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Abstract: In this paper, we consider the problem of discriminating among three different positively
skewed lifetime distributions, namely the generalized exponential distribution, the weighted expo-
nential distribution, and the Weibull distribution. All of these distributions have been used quite
effectively to analyze positively skewed lifetime data. We use the methods of the ratio of maxi-
mized likelihood, the minimum Kolmogorov distance, and the sequential probability ratio test to
discriminate among these three distributions. The probability of correct selection is considered for
each hypothesis based on several scenarios with Monte Carlo simulation. Real data applications are
studied to illustrate the effectiveness of these proposed methods.

Keywords: generalized exponential distribution; weighted exponential distribution; Weibull distribution;
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1. Introduction

The problem of testing whether some given data come from one of two or more distri-
butions is quite common in the statistical literature, see Atkinson [1,2], Chen [3], Chambers
and Cox [4], Cox [5,6], and Dyer [7]. Several methods have been used on the problem of
discriminating among different distributions, such as the ratio of maximized likelihood
(RML), the minimum Kolmogorov distance (MKD), and the sequential probability ratio test
(SPRT). In this paper, we discuss the methods of discriminating among the Weibull (WB)
distribution, the generalized exponential (GE) distribution, and the weighted exponential
(WE) distribution.

The WB distribution was introduced by Weibull [8] to analyze the skewed lifetime
data, and has been widely applied in reliability engineering, failure analysis, and radar
systems to model the dispersion of the received signal’s level produced by some types of
clutter. If x follows the WB distribution with the shape parameter β and scale parameter
ξ, respectively, then it has the cumulative distribution function (cdf) and the probability
density function (pdf) as follows

FWB(x; β, ξ) = 1− e−(ξx)β
, x > 0, and β, ξ > 0,

and
fWB(x; β, ξ) = βξβxβ−1e−(ξx)β

, x > 0, and β, ξ > 0,

respectively, and is denoted by x ∼WB(β, ξ).
The GE distribution was proposed and studied quite extensively by Gupta and

Kundu [9], and has the cdf
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FGE(x; γ, θ) = (1− e−θx)γ, x > 0,

and the pdf
fGE(x; γ, θ) = γθ(1− e−θx)γ−1e−θx, x > 0,

where γ > 0, θ > 0 are shape and scale parameters, respectively, and it is denoted by
x ∼ GE(γ, θ). Moreover, the pdf of the distribution GE(γ, θ) strictly decreases when γ ≤ 1,
and has a unimodal shape for γ > 1. It is clear that the pdf of the GE(γ, θ) distribution is
always right-skewed and can be used quite effectively to analyze skewed data sets.

Recently, Gupta and Kundu [10] introduced a new class of the WE distribution as a
generalization of the standard exponential distribution, which has the pdf

fWE(x; η, λ) =
η + 1

η
λe−λx(1− e−ηλx), x > 0,

and the cdf
FWE(x; η, λ) = 1 +

1
η

e−λ(η+1)x − η + 1
η

e−λx, x > 0,

where η > 0, λ > 0 are the shape and scale parameters, respectively, and it is denoted
as x ∼ WE(η, λ). Furthermore, they showed that the WE distribution possesses some
good properties and can be used as a good fit for survival time data compared to other
popular distributions such as the gamma, the WB, or the GE distribution. For example,
Makhdoom [11] investigated the statistical inference for reliability and stress strength for
the WE distribution. Dey et al. [12] investigated various properties and methods of the
estimation of the WE distribution. Tian and Yang [13] studied a change-point problem of
the WE distribution based on the likelihood ratio test, modified information criterion, and
Schwarz information criterion.

As we know, the WE distribution can be used as an alternative to the WB or GE
distributions, and these distributions have several interesting properties. For certain values
of shape and scale parameters, it is interesting to note that the shapes of these three
distributions of cdfs and pdfs are very similar, but the hazard functions are completely
different, which can be seen in Figures 1 and 2. These suggest that even if the distributions
are very close in a sense of a certain distributional characteristic, they may be quite different
concerning other characteristics.

