Figure 4i). The survey design was performed over the course of several iterations
with respect to organisational, maintenance management and performance structures and
characteristics. After the survey had been adjusted and was deemed suitable, the CA and
Agglomerative Hierarchical Clustering (AHC) models were used to generate a feature sub-
space based on the extracted raw data. By using MPs and failure-associated characteristics,
clusters were created, which were then used to allocate features in consideration of output
maintenance metrics. Finally, selected clusters were subjected to output metrics to isolate
the features, including maintenance programs, factors and activities via ML algorithms.
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2.3. Survey Design and Realisation

The design of survey items (Figure 5) started with an SLR (Task 1) regarding keywords
and search strings (Table 2). After the SLR, the authors individually synthesised papers
(Task 2) based on the eligibility criteria. The extraction of MPIs to be included in the
survey was performed on the basis of interrater agreement using Cohens’ K > 0.7 (K = 0.89).
The final list included 33 indicators that satisfied the criterion (Task 3). However, in the
preliminary draft of the survey targeting companies utilising hydraulic applications in the
West Balkan Peninsula, several MPIs were removed (Task 4). This is primarily because
different types of maintenance policy and databases had different MPIs, most of which
were unavailable for disclosure to the public (e.g., maintenance costs) or were not recored
(e.g., injuries, backlogs). The first draft contained 77 survey questions. Next, consultations
were carried out with academic experts in the field (Task 5), who considered some survey
questions to be redundant, and could be merged or split into subquestions. In addition,
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other survey questions were deemed irrelevant, such as those covering stoppages that
were consequences of non-hydraulic failure events (e.g., structural failures, mechanical
failures, electrical failures). This resulted in the elimination of several unrelated questions,
merging some and splitting others into subquestions (Task 6). The first version of the
survey was sent to the sample of 5 companies as a mini (pilot) survey study in order to
gather information and insights regarding the understandability, completeness, reliability,
and validity of the open- and closed-ended items of the questionnaire (Task 7).

After administrating the survey to the companies, minimicking the conditions of
the target group companies that utilise hydraulic machinery, the results showed that the
survey questions regarding the maintenance policies, programs and maintenance activities
needed to be clarified. Namely, 4/5 companies still required specifically designed and
recorded maintenance policies rather than maintenance procedures in the context of a
quality management system. Hence, we reformulated questions regarding maintenance
policies into questions about maintenance practices, since some practices included several
different activities (e.g., time-based, corrective, and opportunity-based activities) within a
given procedure. Additionally, some maintenance activities for replacing parts were not
recorded in backlogs; thus, output metrics regarding spare parts management, work order
logs, replacements, and preventive and corrective costs were removed, and only availability
metrics (MTBF, MTTR) were left. Additionally, the provision of datasets regarding the exact
energy consumption of each hydraulic machine was eliminated, since none of the compa-
nies had measurements of each hydraulic system’s energy consumption. Instead, nominal
working pressure and nominal working flows were used as measures for describing the
size of the equipment. However, all of the respondents were able to provide information
regarding the most common failure causes and root causes of failure. Regarding the MTBF
and MTTR metrics, 3/5 companies had a log of failure times in the pilot study. In contrast,
others did not have a complete record, which resulted in the formulation datasets for the
extraction of failure times using range values (e.g., 100–200 h TBF). From a sustainability
perspective, the waste hydraulic fluid data were available for extraction using the survey.
None of the questions were found to be offensive.

Furthermore, the feedback from the industrial experts, maintenance managers and
engineers on a strategic level (Task 8) resulted in the elimination of survey items mostly
on the basis of the time required to complete the survey, the public disclosure of costs
and energy consumption data per machine, and the lack of records and procedures for
documenting activities via logbooks or data management systems. Additionally, some
companies incorporate a centralised top maintenance management level, including a
manager or a director. Here, the responsibility falls under the technical department,
whether or not its management is the director’s responsibility. Next, as was later confirmed,
some companies still employ a maintenance department or section that is responsible for
maintaining and keeping records of hydraulic machine failures. In some of these cases,
some or all maintenance management, including diagnosis and prognosis, were outsourced.
In such instances, data records were requested from the companies to which the tasks were
outsourced or from the experts conducting in-house maintenance activities, and they were
asked to provide records and fill out the survey. This helped improve the questions related
to maintenance diagnosis and prognosis, and the survey options were extended with
external experts and outsourced maintenance activities.

After redesigning and preparing the final draft of the survey (Task 9), the surveyed
companies and industrial experts agreed that the survey of 22 questions (with 5 sub-
questions) included all information necessary for the analysis. Therefore, the first realisation
phase started in September 2019 (Task 10) and lasted until May 2021. In the first run,
81 samples, which included most of the companies in Serbia, were collected. Since the
sample size was still small, we conducted a longitudinal study. Thus, in the second
run (September 2020–June 2021), 100 companies participated. Next, considering that
some companies changed their initial practices on the basis of insights derived from their
previous state, we thought that data could be biased due to discrepancies between initial



Mathematics 2023, 11, 3816 8 of 30

and follow-up (second-run) results. Therefore, we decided to include a third and final run,
which ultimately led to results being gathered from 115 companies, from which data were
synthesised and subjected to analysis. The obtained results proved compelling, complete
and valid, since, based on the first (11% missing data) and second run (4% missing data),
only 1.3% of data were missing. The missing data were later excluded from the analysis or
replaced by the mean average value to reduce the bias/variance tradeoff. The complete
survey is presented in Supplementary Material File S1.
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2.4. Survey Items and Data Extraction

The survey design (Figure 5) started in February 2019 and lasted until June 2019. The
survey questions were segmented into three facets, namely: (i) organisational character-
istics; (ii) characteristics of maintenance functions; and (iii) output data as performance
metrics. The organisational facet included questions regarding organisational structure and
asset characteristics. Organisational and asset characteristics include information regarding
the company and its associated hydraulic machinery (e.g., age, type). The maintenance
characteristics include the department’s size, the staff and their qualifications, the condition
monitoring tools (e.g., sensors, instruments) available, and preventive/corrective activities
performed (e.g., filter replacement time, time to complete oil change). The output perfor-
mance metrics measured include MTBF (Mean Time Between Failures), MTTR (Mean Time
To Repair); CFTs (Component Failure Types), RCFs (Root Causes of Failure); and WOMM
(Wasted Oil per Machine-Month). A complete list of the survey questions is provided in
Appendix A.
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2.5. Correspondence Analysis (CA)

Since the survey contains mostly categorical data, contingency tables are formed and
χ2 distance metrics are used for CA. The contingency table(s) consider I categories (rows)
of variable V1, where i = 1, 2. . . I, and j categories (columns) of variable V2, where j = 1,
2. . .J. The value xi,j corresponds to the values of a variable with i rows and j columns, with
n instances. Using contingency tables, we first calculate the probabilities as follows:

fij =
xij

n
, (1)

where the sum of rows equals the marginal probability:

f.j = ∑I
i=1 fij, (2)

and for the sum of columns, the marginal probability:

fi. =
J

∑
j=1

fij. (3)

The relationship between selected variables is measured using the the χ2 distance:

χ2
obs = ∑I

i=1 ∑J
j=1

(
n fij − n fi. f.j

)2

n fi. f.j
, (4)

where nfij is the observed probability and nfi.f.j is the theoretical probability, and factoring n
out of Equation (4), we get the total inertia Φ2:

χ2
obs = ∑I

i=1 ∑J
j=1 n

(
fij − fi. f.j

)2

fi. f.j
= nΦ2. (5)

The CA is described as point clouds, as proposed in [55], alongside mathematical
formulations [56,57]. Considering the number of row profiles i, we obtain a cloud of profiles
NI. With the generated point cloud, we add the point GI, depicting the centre of gravity
with coordinate f.j. GI can be considered a centre of gravity if we associate each point i with
the weight proportional to its marginal value (fi.). The space then compares profile i with GI
using a measure of distance. As stated, the distance between i and i′ is defined as follows:

d2
χ2

(
i, i′
)
= ∑J

j=1
1
f.j

( fij

fi.
−

fi′j
fi′.

)2

. (6)

Although this could suggest Euclidian distance, the χ2 compares the sum of differences,
where each dimension J is associated with a weight 1/f.j. Therefore, the centre of gravity GI
corresponds to the mean profile as follows:

d2
χ2(i, GI) = ∑J

j=1
1
f.j

( fij

fi.
− f.j

)2

. (7)

The same principles are used for estimating the distances in the column profile. A
column profile is a set of I values in RI dimensional space. The coordinates of the jth point
are fij/f.j, and all of the j points together form the Nj cloud. The central point, i.e., the centre
of gravity GJ, is added to the coordinate fi. in the Ith dimension. GI is the centre of gravity
as long as we assign a column profile j a weight corresponding to its marginal probability
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f.j. Next, we estimate the distances d between points j and j′ using the χ2 distance metric as
follows:

d2
χ2

(
j, j′
)
= ∑I

i=1
1
fi.

(
fij

f.j
−

fij′
f.j′

)2

, (8)

and the centre of gravity GJ is estimated as follows:

d2
χ2

(
j, GJ

)
= ∑I

i=1
1
fi.

(
fij

f.j
− fi.

)2

. (9)

If independence exists, the conditional probability is equal to the marginal probability
for all i (f.j = fij/fi.), meaning that all profiles are the same as the mean, i.e., NI becomes GI.
As such, we measure the inertia using Equation (5), as follows:

Inertia
(

NI
GI

)
= ∑I

i=1 ∑J
j=1

(
fij − fi. f.j

)2

fi. f.j
=

χ2

n
= Φ2. (10)

The same holds for NJ: Inertia(NJ/GJ) = Inertia(NI/GI). Therefore, Φ2 represents the
strength of the link. The CA proceeds, for all components (i.e., factors), by projecting NI
to axes C1 and C2, forming a plane P. Finding the plane P is determined by the criteria of
maximum inertia, such that:

∑I
i=1 fi.(OHi)

2, (11)

is maximal and is used to determine the Mi point that corresponds to the Ith profile on
the plane P, where OHi represents the distance to the origin GI = O. The plane P is the
sum of the inertia, such that the projected Hi overall i is maximal. The C1 and C2 axes
(components) represent maximal inertia such that C2⊥C1, and as a result, we obtain plane
P. The inertia λs of the sth axis is then:

∑I
i=1 fi.(OHs

i )
2 = λs, (12)

and λs represents the eigenvalue of the Cs. Calculating fi. on Cs (the same as for the column)
over the total inertia of the λs is performed as follows:

Contribution( fi., λs) =
fi.(OHs

i )
2

λs
, (13)

where summation leads to the inertia of Cs, and we determine the quality (Qual) of the
representation as follows:

Quals =
∑I

i=1 fi.(OHs
i )

2

∑I
i=1 fi.(OMi)

2 =
λs

∑K
k=1 λk

, (14)

where OMi is the distance between the Mi point and the origin O. The numerator represents
the inertia of NI on the axis Cs, and the denominator is the total Inertia(NI) = Φ2. Calculating
the position on the plot of rows and columns, we use transitional formulas to determine
the coordinates of row i on the sth axis (Fs) as follows:

Fs(i) =
1√
λs

∑J
j=1

fij

fi.
Gs(j), (15)

where Gs(j) is the coordinate of the column j on the sth axis, and λs is the inertia of the
sth axis. Permuting Gs and Fs, we obtain the same outcome for the different barycentre.
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Intuitively, the number of axes that contain non-zero inertia is S ≤ min(J − 1, I − 1).
Estimating the Φ2 points of the axes gives us:

Φ2 = ∑min(I−1,J−1)
k=1 λk ≤ min(I − 1, J − 1). (16)

2.6. Clustering CA Components Using Agglomerative Hierarchical Clustering (AHC)

Agglomerative Hierarchical Clustering (AHC) is added to replace the inability of CA
to project data in more than three dimensions. The two important measures of the AHC are
distance and linkage. The AHC assumes that each point x is a singleton [58]. The algorithm
creates a collection of higher-level clusters ci by merging the point(s) (singletons) into a
new cluster ci’. In order to measure the distances between points, the Euclidian distance is
used [59]:

ED(p, q) =
√

∑n
i (pi − qi)

2 = ‖xc − xc′‖, (17)

where p and q are coordinates of c. For the cluster linkage, we use Ward’s method [60]. The
method is imputed by the Lance–Williams algorithm [59] and calculated as:

d
(

gi, gj

)
=
|i||j|
|i|+ |j|

∥∥∥gi − gj

∥∥∥2
, (18)

where agglomeration factors are estimated by the Lance–Williams dissimilarity:

αi =
|i|+ |k|

|i|+ |j|+ |k| ; β = − |k|
|i|+ |j|+ |k| ; γ = 0, (19)

such that |i| represents the number of objects in cluster i, and g represents the centre
coordinates estimated as:

g =
|i|gi + |j|gj

|i|+ |j| . (20)

After obtaining the distance metrics and performing the clustering of principal com-
ponents, the CA-AHC is performed.

2.7. Machine Learning Algorithms and Evaluation Metrics

The obtained AHC-CA clusters are then subjected to the machine learning regression
algorithms, where independent variables consider maintenance performance indicators,
specifically MTBF, MTTR and WOMM. Next, algorithm selection is performed by con-
sidering algorithms that can handle categorical (e.g., nominal and ordinal) and continu-
ous/numeric (scale and metric) data as predictors. Next, for selecting between parametric
and non-parametric ML algorithms, we used the Shapiro–Wilk test (p < 0.05) to test the
normality assumption. As it turned out, the normality assumption was violated, and the
non-parametric counterpart ML algorithms were selected. The ML algorithms used for the
analysis include the SVR (Support Vector Regression) [60], kNN (k-Nearest Neighbour) [61],
DT (Decision Tree) [62] and RF (Random Forest) [63] regression algorithms. The reader
should not know that although SVR is generally a parametric algorithm, we used an RBF
(Radial Basis Function), as it is the most frequently applied Kernel trick in the literature [61].

The evaluation metrics used include the following. The MSE (Mean Squared Error):

MSE =
1
n∑n

i=1(yi − ŷi)
2, (21)

as well as the RMSE:

RMSE =
√

MSE =

√
1
n∑n

i=1(yi − ŷi)
2. (22)

and the MAE:
MAE =

1
n∑n

i=1|yi − ŷi|. (23)
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where yi is the actual value, ŷi is the predicted value, and n is the number of observations.
The R2 coefficient of determination is calculated as:

R2 = 1− MAEmodel
MAEbaseline model

, (24)

which represents the proportion of variance in the dependent variable predicted by inde-
pendent variables. Finally, the analysis is performed using the open-source software JASP.
JASP is built using R packages for DT (rpart), RF (randomForest), SVM (e1071), and kNN
(kknn). Under each category, feature importance is established by relative importance and
mean decrease in accuracy provided by JASP, from which the results are obtained.

3. Research Results
3.1. Survey Insights and Descriptions

From the sample of 297 companies, 7.41% (22 companies) of respondents strongly un-
derscored that they were unwilling to participate in the study. Then, 19.53% (58 companies)
of respondents were willing to participate in the survey, but no results were obtained, even
after contacting them three times. Next, 34.3% of respondents (102 companies) did not
respond. The final dataset comprises 115 companies (38.72% response rate).

The sample includes large (51.3%), medium (37.4%), and small (11.3%) companies.
According to the NACE (Nomenclature of Economic Activities), the respondents consisted
of 8.7% AFF (Agriculture, forestry, and fishing), 19.1% CON (Construction), 47.0% MAN
(Manufacturing) and 25.2% M&Q (Mining and Quarrying) companies. Considering these
asset characteristics, the average distribution of HMA (Hydraulic Machinery Age) across
classes is presented in Table 3. The NoM (Number of Machines) was the greatest in M&Q.
The MPPM (Maintenance Personnel per Machine) was the highest in MAN (0.75), and the
lowest in CON (0.45).

Table 3. Descriptive statistics of survey results.

Feature AFF 1 CON 1 MAN 1 M&Q 1

HMA 10.5 10.25 11.80 10.54
NoM 62.4 41.86 52.94 85.2

MPPM 0.55 0.37 1.09 0.62

AFF 1 = agriculture, forestry, and fishing; CON 1 = construction; MAN 1 = manufacturing; M&Q 1 = mining and
quarrying.