Figure 1. The pdfs, cdfs, and hazard functions of GE(3.92, 1.85), WE(0.58, 1.68), and WB(1.80, 0.96).
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Figure 2. The pdfs, cdfs, and hazard functions of GE(2.02, 0.95), WE(1.63, 0.88), and WB(1.43, 0.62).

In fact, many scholars have studied the discrimination related to the WB distribution
or the GE distribution. Gupta and Kundu [14] discussed the closeness of the gamma and the
GE distributions using the RML and the MKD methods. Gupta and Kundu [15] considered
the RML and the MKD methods to study the discriminating problem of the WB and the
GE distributions. Pakyari [16] presented diagnostic tools based on the RML and the MKD
methods to discriminate between the GE, the geometric extreme exponential, and the WB
models. Raqab [17] considered the RML procedure to discriminate between the generalized
Rayleigh and the WB distributions. Elsherpieny et al. [18] studied the RML procedure to
discriminate between the gamma and the log-logistic distributions in the case of progressive
type-II censoring. Ahmad et al. [19] used the MKD method to discriminate between the
generalized Rayleigh and the WB distributions. Raqab et al. [20] studied the discriminating
problem of the WB, the log-normal, and the log-logistic distributions based on the RML
and the MKD methods. Vaidyanathan and Varghese [21] applied the RML and the MKD
methods to discriminate between the exponential and the Lindley distributions based on
a given random sample of observations, and this has been widely used in the fields of
biology and engineering. Recently, Paul et al. [22] developed the SPRT methodology to
discriminate between any two of the log-normal, the WB, and the log-logistic distributions
as well as to discriminate among these distributions, which allowed the use of a less than
average sample size without sacrificing the probability of correct selection (PCS).

As far as we know, statisticians have not yet studied the problem of discriminating
among these distributions. Thus, it is significant to study this. The paper is organized as
follows. Three different methods to discriminate among the GE, WE, and WB distributions
are investigated in Section 2. Simulation studies are considered in Section 3. The real data
set is analyzed in Section 4. Some concluding remarks are presented in Section 5.

2. Methodology

In this section, we study three different methods, namely the RML, the MKD, and the
SPRT, to discriminate among the GE, the WE, and the WB distributions.

As a random sample, x1, x2, · · · , xn is supposed to belong to one of the WE, GE, or
WB distributions. Our interest lies in determining the distribution from which the random
sample is observed. This problem can be formulated as the hypothesis-testing problem in
the following

H1 : x1, x2, · · · ∼WE(η, λ) vs. H2 : x1, x2, · · · ∼ GE(γ, θ) vs. H3 : x1, x2, · · · ∼WB(β, ξ).

Under H1, the log-likelihood function is given by

logLWE = n
[

log
(
(η + 1)λ

η

)
− λX

]
+

n

∑
i=1

log(1− e−ηλxi ), (1)
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where X =
1
n

n
∑

i=1
xi.

The MLEs of η̂ and λ̂ are the solutions of the following equations after taking the first
derivatives of (1) for η and λ,

∂logLWE
∂η

=
n

η(η + 1)
−

n

∑
i=1

λxie−ηλxi

1− e−ηλxi
= 0,

∂logLWE
∂λ

=
n
λ
− nX +

n

∑
i=1

ηxie−ηλxi

1− e−ηλxi
= 0.

(2)

Under H2, the log-likelihood function is given by

logLGE = n[log(γθ)− θX] + (γ− 1)
n

∑
i=1

log(1− e−θxi ). (3)

Similarly, the MLEs of γ̂ and θ̂ can be obtained by solving the following equations,

∂logLGE
∂γ

=
n
γ
−

n

∑
i=1

log(1− e−θxi ) = 0,

∂logLGE
∂θ

=
n
θ
− nX + (γ− 1)

n

∑
i=1

xie−θxi

1− e−θxi
= 0.

(4)

Under H3, the log-likelihood function is given by

logLWB = n log β + nβ log ξ + (β− 1)
n

∑
i=1

log xi −
n

∑
i=1

(ξxi)
β. (5)

Then, the MLEs of ξ̂ and β̂ can be obtained by solving the following equations,

∂logLWB
∂ξ

=
nβ

ξ
− βξβ−1

n

∑
i=1

xi
β = 0,

∂logLWB
∂β

=
n
β
+ n log ξ +

n

∑
i=1

log xi −
n

∑
i=1

(ξxi)
β log(ξxi) = 0.