The CFT (Component Failure Type) item is used to construct categories based on text
mining. Therefore, the most frequently reported failures include “hoses OR pipes”, 85.65%;
pumps, 71.3%; “actuators OR cylinders” OR “linear OR rotary”, 53.05%; sensors, 23.48%;
“servo OR proportional”, 21.6%; “pressure OR flow OR check OR regulation valves”, 4.35%;
accumulators, 3.48%; “ice OR internal combustion engine” OR “em OR electrical motor”,
3.48%; and other, 3.4%. These categories are divided into ten categories for the analysis.
In terms of RCFs (Root Causes of Failure), the most-reported RCFs were those related
to seals (92.2%), leakage (64.35%), overload (42.61%), temperature (24.35%), technician
and operator mistakes (23.48%), air and water contamination (10.43%), “wear OR fatigue”
(4.35%), particle contamination (3.48%), and other stoppages (27.83%).

It should be noted that most companies do not use a single MP, but rather a combina-
tion of different MPs, and for the sake of understanding, we use curly brackets to report
cases in which companies utilise MP variants. For instance, in cases where a company
itilises OM, CBM and PdM practices, this will be noted as “{OM. CBM. PdM.}”. Finally, the
CA-AHC analysis is performed in MINITAB v17.0.

3.2. Relationship between MPs and CFTs Using CA-AHC

The obtained results show that the total inertia is Φ2 = 1.435, with the first two
components accounting for 50% of the total inertia (Table 4). Among the mentioned MPs,
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{OM} and {PM. CBM. PdM.} alone account for >0.95 of the quality (Table 5). On the other
hand, it can be seen that {PdM} accounts for significantly less of the inertia λPdM = 0.05;
however, with the three proposed axes, the Qual{PdM} = 0.568, showing high interpretability.

Table 4. Quality of interpretation using MPs and CFTs.

Dimension SV Inertia χ2 Sig. Proportion of Inertia Confidence SV
Accounted Cumulative St. dev Corr. C2 Corr. C3

C1 0.673 0.452 0.315 0.315 0.051 0.159 0.417
C2 0.526 0.277 0.193 0.508 0.083 0.160
C3 0.515 0.265 0.185 0.693 0.099
C4 0.406 0.165 0.115 0.808
C5 0.355 0.126 0.088 0.896
C6 0.267 0.071 0.050 0.946
C7 0.187 0.035 0.024 0.970
C8 0.156 0.024 0.017 0.987
C9 0.130 0.017 0.012 0.999

C10 0.040 0.002 0.001 1.000
Total 1.435 165.021 0.000 1.000 1.000

Considering the association between MPs and the components of CA, the data suggest
that {CBM} and {OM} are correlated with C1, while {FBM. PM. CBM.}, {PM. CBM.}, and
{PM. CBM. PdM.} are correlated with C2. When considering the third component, C3,
of CA, it can be observed that only {OM} has a higher tendency to associate with this
component, suggesting that {OM} differs significantly, i.e., that it has a higher inertia from
the centre of the CA. Conversely, {PM}, as the most common MP applied, does not seem
to correlate with other components of CA, which is why it is positioned as the centre of
gravity on the CA biplot.

Table 5. Overview of row components of MPs and CFTs.

MP Mass
Coordinates

λ
Correlation Contribution

C1 C2 C3 C1 C2 C3 C1 C2 C3 Qual

CBM 0.113 −0.915 0.288 0.338 0.160 0.209 0.034 0.049 0.591 0.058 0.081 0.731
FBM 0.096 0.055 −0.508 −0.021 0.105 0.001 0.089 0.000 0.003 0.234 0.000 0.238

FBM. PM. 0.104 −0.885 0.012 0.143 0.160 0.181 0.000 0.008 0.510 0.000 0.013 0.523
FBM. PM. CBM. 0.096 0.259 −0.760 −0.319 0.114 0.014 0.200 0.037 0.056 0.483 0.085 0.624
FBM. PM. OM. 0.061 −0.339 0.208 −0.324 0.044 0.015 0.009 0.024 0.158 0.059 0.145 0.362

OM 0.035 10.861 0.382 20.115 0.290 0.266 0.018 0.586 0.415 0.018 0.536 0.969
PdM 0.026 0.321 0.224 −0.964 0.050 0.006 0.005 0.091 0.054 0.026 0.488 0.568
PM 0.330 −0.031 0.022 0.075 0.061 0.001 0.001 0.007 0.005 0.003 0.031 0.038

PM. CBM. 0.052 1.092 −1.023 −0.343 0.175 0.138 0.197 0.023 0.356 0.313 0.035 0.704
PM. CBM. PdM. 0.078 0.945 10.246 −0.760 0.244 0.155 0.439 0.170 0.286 0.497 0.185 0.968

PM. DM. 0.009 −0.869 0.489 0.360 0.031 0.015 0.008 0.004 0.210 0.066 0.036 0.312
Total 1.000 1.435 1.000 1.000 1.000

In CA analysis (Figure 6), interpreting and making conclusions solely on the basis of
the biplot can be insufficient. For instance, the points on the left ({PM. DM.}; {CBM}; {FBM.
PM. OM.}; {FBM. PM.}) cluster, while same can be said for ({FBM}; {FBM.PM.CBM.}; {PM.
CBM.}). However, looking at the points, it cannot be confirmed that {FBM} and {PM. CBM.}
cluster, even when their similarity might suggest an association between the two. Looking
at {PM. CBM.} and {PM. CBM. PdM.}, the results imply no association between the two.
However, interpreting the results in Table 4, coordinates of C1{PM. CBM.};coord = 1.092 and
C3{PM. CBM.};coord = −0.343 are closely associated with C1{PM. CBM. PdM.};coord = 0.945 and
C3{PM. CBM. PdM.};coord = −0.760.

Observing the column profiles, the results show that {Hoses. Pipes. Pumps.}, λHPP
= 0.236, followed by {Hoses. Pipes. Sensors.}, λHPS = 0.211, and {Pressure. Flow. Contr.-
Regulation. Valves}, λPFCR = 0.181, account for most of the explained inertia. However,
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{Hoses. Pipes. Actuators.} are indicated to have higher quality QualHPA = 0.851 > QualPFCR
= 0.686.
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Looking at the left side of C1 (Figure 7), there is a discrepancy between the frequency
and variety of failures, while on the right side of the C1-axis (positive), there is an increase
in the number of sensor failures. This is a valuable insight for detecting associations with
MPs and for better interpretation of the biplot.
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Figure 7. CFT biplot of C1 and C2 components of the MP-CFT analysis.
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Although CA (Figure 8) provides different ways of interpreting the association be-
tween categories, post hoc analysis can be misleading if the quality of the visualisations is
neglected. Looking at the row profile (Table 5) and column profile (Table 6) tables, it can be
seen that only 8/20 components possess a quality of representation > 0.70. Therefore, at
least 80.8% of inertia must be preserved; consequently, the fourth component is added.
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Table 6. Overview of column components of MP and CFT.

CFT Mass C1 C2 C3 λ
Correlation Contribution

C1 C2 C3 C1 C2 C3 Qual

Hoses. Pipes. 0.096 0.269 0.239 −0.236 0.079 0.015 0.020 0.020 0.088 0.069 0.068 0.225
Hoses. Pipes. Actuators. 0.070 1.090 0.483 0.611 0.147 0.183 0.059 0.098 0.563 0.111 0.177 0.851
Hoses. Pipes. Actuators.

Pumps. 0.200 −0.537 −0.052 −0.024 0.104 0.127 0.002 0.000 0.556 0.005 0.001 0.562

Hoses. Pipes. Accumulators. 0.035 −0.573 −0.340 0.021 0.078 0.025 0.015 0.000 0.147 0.052 0.000 0.199
Hoses. Pipes. Act. Pumps.

S-PV. 0.217 −0.585 0.257 0.185 0.130 0.164 0.052 0.028 0.569 0.110 0.057 0.737

Hoses. Pipes. Act. Pumps.
Sensors. 0.043 −0.258 −0.260 0.174 0.066 0.006 0.011 0.005 0.044 0.045 0.020 0.109

Hoses. Pipes. Pumps. 0.070 0.897 1.05 −1.12 0.236 0.124 0.277 0.326 0.237 0.324 0.366 0.927
Hoses. Pipes. Pumps.

ICE/EM. 0.035 −1.02 0.289 0.435 0.070 0.080 0.011 0.025 0.521 0.042 0.094 0.657

Hoses. Pipes. Pumps.
Sensors. 0.148 0.289 −0.645 −0.350 0.134 0.027 0.222 0.068 0.092 0.458 0.135 0.684

Hoses. Pipes. Sensors. 0.043 1.414 −0.081 1.57 0.211 0.192 0.001 0.402 0.412 0.001 0.506 0.920
Pressure/Flow Control-Reg. 0.043 0.759 −1.45 −0.406 0.181 0.055 0.332 0.027 0.139 0.508 0.040 0.686

Total 1.000 1.435 1.000 1.000 1.000

The results (Figure 9) show that the first cluster (blue), consisting of {CBM} and {PM.
DM.}, reports a variety of failures, alongside the second (red), where {FBM} and {PM. CBM.}
report a smaller variety of failures. The third cluster (green) presents a higher association
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among the MPs. The fourth cluster (yellow) shows the smallest distance between the MPs
{PM. CBM. PdM.} and the failures {Hoses. Pipes. Pumps.}, suggesting the best performance
among the applications. Finally, the last cluster (purple) shows small distances between
{OM} and ({Hoses. Pipes. Sensors.} and {Hoses. Pipes. Actuators}).
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3.3. Relationship between MPs and RCFs Using CA-AHC

In terms of the RCF variable, the category of {Leakage. Seals. Operator and Mainte-
nance mistakes.} was the most dominant. With regard to the frequency of the root causes
reported, the highest-frequency fij association was that among {PdM} and OST {Overload.
Seals. Temperature.} (fPdM.OST = 0.667). Aside from failures associated with leakage and
seals, operator/maintenance personnel mistakes were dominant in {PM. DM.} and {OM}.

The results show a statistically significant value (Table 7) of χ2 = 85.769 (p = 0.016),
which suggests the existance of a relationship between the categories. Compared to the
previous case, the total inertia of Φ2 = 0.746 with components C1-3 (75.7%) suggests better
interpretability than MPs and CFTs (69.3%).

Table 7. Quality of interpretation using MPs and RCFs.

Component Inertia Chi2 Sig. Proportion of Inertia Confidence Singular Value
Accounted Cumulative C1 C2 C3

1 0.245 0.329 0.329 0.064 0.044 −0.450
2 0.196 0.262 0.591 0.090 0.144
3 0.124 0.166 0.757 0.081
4 0.113 0.151 0.909
5 0.052 0.070 0.979
6 0.016 0.021 1.000

Total 0.746 85.769 0.016 1.000 1.000

Observing the inertia of the row profiles (Table 8), the selected components (dimen-
sions) show that {OM} provides the highest percentage of variation λOM = 0.127 (17%),
followed by {PM. CBM. PdM.} λPM.CBM.PdM = 0.116 (15.6%), and {FBM. PM.} λFBM.PM =
0.095 (12.7%). Looking at the Qual of the interpretation, it can be seen that for the suggested
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categories of row profiles, the selected components contributed greatly (Qual > 0.80) to the
inertia.

Table 8. Row profile inertia of MPs and RCFs.

MP Mass C1 C2 C3 λ
Correlation Contribution

C1 C2 C3 C1 C2 C3 Qual

CBM 0.113 −0.436 0.245 0.135 0.065 0.088 0.035 0.016 0.329 0.104 0.031 0.465
FBM 0.096 −0.085 −0.166 0.309 0.024 0.003 0.013 0.074 0.029 0.111 0.386 0.525

FBM. PM. 0.104 0.072 0.570 0.707 0.095 0.002 0.173 0.420 0.006 0.357 0.549 0.911
FBM. PM. CBM. 0.096 −0.400 0.157 −0.60 0.063 0.062 0.012 0.275 0.242 0.037 0.541 0.820
FBM. PM. OM. 0.061 0.760 0.476 −0.10 0.067 0.143 0.071 0.005 0.526 0.206 0.010 0.742

OM 0.035 0.259 −1.78 0.532 0.127 0.010 0.566 0.079 0.018 0.870 0.077 0.966
PdM 0.026 0.985 0.658 −0.22 0.045 0.103 0.058 0.010 0.558 0.249 0.027 0.834
PM 0.330 0.347 −0.177 −0.18 0.075 0.163 0.053 0.083 0.532 0.139 0.137 0.809

PM. CBM. 0.052 −0.296 −0.008 −0.15 0.040 0.019 0.000 0.010 0.114 0.000 0.030 0.145
PM. CBM. PdM. 0.078 −1.11 −0.077 −0.08 0.116 0.395 0.002 0.005 0.835 0.004 0.005 0.844

PM. DM. 0.009 −0.588 −0.615 0.569 0.028 0.012 0.017 0.023 0.106 0.116 0.099 0.321
Total 1.000 0.746 1.000 1.000 1.000

Looking at the inertia by individual components (Figure 10), {OM} seems not to be
associated with the previous points. Although {PM. CBM. PdM.} and {PdM} were closely
associated in the previous analysis, the points here repel each other on C1. The biplot
(Figure 10) provides significant insight without the explicit use of data.
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Figure 10. MP biplot of C1 and C2 components of the MP-RCF analysis.

The data (Table 9) suggest that within the dimensions C1-3, {AWCS} has the highest
inertia, λAWCS = 0.149, followed by {OST}, λAWCS = 0.136, and {LS}, λAWCS = 0.120. The
Qual metric suggests that AWCS {Air contamination. Water contamination. Seals.} contains
enough information for to be visualised (QualAWCS = 0.950).
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Table 9. Column profile inertia of MPs and RCFs.

MP Mass C1 C2 C3 Inertia
Correlation for Column Contribution

C1 C2 C3 C1 C2 C3 Qual

AWCS 0.070 0.548 −1.306 0.175 0.149 0.085 0.607 0.017 0.140 0.796 0.014 0.950
LS 0.226 −0.509 0.073 −0.415 0.120 0.239 0.006 0.313 0.489 0.010 0.324 0.823

LSOMM 0.235 −0.291 −0.272 0.200 0.067 0.081 0.089 0.076 0.299 0.261 0.141 0.701
OSL 0.183 0.227 0.533 0.472 0.115 0.038 0.265 0.328 0.082 0.451 0.354 0.887
OST 0.209 0.618 0.170 −0.351 0.136 0.325 0.031 0.207 0.584 0.044 0.188 0.817

OTOPAW 0.035 0.562 0.021 0.126 0.045 0.045 0.000 0.004 0.243 0.000 0.012 0.256
WFF 0.043 −1.024 0.110 0.395 0.114 0.186 0.003 0.055 0.401 0.005 0.060 0.466
Total 1.000 0.746 1.000 1.000 1.000

The graph (Figure 11) shows that C1 (the positive side) suggests that failures are
associated with contamination, while the left side of C1 (the negative side) is associated
with failures due to operator/maintenance mistakes. The results presented in the biplot
(Figure 12) suggest a high association between {OM} and {Air/Water contamination. Seals.}.
The positive sides of the C1-C2 components suggest an association among practices in
which failures are reported due to contamination, while the centre and negative sides report
a variety of failures.
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Considering an inertia of 75.7%, the representation shows that Qual > 0.70 contains
12/18 categories, while with the extension to the fourth component, all except {PM. DM.}
have Qual > 0.70. Thus, interpretation using only three components (75.7% inertia) was
sufficient. The first cluster (blue) on the dendrogram (Figure 13) had the most significant
association between the MPs and failures associated with {Leakage. Seals. Operator and
Maintenance Mistakes}, especially {FBM}. The second cluster (green) shows the smallest
distance between {FBM. PM. CBM.} and {Leakage. Seals.}. The third (red) cluster shows
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similarity between {FBM. PM.} and {Overload. Seals. Leakage.}. The fourth (purple)
cluster shows similarities among different applied MPs and failures related to overload
and temperature. Finally, the last cluster (yellow) shows similarity between {OM} and {Air
contamination. Water contamination. Seals.}.
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3.4. Clusters and Performance Metrics

The obtained clusters (MP-CFT in Table 10 and MP-RCF in Table 11) were bench-
marked against performance metrics, including both technical (i.e., MTTR, MTBF) and
sustainability-related (e.g., WOMM) metrics. Although there was no significant variation
among MTTR values with respect to clusters, the MTBF metric showed differences among
the metrics. Namely, in both cases, clusters 2, 3, and 4 outperformed the other clusters,
where the second cluster showed the best performance for the mean value of MTBF. Con-
sidering the WOMM metric, the results indicate that the second, third and fourth clusters
possessed lower average WOMM. Note: The cluster 0* (n = 21) includes the respondents
that were not clustered, and were left out of the analysis.