(6)

2.1. The Ratio of Maximized Likelihood Method

Cox [5,6] first proposed the RML test when discriminating between two separate
models and derived the asymptotic distribution of the RML statistic. In the following, we
introduce the procedure of the method of the RML.

The RMLs between two separate models can be defined as follows:

L1 =
LWE(η̂, λ̂)

LGE(γ̂, θ̂)
, L2 =

LWB(β̂, ξ̂)

LWE(η̂, λ̂)
, L3 =

LWB(β̂, ξ̂)

LGE(γ̂, θ̂)
, (7)

where η̂, λ̂, γ̂, θ̂,β̂, and ξ̂ are calculated by (2), (4), and (6), respectively.
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The logarithm of the above RMLs can be written as

T1
n = log L1

= log LWE(η̂, λ̂)− log LGE(γ̂, θ̂)

= n

[
log

(
(η̂ + 1)λ̂

η̂γ̂θ̂

)
− (λ̂− θ̂)X

]
+

n

∑
i=1

log

(
1− e−η̂λ̂xi

(1− e−θ̂xi )γ̂−1

)
,

T2
n = log L2

= log LWB(β̂, ξ̂)− log LWE(η̂, λ̂)

= n

[
log

(
β̂η̂ξ̂ β̂

(η̂ + 1)λ̂

)
+ λ̂X

]
+

n

∑
i=1

log

 xβ̂−1
i

1− e−η̂λ̂xi

− n

∑
i=1

(ξ̂xi)
β̂,

T3
n = log L3

= log LWB(β̂, ξ̂)− log LGE(γ̂, θ̂)

= n

[
log

(
β̂ξ̂ β̂

γ̂θ̂

)
+ θ̂X

]
+

n

∑
i=1

log

 xβ̂−1
i

(1− e−θ̂xi )γ̂−1

− n

∑
i=1

(ξ̂xi)
β̂.

(8)

Now we choose the WE distribution if T1
n > 0, T2

n < 0, the GE distribution if T1
n < 0,

T3
n < 0, and the WB distribution if T2

n > 0, T3
n > 0.

2.2. The Minimum Kolmogorov Distance Method

The MKD test was originally employed to test the hypothesis that a completely
random sample has come from a fully specified continuous distribution. The procedure
of the MKD method is given as follows. Denote F̂WE(η̂, λ̂), F̂GE(γ̂, θ̂), and F̂WB(β̂, ξ̂) as
the cdfs calculated at the MLEs of the parameters of the WE, GE, and WB distributions,
respectively, and let F̃(x) be the empirical distribution function calculated from the data.
The KDs associated with the three models are given as, respectively,

KDWE = sup
−∞<x<+∞

|F̂WE(x, η̂, λ̂)− F̃(x)|,

KDGE = sup
−∞<x<+∞

|F̂GE(x, γ̂, θ̂)− F̃(x)|,

KDWB = sup
−∞<x<+∞

|F̂WB(x, β̂, ξ̂)− F̃(x)|.

(9)

The model with the minimum distance is then chosen as the winning model.

2.3. The SPRT Method

The SPRT analysis, first introduced by Wald [23], was originally developed as a more
effective method of quality control during the Second World War. In this section, an SPRT
procedure for discriminating the WE, the GE, and the WB is described.