Table 10. MP-CFT clusters and performance metrics.

Metric MTTR MTBF WOMM
Cluster 0 * 1 2 3 4 5 0 * 1 2 3 4 5 0 * 1 2 3 4 5

Med 5 3 5.1 5 5 4 950 550 1950 1500 1650 945.5 26.3 40.7 22.7 23.4 9.6 30.3
Mean 5.1 4.1 5.3 5.2 4.7 4 1196 907.1 1558 1495 1616 1010.2 39.8 39.8 41.2 27.9 30.1 30.3
Stdev 2.3 2.7 1.5 3.1 1.8 1.1 706.6 673.6 1157.7 735.5 728.8 655.5 45.6 19.1 50.2 26.1 26.7 1.1
Min 1 2 3 2 2 3 200 350 150 100 250 450 2.22 16.1 2.5 1.25 7.2 29.4
Max 12 10 7.5 15 8 5 2650 2500 2950 3500 2500 1700 250 71.43 136.3 142.9 62.5 31.2

* Clusters that were left out of the analysis.

Table 11. MP-RCF clusters and performance metrics.

Metric MTTR MTBF WOMM
Cluster 0 * 1 2 3 4 5 0 * 1 2 3 4 5 0 * 1 2 3 4 5

Med 5 5 3 5.5 4 3 1250 950 1995.5 950 1575 1570.5 26 36.5 19.4 11.9 31.3 29.4
Mean 5 5.1 3.5 6.9 4.7 3 1290.8 1087.5 2023.5 1341.7 1418.7 1570.5 36.1 41.3 19.2 29.5 27.6 29.4
Stdev 2.8 2 1.3 3.3 2.6 0 710.5 805.6 1096.3 651.5 745.4 183.1 40.3 28.9 5.9 39.3 19.5 0.00
Min 1 2 2 3.5 1 3 150 150 850 950 100 1441 2.20 2.50 12.2 7.10 1.30 29.4
Max 15 10 5.3 12 12 3 2950 2500 3500 2500 2750 1700 250 129.4 26.8 108.3 71.4 29.4

* Clusters that were left out of the analysis.

3.5. Machine Learning Feature Importance

To select machine learning algorithms, we checked the normality of data using the
Shapiro–Wilk test. The test showed that the normality assumption was violated; thus, we
used non-parametric ML algorithms including RF (Random Forest), SVM (Support Vector
Machine), kNN (k-Neirest Neighbour) and DT (Decision Tree). The results of ML regression
analysis for response MPIs of MTTR (Table 12), MTBF (Table 13) and WOMM (Table 14)
are provided in the following. Additionally, the reason for selecting these non-parametric
regression algorithms is that they can be used with continuous and categorical predictors.
Finally, we used feature importance from the obtained results to allocate the most important
predictors.

The results show that RF outperformed the other models. The out-of-bag MSE did not
change significantly (Figure 14), and up to approximately 10 trees were enough to reduce
the discrepancy between training and testing. However, a significant error existed in all
cases due to the low prediction accuracy. The regression (Figure 14) showed significant
variation in the validation (predicted vs. observed values). Feature perturbations were
conducted to measure the mean decrease in accuracy, showing that MDS (Maintenance
Department Staff), NWEC (Nominal Working Energy Consumption), TTCOC (Time To
Complete Oil Change), MPPM, and FAP were the most essential features (Figure 14).
Conversely, the increase in node purity (Figure 14) showed that NWEC, MPPM, and TTOR
(Time To Oil Refilling) were the main contributors to the homogeneity of the output, i.e., the
reduction in variance. In addition, negative features such as CMS (Condition Monitoring
Sensor), TTCOC, and MA suggest noise and/or overfitting, calling into question their
suitability for modelling, since they do not seem to contribute positively to prediction.
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Table 12. Performance results of MTTR.

ML RF SVM kNN DT

MSE 3.412 1.009 4.846 877137.904
RMSE 1.847 1.004 2.201 936.556
MAE/MAD 1.314 0.627 1.694 767.94
R2 0.125 0.002 0.033 0.009

Table 13. Performance results of MTBF.

ML RF SVM kNN DT

MSE 463982.999 833283.033 648621.198 877137.904
RMSE 681.163 912.843 805.37 936.556
MAE/MAD 584.637 712.324 633.333 767.94
R2 0.304 0.059 0.156 0.058

Table 14. Performance results of WOMM.

ML RF SVM kNN DT

MSE 853.157 991.228 1560.16 979.015
RMSE 29.209 31.484 39.499 31.289
MAE/MAD 22.789 23.051 27.713 20.396
R2 0.222 0.03 0.02 0.056
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equipment age contributes significantly to the reduction of MTBF. Additionally, MPPM,
TTOR, TTCOC, MAP (Maintenance Analysis Program), and FRT (Filter Replacement Time)
are the most critical indicators of MTBF. This suggests that hydraulic fluid condition
significantly affects the MTBF of hydraulic machinery.
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Observing the sustainability metric of WOMM, it can be seen that MPPM, TTCOC,
NWEC, MDS, and FRT are the most impactful factors for fluid waste (Figure 16), with
respect to both the reduction of MSE and the decrease in variance. To better understand
this, we used the ranking of feature importance to establish essential features (Figure 17).
The ranking showed that the number of maintenance personnel per machine played a vital
role in hydraulic system maintenance, followed by time to oil refilling, the equipment size
measured by nominal working energy consumption, machinery age, filter replacement
time, etc. Surprisingly, although only 9.6% of the companies applied data analysis tools in
hydraulic machine maintenance, only slight improvements were noticeable considering the
output metrics. This is also for the case for the laboratory analysis of hydraulic oil, which
showed no significant impact on the output metrics.
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4. Discussion
4.1. Research Results from the Analysis of MPs and CFTs

The results show a high association between the investigated variables of MPs and
CFTs, χ2 = 165.021, with a p-value < 0.001. Looking at the categories of MPs, {PM} is
the most frequently applied MP, while among CFTs, it is suggested that {Hoses. Pipes.
Actuators. Pumps. Servo/Proportional valves.} is the most frequently reported category of
component failures.

The results obtained show that the first cluster, {CBM} and {Pipes. Actuators. Pumps.
DV (Servo/Proportional) valves.} with {Hoses. Pipes. Pumps. ICE/EM.}, suggests the poor
performance of MPs. Namely, filtering {CBM} using different items, it turns out that compa-
nies that report using {CBM} strictly had the lowest MTBFCBM = 835 h, and in that sense had
the worst performance when considering this metric. The results show that maintenance
activities behind {CBM} mostly included visual inspection (56%), while in up to 75% of the
cases in which condition monitoring instruments like PFT (Pressure/Flow/Temperature)
were used, they were not used for maintenance decision making. Considering data analysis,
the results show that only 7% of {CBM} respondents report using data analysis tools. This
also poses a question as to whether maintenance practitioners truly apply CBM and at
what level. The second (red) and third (green) clusters show mixed MPs and a variety of
reported failures, although with less severity and variation than in the first cluster. The
fourth (yellow) and fifth (purple) clusters show presumably better performance in terms of
reducing the severity of the failures of major components.

Taking a practical standpoint regarding the association between MPs and CFT using
CA-AHC analysis, the results suggest that advanced maintenance practices, such as CBM
and PdM, seem to result in a smaller variety of failures being reported, while at the same
time there is an increased frequency of sensor failures. This can be attributed to the fact
that sophisticated monitoring technology and instruments can avoid some serious failures.
On the other hand, when applying traditional practices, such as FBM and PM, stoppages
are primarily associated with failures associated with actuators and power units. This
can suggest poor maintenance skills and the lack of the competence required to prevent
this type of failure. The absence of such abilities leads to severe failures and a drop in
productivity. Overall, the use of CA-AHC analysis in our case proved compelling due to
its ability to transform categorical data into a feature subspace that can then be used for
extracting relevant predictors against MPIs.

4.2. Results from the Analysis of MPs and RCFs

The results show the existence of a relationship between MPs and RCFs, χ2 = 85.769
(p < 0.05). While {PM} was reported to be the most applied practice, {Leakage. Seals.
Operator and Maintenance personnel mistakes.} was the most reported category of RCF,
with leakage and seals being the most reported root causes of failure across categories.

The clusters obtained from the CA-AHC analysis suggest the following. The first (blue)
cluster (Figure 13) shows similarity mostly between {CBM}, {PM. CBM.}, and {FBM}, and
failures associated with {Leakage. Seals. Operator and Maintenance mistakes.} on one side,
while at higher distances among categories of the same cluster, {PM. CBM. PdM.} and {PM.
DM.} show an association with {Wear out. Fatigue.} of hydraulic components. Compared
to other items from the survey considering quantitative data, the highest value of MTBF
was indeed reported for {Wear out. Fatigue.}, where MTBF{Wear out. Fatigue} = 2080 h.

Looking at the qualitative items, 60% of cases show the utilisation of Pressure/Flow/
Temperature/Contamination sensors, suggesting that failures were avoided using an effec-
tive maintenance program. The second (green) cluster reports failures, mainly {Leakage.
Seals.}, and displays similarity with {FBM. PM. CBM.}. Looking at the analysis of MPs
and CFTs, these types of of practices show a small distance from {Hoses. Pipes. Pumps.
Sensors}, suggesting CM practice; however, failures associated with leakage/seals could
not be prevented. Unlike the previous cases, the third (red) and fourth (purple) clusters are
similar to the failures associated with overload. This also justifies the failures associated
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with temperature, since overload leads to the transformation of power into heat and its
subsequent dissipation. Finally, the last (yellow) cluster shows the similarity between {OM}
and {Air/Water contamination. Seals.}, suggesting that these failures are associated with
constant inspections and activities (e.g., filter replacements, oil refilling). Indeed, looking
at quantitative data, MTTR{AirWater cont.} = 6.13 h, which is the second-highest value (with
operator/maintenance mistakes being the highest), which suggests that the long time re-
quired to perform a repair leaves the system exposed to the environment. The time required
to complete an oil change was 3995 h on average, while usual practice and equipment
manufacturers suggest approximately 2000 h. Additionally, the activity of TTOR, which
is the application of usual maintenance activity to “refresh” the oil properties, is 191.7 h.
This practice of trying to compensate for the loss of fluid properties (e.g., viscosity) and,
consequently, system response by constantly adding fluid into the system is associated
with oxidation and particle/air contamination.

Taken together, several conclusions can be derived. Firstly, the component failures and
root causes of failure in hydraulic systems can be clustered into three categories: (1) Ran-
dom events—these typically include failures of components such as pipes and hoses. This
can also be said for failures associated with leakage and seals, since over 90% of companies
report these failures. (2) Non-random events—these typically include degradational events
under advanced maintenance practices. For instance, the failure of pumps and actuators
for which pressure, flow and temperature indicators can explain or indicate degradational
behaviour. Looking at RCF, non-random effects include failures associated with contami-
nation in which instruments (e.g., particle counters) can be implemented to monitor and
reduce the severity of wear. (3) Human-related events—the obtained evidence suggests a
lack of industrial maintenance personnel, especially with respect to advanced data analytics
and specialists in the domain of hydraulic system maintenance.

4.3. Feature Importance Considering Performance Metrics

The generated CA-AHC feature subspaces of the devised categories were used with
the RF algorithm to extract relevant predictors, i.e., features related to MPIs. From an
asset and machine perspective, equipment size (i.e., NWEC) and machine age seem to
be the most important predictors. Introducing the NWEC variable for measuring the
maintenance performance proved significant, and has not previously been reported in the
literature, to the best of the authors’ knowledge. From a maintenance perspective, the
number of maintenance personnel per machine, i.e., MPPM, has the greatest impact on
the prediction properties of RF regression overall. This is also a vital remark since, to the
best of the authors’ knowledge, no empirical evidence has been presented in the literature.
Considering maintenance activities, TTOR, FRT, TTCOC, and TTCOC_Criteria, are the
most essential features. Hence, considering the fact that fluid contamination is one of the
most common causes of failure, the constant refilling of hydraulic oil and frequent complete
oil changes in the system, presumably by overhaul, reduces the probability of failure,
increasing MTBF and, at the same time, reducing the MTTR of the hydraulic machinery.
From a technological perspective, LCMI (Lubricant Condition Monitoring Instruments)
is the most critical feature overall; however, the impact on MTTR is questionable, unlike
MTBF and WOMM, where it has a significant impact. Additionally, the CMS and LCML
(Lubricant Condition Monitoring Laboratory) analyses show poor or negative predictive
properties with respect to the performance metrics used in our analysis.

The allocated features that show a negative or poor contribution to the regression
model suggest that the existing maintenance of hydraulic systems shows low technological
and digital readiness levels. Namely, the fact that 45.2% of MDS consist only of operators
and technicians calls into question whether companies perceive maintenance as a “strategic
move”, or still see it as a “necessary evil”. Rhetorically, companies utilising advanced PdM
solutions have faced difficulties in managing their assets, and as a result have reported
a variety of failures. This, however, proved to be a business opportunity for companies
and maintenance experts willing to engage with and provide outsourced maintenance



Mathematics 2023, 11, 3816 26 of 30

services using in-house solutions, which is why many engage with MaaS (Maintenance as
a Service) concepts [61]. Additionally, the results show that 13.1% of companies outsource
their maintenance activities, while 50.4% rely on external experts or companies to perform
equipment failure analysis. Moreover, confounding statistics regarding the application of
data analysis show that only 9.6% of companies apply statistical or data analysis tools in
hydraulic machine maintenance, which is why no actual contribution to the prediction
properties was observed.

Important notice should be given to the ML algorithms used. Namely, considering that
non-parametric regression ML algorithms were mainly chosen, with the violation of nor-
mality (Shapiro–Wilk p value > 0.05) and their ability to handle mixed data (categorical and
continuous) being given as the rationale for their selection. However, other algorithms like
gradient boosting machines (XGBoost and LightGBM) or even some neural networks can
be used if the data are sufficient. Next, although we used RF feature importance to isolate
important predictors, in complex models, tools like SHAP (SHapley Additive exPlanations)
would also be of interest for explaining the performance outputs. Nevertheless, given
the constraints of our dataset, we limited our exploration of other powerful parametric
methods that might yield different insights when applied to different samples. This study
relied heavily on data obtained from a questionnaire-based survey, which might inherently
have some biases based on respondents applying day-to-day maintenance practices. Finally,
deep learning methods that require extensive amounts of data for training were not consid-
ered due to the limited size of our dataset. With a more extensive dataset, the exploration of
neural networks might provide additional insights through the benchmarking of existing
maintenance practices.

5. Conclusions

This paper presented an extensive and in-depth study of features affecting the mainte-
nance performance of companies utilising hydraulic machines. The study used empirical
evidence and data synthesised from a questionnaire-based survey disseminated throughout
the territory of the West-Balkan countries. Since extensive data were gathered, the study
used correspondence analysis in combination with agglomerative hierarchical clustering to
generate a feature subspace, after which components were used to identify the predictors
impacting maintenance performance metrics, such as MTBF, MTTR and WOMM. The
evidence shows that maintenance personnel, machine age, equipment size measured by
nominal working energy consumption level, filter replacement time and time required to
complete an oil change are the highest-ranked predictors, as established using the random
forest algorithm.

Although the obtained evidence represents a significant contribution to the body of
knowledge regarding hydraulic system maintenance, the study has limitations. Namely, the
obtained results include a variety of companies under different NACE classifications; thus,
the environmental conditions and working regimes can differ. Next, the results obtained
via non-parametric ML algorithms due to violation of normality need to be further verified
using a larger sample size. Additionally, further analysis needs to be conducted to verify
and validate the impact of features on operational performance.

In the future, we plan to conduct a study regarding the impact of maintenance fea-
tures on maintenance performance metrics, considering both categorical and numerical
data. Specifically, we will include measuring the impact of outsourced versus in-house
maintenance and the impact of data analysis tools in hydraulic machine maintenance. The
underlying reason for this is the obvious barrier between preventive and predictive mainte-
nance. The evidence also supports the need for more success in implementing advanced
maintenance practices in this domain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11183816/s1, File S1.

https://www.mdpi.com/article/10.3390/math11183816/s1
https://www.mdpi.com/article/10.3390/math11183816/s1


Mathematics 2023, 11, 3816 27 of 30

Author Contributions: Conceptualisation, M.O. and D.Š.; methodology, M.O. and D.Š.; formal
analysis, M.O.; investigation, M.O. and D.Š.; data curation, M.O. and D.Š.; writing—original draft
preparation, M.O. and D.Š.; writing—review and editing, M.O. and D.Š.; visualisation, M.O.; supervi-
sion, D.Š. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
A complete list of the abbreviations used in the manuscript is presented below.