As the data are observed sequentially, the goal is to identify the correct model by testing
multiple hypotheses. The proposed discriminating method is based on the logarithm of the
RMLs defined as:
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Λ1
n = log

(
LGE(xi; γ̂n, θ̂n)

LWE(xi; η̂n, λ̂n)

)
= log LGE(xi; γ̂n, θ̂n)− log LWE(xi; η̂n, λ̂n)

= n

[
log

(
η̂nγ̂n θ̂n

(η̂n + 1)λ̂n

)
− (θ̂n − λ̂n)X

]
+

n

∑
i=1

log

(
(1− e−θ̂n xi )γ̂n−1

1− e−η̂n λ̂n xi

)
,

Λ2
n = log

(
LWE(xi; η̂n, λ̂n)

LWB(xi; β̂n, ξ̂n)

)
= log LWE(xi; η̂n, λ̂n)− log LWB(xi; β̂n, ξ̂n)

= n

log

 (η̂n + 1)λ̂n

β̂nη̂n ξ̂
β̂n
n

− λ̂nX

+
n

∑
i=1

log

1− e−η̂n λ̂n xi

xβ̂n−1
i

+
n

∑
i=1

(ξ̂nxi)
β̂n ,

Λ3
n = log

(
LGE(xi; γ̂n, θ̂n)

LWB(xi; β̂n, ξ̂n)

)
= log LGE(xi; γ̂n, θ̂n)− log LWB(xi; β̂n, ξ̂n)

= n

log

 γ̂n θ̂n

β̂n ξ̂
β̂n
n

− θ̂nX

+
n

∑
i=1

log

 (1− e−θ̂n xi )γ̂n−1

xβ̂n−1
i

+
n

∑
i=1

(ξ̂nxi)
β̂n ,

(10)

where η̂n, λ̂n, γ̂n, θ̂n, β̂n, and ξ̂n are MLEs of η, λ, γ, θ, β, and ξ, respectively.
A natural idea for multi-hypothesis testing is to select the hypothesis having the maxi-

mum likelihood. The SPRT procedure proposed here is based on Λ1
n, Λ2

n, and Λ3
n as defined

in (10), respectively. The appropriate selection of stopping boundaries in (10) is crucial
for ensuring a high PCS and savings in the sample size. Here, we choose PCS ≥ 1− α,
where α ∈ (0, 1) is the fixed level, and the SPRT stopping boundaries are bj = ln( α

2 ) = −aj,
for j = 1, 2, 3. Let k (1 < k ≤ n) be a prefixed pilot sample size. The purely sequential
procedure is discussed as follows:

Stage 1: Draw samples x1, x2, · · · , xk and compute Λ1
k , Λ2

k , and Λ3
k . Stop sampling if

{Λ1
k ≥ a1 and Λ3

k ≥ a3} or {Λ1
k ≤ b1 and Λ2

k ≥ a2} or {Λ2
k ≤ b2 and Λ3

k ≤ b3}. Otherwise,
proceed to the next stage.

Stage 2: Draw a new observation xk+1 independent of x1, x2, · · · , xk and compute Λ1
k+1,

Λ2
k+2, and Λ3

k+3. Stop sampling if {Λ1
k+1 ≥ a1 and Λ3

k+1 ≥ a3} or {Λ1
k+1 ≤ b1 andΛ2

k+1 ≥ a2}
or {Λ2

k+1 ≤ b2 and Λ3
k+1 ≤ b3}. Otherwise, proceed to draw one new observation. We con-

tinue sampling one observation at a time until

t = in f
n≥k

{
{Λ1

n ≥ a1 ∩Λ3
n ≥ a3} ∪ {Λ1

n ≤ b1 ∩Λ2
n ≥ a2} ∪ {Λ2

n ≤ b2 ∩Λ3
n ≤ b3}

}
. (11)

We select the GE distribution if {Λ1
t ≥ a1 and Λ3

t ≥ a3}, the WE distribution if
{Λ1

t ≤ b1 and Λ2
t ≥ a2}, and the WB distribution if {Λ2

t ≤ b2 and Λ3
t ≤ b3}. In other

words, the stopping time T = min{τ1, τ2, τ3} where

τ1 = in f
n≥k
{Λ1

n ≥ a1, Λ3
n ≥ a3}, τ2 = in f

n≥k
{Λ1

n ≤ b1, Λ2
n ≥ a2}, τ3 = in f

n≥k
{Λ2

n ≤ b2, Λ3
n ≤ b3}.

2.4. Algorithm

According to the above procedure, the algorithm for each method can be summarized
as follows.

(i) Generating a sample with sample size n follows the null hypothesis.
(ii) Using the sample to compute the corresponding MLE of the distribution follows H1,

H2, H3.
(iii) Compute the statistic of each method by using Equations (8), (9), and (10), respectively.
(iv) Select the correct distribution according to the criteria from each procedure.
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3. Numerical Results

In this section, we performed some simulation experiments to compare different meth-
ods to discriminate among these three distributions. We used the RML and MKD methods
first, then considered the SPRT procedure. All the computations were performed using R
version 4.1.1 program [24]. To compare the performances of the different methods for differ-
ent sample sizes and for different parameter values, we generated samples from the three
different distributions and computed the PCS for each method based on 1000 replications.

We used the Monte Carlo simulation to generate data sets from each of the null
distributions. In this case, we considered different sample sizes, namely n = 20, 40, 60, 80,
100, 200, and 500. For each of these combinations of the sample size, the shape parameter,
and the scale parameter, we estimated the parameters of the three models by the MLEs
procedure as described in (2), (4) and (6). To compare the performances of the different
methods for different sample sizes and for different parameter values, we generated
samples from the three different distributions and computed the PCS for each method
based on 1000 replications. The details are explained below.

In the RML procedure, the RML statistic was calculated and the winning model was
determined by the decision rule in Section 2.1. We repeated this procedure 1000 times and
calculated the proportion of times the null distribution was chosen as the corresponding
PCS. Moreover, we chose the values of the shape parameters that were greater than 1, and
which had unimodal shapes of pdfs and had the significance of discrimination. For simplic-
ity, we selected the same values of the scale parameters. Meanwhile, the corresponding
PCSs for each hypothesis were calculated based on the procedure in Section 2.1.

I: The data come from the WE distribution. In this case, we set η = 5.0, 5.2, 5.4, 5.8
and λ = 0.5, 1.0, 1.5. We compute T1

n and T2
n as defined in (8) and the PCSRML

WE can be
written as follows,

PCSRML
WE = P(T1

n > 0, T2
n < 0| data from the WE distribution).

II: The data come from the GE distribution. We set γ = 2.5, 2.7, 2.9, 3.3 and θ = 0.5, 1, 1.5,
and the PCSRML

GE can be obtained as follows,

PCSRML
GE = P(T1

n < 0, T3
n < 0| data from the GE distribution).

III: The data come from the WB distribution. We set the parameters β = 2.5, 2.7, 2.9, 3.3
and ξ = 0.5, 1, 1.5, and the PCSRML

WB can be calculated as follows,

PCSRML
WB = P(T2

n > 0, T3
n > 0| data from the WB distribution).

Similarly, as in Pakyari [16] and Raqab et al. [20], we found the MLEs of parameters for
the GE, WE, and WB distributions. The empirical distribution function was also calculated
for each of the generated data sets. The model with the minimum distance was then chosen
as the winning model. This procedure was repeated 1000 times and the corresponding PCS
based on the MKD procedure, as described in Section 2.2, can be written as follows:

PCSMKD
WE = P(KDWE < KDGE, KDWB > KDWE| data from the WE distribution),

PCSMKD
GE = P(KDWE > KDGE, KDWB > KDGE| data from the GE distribution),

PCSMKD
WB = P(KDWB < KDWE, KDWB < KDWE| data from the WB distribution).

Tables 1–3 give the PCS under the RML and the MKD procedures when the data
come from different distributions. In Table 1, the PCSRML is higher than PCSMKD, but only
slightly higher in some cases, which shows that the difference in the PCS choice between the
two methods is not very large. At the same time, when the sample size is bigger than 100,
the PCS can only reach 70%, which means it may take a certain sample size to distinguish
among the three distributions when the data are generated from the WE distribution. In
Table 2, the values of PCS for these two methods are improved as the shape parameter and
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scale parameter increase. However, the value of PCSRML is significantly higher than that of
the PCSMKD. In Table 3, the value of PCS is close to 1 when the sample sizes exceed 200. In
all three tables, we find that the PCS increases as the sample size and parameters improve,
and the RML method is superior to the MKD procedure.

Table 1. The PCSs based on the Monte Carlo simulation when using data from the WE distribution.