Acron. Description Acron. Description

AHC Agglomerative Hierarchical Clustering MDM Maintenance Decision Making
AHP Analytical Hierarchical Process MDS Maintenance Department Staff
AI Artificial Intelligence ML Machine Learning
ANP Analytical Network Process MP Maintenance Practice
CA Correspondence Analysis MPI Maintenance Performance Indicators
CBM Condition-Based Maintenance MPM Maintenance Performance Metrics
CFT Component Failure Type MPPM Maintenance Personnel Per Machine
CM Corrective Monitoring MSE Mean Squared Error
CMMS Comput. Maintenance Management MSS Maintenance Strategy Selection
CMP Condition Monitoring Plan MTBF Mean Time Between Failures
CMS Condition Monitoring Sensors MTTR Mean Time To Repair
CON Construction NOM Number of Machines
DM Design-out Maintenance NWEC Nominal Working Energy Consum.
DT Decision Tree OEE Overall Equipment Effectiveness
FBM Failure-Based Maintenance PdM Predictive Maintenance
FRT Filter Replacement Time PM Preventive Maintenance
HMA Hydraulic Machinery Age RCF Root Causes of Failure
LCM Lubricant Condition Monitoring RF Random Forest
LCML LCM Laboratory RMSE Root Mean Squared Error
M&Q Mining and Quarrying SVM Support Vector Machine
MaaS Maintenance as a Service SVR Support Vector Regression
MAE Mean Absolute Error TTCOC Time To Complete Oil Change
MAN Manufacturing TTOR Time To Oil Refilling
MDA Multivariate Data Analysis WOMM Wasted Oil Monthly Machine

Appendix A. West-Balkan Survey Questionnaire

A list of the open-ended questions in the questionnaire. The full survey is in the
Supplementary Materials.

N Question Description

Q1 What are the characteristics of your company, considering:
Q1a The number of maintenance employees in your company?
Q1b The number of machines employing oil-hydraulic systems?
Q2 What are the characteristics of your maintenance department, considering:
Q2a The number of maintenance personnel employed?
Q2b The number of staff in the maintenance department?
Q3 Who performs diagnostics and prognostics on your hydraulic machinery?
Q4 What type of hydraulic machines are utilised (please name), what is the exact number you employ?
Q5 What are the average nominal pressures within your hydraulic systems?
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Q6 What are the average nominal flows within your hydraulic systems?
Q7 What types of hydraulic fluids are you utilising for your hydraulic machinery?
Q8 What types of maintenance policies do you conduct in your company on specific hydraulic machines?
Q9 For your hydraulic machines, what specific maintenance analysis programs are you conducting?
Q10 What monitoring sensors are you utilising?
Q11 What types of instrument are you using for the oil contamination analysis program?
Q11a Oil monitoring instruments?
Q11b If you are using external oil analysis, what type of analysis is used?
Q12 What data analysis tools are you employing for the analysis and maintenance decision making?
Q13 What is the average age of your hydraulic machinery?
Q14 What is the average Time Between Failures (TBF) of your hydraulic machinery?
Q15 What are your hydraulic machinery’s most common component failures?
Q16 What are the most common Root Causes of Failure (RCF) of your hydraulic machinery?
Q17 What is the average period for your filter replacement?
Q18 What is the specific hydraulic fluid viscosity grade that you use in your hydraulic machines?
Q19 How often do you refill the system with hydraulic fluid?
Q20 What is the average time required to complete an oil change, and based on what criteria do you conduct it?
Q20a Average time of complete oil change:
Q20b Criteria:
Q21 What are the characteristics of your hydraulic fluid usage and waste (respond in the following)?
Q21a Average machine hydraulic fluid filling:
Q21b Hydraulic fluid spent monthly (litres/month):
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Novi Sad, Serbia, 10–12 June 2021; Rackov, M., Mitrović, R., Čavić, M., Eds.; SpringerLink: Cham, Switzerland, 2022; pp. 617–625.

22. Wang, S.; Xiang, J. A Minimum Entropy Deconvolution-Enhanced Convolutional Neural Networks for Fault Diagnosis of Axial
Piston Pumps. Soft Comput. 2020, 24, 2983–2997. [CrossRef]

23. Cheng, X.; Chaw, J.K.; Goh, K.M.; Ting, T.T.; Sahrani, S.; Ahmad, M.N.; Abdul Kadir, R.; Ang, M.C. Systematic Literature Review
on Visual Analytics of Predictive Maintenance in the Manufacturing Industry. Sensors 2022, 22, 6321. [CrossRef]

24. Zhang, X.; Fujiwara, T.; Chandrasegaran, S.; Brundage, M.P.; Sexton, T.; Dima, A.; Ma, K.-L. A Visual Analytics Approach for the
Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data. In Proceedings of the 2021 IEEE 14th Pacific
Visualization Symposium (PacificVis), Tianjin, China, 19–21 April 2021; Volume 2021, pp. 196–205.

25. Navinchandran, M.; Sharp, M.E.; Brundage, M.P.; Sexton, T.B. Discovering Critical KPI Factors from Natural Language in
Maintenance Work Orders. J. Intell. Manuf. 2022, 33, 1859–1877. [CrossRef]

26. Lu, Y.; Garcia, R.; Hansen, B.; Gleicher, M.; Maciejewski, R. The State-of-the-Art in Predictive Visual Analytics. Comput. Graph.
Forum 2017, 36, 539–562. [CrossRef]

27. Zhang, L.; Stoffel, A.; Behrisch, M.; Mittelstadt, S.; Schreck, T.; Pompl, R.; Weber, S.; Last, H.; Keim, D. Visual Analytics for the Big
Data Era: A Comparative Review of State-of-the-Art Commercial Systems. In Proceedings of the 2012 IEEE Conference on Visual
Analytics Science and Technology (VAST), Seattle, WA, USA, 19 October 2012; pp. 173–182.

28. Komonen, K. A Cost Model of Industrial Maintenance for Profitability Analysis and Benchmarking. Int. J. Prod. Econ. 2002, 79,
15–31. [CrossRef]

29. Parida, A. Study and Analysis of Maintenance Performance Indicators (MPIs) for LKAB. J. Qual. Maint. Eng. 2007, 13, 325–337.
[CrossRef]

30. Qian, Y.; Li, T.; Li, L.; Du, K. A Framework for Identifying Maintenance Performance Metrics and Its Selection Methodology. In
Proceedings of the International Conference on Management and Engineering (CME), Shanghai, China, 24–25 May 2014; Destech
Publications, Inc.: Shanghai, China, 2014; pp. 813–824.

31. Åhrén, T.; Parida, A. Maintenance Performance Indicators (MPIs) for Benchmarking the Railway Infrastructure. Benchmarking An.
Int. J. 2009, 16, 247–258. [CrossRef]

32. Parida, A. Maintenance Performance Assessment (MPA) Framework for Engineering Asset. In Proceedings of the 2008 IEEE In-
ternational Conference on Industrial Engineering and Engineering Management, Singapore, 8–11 December 2008; pp. 1351–1354.

33. Kumar, U.; Galar, D.; Parida, A.; Stenström, C.; Berges, L. Maintenance Performance Metrics: A State-of-the-art Review. J. Qual.
Maint. Eng. 2013, 19, 233–277. [CrossRef]

34. Van Horenbeek, A.; Pintelon, L.; Muchiri, P. Maintenance Optimization Models and Criteria. Int. J. Syst. Assur. Eng. Manag. 2010,
1, 189–200. [CrossRef]

35. Van Horenbeek, A.; Pintelon, L. Development of a Maintenance Performance Measurement Framework—Using the Analytic
Network Process (ANP) for Maintenance Performance Indicator Selection. Omega 2014, 42, 33–46. [CrossRef]

36. Contri, P.; Kuzmina, I. An Overview of the Research by EC-JRC/IE on Enhancement of Maintenance Efficiency of Nuclear
Power Plants. In Proceedings of the ASME Pressure Vessels and Piping Conference, Prague, Czech Republic, 26–30 July 2009;
pp. 545–552.

37. Ighravwe, D.E.; Oke, S.A. A Fuzzy-Grey-Weighted Aggregate Sum Product Assessment Methodical Approach for Multi-Criteria
Analysis of Maintenance Performance Systems. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 961–973. [CrossRef]

38. Baidya, R.; Ghosh, S.K. Model for a Predictive Maintenance System Effectiveness Using the Analytical Hierarchy Process as
Analytical Tool. IFAC-Pap. 2015, 48, 1463–1468. [CrossRef]

39. Momc, V.; Bojovic, N.; Papic, V.; Vujanovic, D. Expert Systems with Applications Evaluation of Vehicle Fleet Maintenance
Management Indicators by Application of DEMATEL and ANP. Expert. Syst. Appl. 2012, 39, 10552–10563. [CrossRef]

40. Naji, M.A.; Mousrij, A. Maintenance Success Factors Identification Using the Fuzzy AHP. In Proceedings of the 2018 IEEE
International Conference on Technology Management, Operations and Decisions (ICTMOD), Marrakech, Morocco, 21–23
November 2018; pp. 107–112.

https://doi.org/10.1108/13552510610685084
https://doi.org/10.3390/math11081954
https://doi.org/10.1016/j.cie.2021.107267
https://doi.org/10.1016/j.compind.2020.103298
https://doi.org/10.1016/j.ress.2023.109333
https://doi.org/10.1007/s00500-019-04076-2
https://doi.org/10.3390/s22176321
https://doi.org/10.1007/s10845-021-01772-5
https://doi.org/10.1111/cgf.13210
https://doi.org/10.1016/S0925-5273(00)00187-0
https://doi.org/10.1108/13552510710829434
https://doi.org/10.1108/14635770910948240
https://doi.org/10.1108/JQME-05-2013-0029
https://doi.org/10.1007/s13198-011-0045-x
https://doi.org/10.1016/j.omega.2013.02.006
https://doi.org/10.1007/s13198-016-0554-8
https://doi.org/10.1016/j.ifacol.2015.06.293
https://doi.org/10.1016/j.eswa.2012.02.159


Mathematics 2023, 11, 3816 30 of 30

41. Gonçalves, C.D.F.; Dias, J.A.M.; Cruz-Machado, V.A. Decision Methodology for Maintenance KPI Selection: Based on ELECTRE
I. In Proceedings of the Eighth International Conference on Management Science and Engineering Management: Focused on
Computing and Engineering Management, Lisbon, Portugal, 25–27 July 2014; pp. 1001–1012.

42. Oliveira, M.; Lopes, I.; Rodrigues, C. Use of Maintenance Performance Indicators by Companies of the Industrial Hub of Manaus.
Procedia CIRP 2016, 52, 157–160. [CrossRef]

43. Gandhare, B.S.; Akarte, M.M.; Patil, P.P. Maintenance Performance Measurement—A Case of the Sugar Industry. J. Qual. Maint.
Eng. 2018, 24, 79–100. [CrossRef]

44. Upasani, K.; Bakshi, M.; Pandhare, V.; Lad, B.K. Distributed Maintenance Planning in Manufacturing Industries. Comput. Ind.
Eng. 2017, 108, 1–14. [CrossRef]

45. Carnero, M.C. Asymmetries in the Maintenance Performance of Spanish Industries before and after the Recession. Symmetry
2017, 9, 166. [CrossRef]

46. Sahoo, S. An Empirical Exploration of TQM, TPM and Their Integration from Indian Manufacturing Industry. J. Manuf. Technol.
Manag. 2018, 29, 1188–1210. [CrossRef]

47. Simões, J.M.; Gomes, C.F.; Yasin, M.M. Changing Role of Maintenance in Business Organisations: Measurement versus Strategic
Orientation. Int. J. Prod. Res. 2016, 54, 3329–3346. [CrossRef]

48. Erkoyuncu, J.A.; Khan, S.; Eiroa, A.L.; Butler, N.; Rushton, K.; Brocklebank, S. Perspectives on Trading Cost and Availability for
Corrective Maintenance at the Equipment Type Level. Reliab. Eng. Syst. Saf. 2017, 168, 53–69. [CrossRef]

49. Mahfoud, H.; Abdellah, E.B.; El Biyaali, A. Dependability-Based Maintenance Optimization in Healthcare Domain. J. Qual. Maint.
Eng. 2018, 24, 200–223. [CrossRef]

50. Rijsdijk, C.; Tinga, T. Observing the Effect of a Policy: A Maintenance Case. J. Qual. Maint. Eng. 2016, 22, 277–301. [CrossRef]
51. Seecharan, T.; Labib, A.; Jardine, A. Maintenance Strategies: Decision Making Grid vs Jack-Knife Diagram. J. Qual. Maint. Eng.

2018, 24, 61–78. [CrossRef]
52. Ylipää, T.; Skoogh, A.; Bokrantz, J.; Gopalakrishnan, M. Identification of Maintenance Improvement Potential Using OEE

Assessment. Int. J. Product. Perform. Manag. 2017, 66, 126–143. [CrossRef]
53. Sénéchal, O. Research Directions for Integrating the Triple Bottom Line in Maintenance Dashboards. J. Clean. Prod. 2017, 142,

331–342. [CrossRef]
54. Pires, S.P.; Sénéchal, O.; Loures, E.F.R.; Jimenez, J.F. An Approach to the Prioritization of Sustainable Maintenance Drivers in the

TBL Framework. IFAC-Papers 2016, 49, 150–155. [CrossRef]
55. Husson, F.; Houee-Bigot, M. Correspondence Analysis. Available online: https://husson.github.io/MOOC_GB/CA_course_

slides.pdf (accessed on 30 December 2022).
56. Husson, F.; Lê, S.; Pagès, J. Computer Science and Data Analysis Series: Exploratory Multivariate Analysis by Example Using R; CRC

Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2017; ISBN 9781138196346.
57. Le, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [CrossRef]
58. Nielsen, F. Hierarchical Clustering. In Introduction to HPC with MPI for Data Science; Undergraduate Topics in Computer Science;

Springer International Publishing: Cham, Switzerland, 2016; pp. 223–239, ISBN 978-3-319-21902-8.
59. Murtagh, F.; Contreras, P. Algorithms for Hierarchical Clustering: An Overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.

2012, 2, 86–97. [CrossRef]
60. Murtagh, F.; Contreras, P. Methods of Hierarchical Clustering. arXiv 2011, arXiv:1105.0121.
61. Chang, Y.-M.; Hsieh, C.-J.; Chang, K.-W.; Ringgaard, M.; Lin, C.-J. Training and Testing Low-Degree Polynomial Data Mappings

via Linear SVM. J. Mach. Learn. Res. 2010, 11, 1471–1490.
62. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
63. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.procir.2016.07.071
https://doi.org/10.1108/JQME-07-2016-0031
https://doi.org/10.1016/j.cie.2017.03.027
https://doi.org/10.3390/sym9080166
https://doi.org/10.1108/JMTM-03-2018-0075
https://doi.org/10.1080/00207543.2015.1106611
https://doi.org/10.1016/j.ress.2017.05.041
https://doi.org/10.1108/JQME-07-2016-0029
https://doi.org/10.1108/JQME-10-2014-0055
https://doi.org/10.1108/JQME-06-2016-0023
https://doi.org/10.1108/IJPPM-01-2016-0028
https://doi.org/10.1016/j.jclepro.2016.07.132
https://doi.org/10.1016/j.ifacol.2016.11.026
https://husson.github.io/MOOC_GB/CA_course_slides.pdf
https://husson.github.io/MOOC_GB/CA_course_slides.pdf
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.1002/widm.53
https://doi.org/10.1007/BF00116251
https://doi.org/10.1023/A:1010933404324

	Introduction 
	Methodology 
	Systematic Literature Review for Extraction of Relevant Performance Indicators 
	Study Design and Data Wrangling 
	Survey Design and Realisation 
	Survey Items and Data Extraction 
	Correspondence Analysis (CA) 
	Clustering CA Components Using Agglomerative Hierarchical Clustering (AHC) 
	Machine Learning Algorithms and Evaluation Metrics 

	Research Results 
	Survey Insights and Descriptions 
	Relationship between MPs and CFTs Using CA-AHC 
	Relationship between MPs and RCFs Using CA-AHC 
	Clusters and Performance Metrics 
	Machine Learning Feature Importance 

	Discussion 
	Research Results from the Analysis of MPs and CFTs 
	Results from the Analysis of MPs and RCFs 
	Feature Importance Considering Performance Metrics 

	Conclusions 
	Appendix A
	References