(η, λ) PCS 20 40 60 80 100 200 500

(5, 0.5) RML 0.5072 0.5956 0.6446 0.6700 0.6976 0.7527 0.8570
MKD 0.3992 0.4562 0.5012 0.5563 0.6112 0.7002 0.7882

(5.2, 0.5) RML 0.5216 0.6102 0.6522 0.6862 0.6990 0.7642 0.8552
MKD 0.4002 0.4577 0.5032 0.5575 0.6155 0.7156 0.7889

(5.4, 0.5) RML 0.5288 0.6136 0.6544 0.6844 0.7114 0.7654 0.8628
MKD 0.4132 0.4585 0.5045 0.5584 0.6225 0.7226 0.7995

(5.8, 0.5) RML 0.5364 0.6264 0.6630 0.6950 0.7152 0.7770 0.8702
MKD 0.4235 0.4598 0.5112 0.5598 0.6310 0.7250 0.8002

(5, 1) RML 0.5152 0.6066 0.6486 0.6760 0.6966 0.7582 0.8588
MKD 0.4005 0.4587 0.5022 0.5589 0.6136 0.7125 0.7902

(5.2, 1) RML 0.5236 0.6192 0.6540 0.6872 0.6996 0.7666 0.8564
MKD 0.4050 0.4592 0.5044 0.5591 0.6162 0.7163 0.7905

(5.4, 1) RML 0.5340 0.6216 0.6594 0.6896 0.7132 0.7692 0.8666
MKD 0.4138 0.4598 0.5199 0.5589 0.6255 0.7320 0.8002

(5.8, 1) RML 0.5386 0.6348 0.6740 0.6972 0.7158 0.7802 0.8744
MKD 0.4244 0.4608 0.5220 0.5623 0.6332 0.7365 0.8115

(5, 1.5) RML 0.5176 0.6072 0.6584 0.6856 0.7030 0.7602 0.8596
MKD 0.4010 0.4599 0.5056 0.5623 0.6188 0.7223 0.7956

(5.2, 1.5) RML 0.5312 0.6224 0.6562 0.6918 0.7094 0.7690 0.8654
MKD 0.4112 0.4602 0.5089 0.5633 0.6220 0.7228 0.7998

(5.4, 1.5) RML 0.5422 0.6240 0.6622 0.6914 0.7164 0.7728 0.8710
MKD 0.4189 0.4625 0.5232 0.5662 0.6305 0.7335 0.8156

(5.8, 1.5) RML 0.5454 0.6358 0.6694 0.7006 0.7188 0.7830 0.8774
MKD 0.4256 0.4668 0.5238 0.5671 0.6354 0.7399 0.8226

Table 2. The PCSs based on the Monte Carlo simulation when using data from the GE distribution.

(γ, θ) PCS 20 40 60 80 100 200 500

(2.5, 0.5) RML 0.4690 0.5460 0.6124 0.6612 0.7070 0.8168 0.9482
MKD 0.3746 0.4156 0.4620 0.5042 0.5218 0.6410 0.8226

(2.7, 0.5) RML 0.5056 0.6176 0.6698 0.7276 0.7706 0.8874 0.9808
MKD 0.4098 0.4758 0.5040 0.5554 0.5934 0.7382 0.9170

(2.9, 0.5) RML 0.5560 0.6578 0.7252 0.7774 0.8094 0.9200 0.9866
MKD 0.4116 0.4889 0.5051 0.5561 0.5955 0.7392 0.9188

(3.3, 0.5) RML 0.5930 0.7102 0.7728 0.8180 0.8512 0.9370 0.9932
MKD 0.4225 0.4902 0.5066 0.5575 0.5965 0.7399 0.9192

(2.5, 1) RML 0.4862 0.5596 0.6182 0.6648 0.7082 0.8192 0.9504
MKD 0.3756 0.4174 0.4648 0.5052 0.5240 0.6468 0.8304

(2.7, 1) RML 0.5138 0.6184 0.6706 0.7334 0.7788 0.8878 0.9812
MKD 0.4105 0.4768 0.5063 0.5559 0.5996 0.7388 0.9220

(2.9, 1) RML 0.5576 0.6620 0.7276 0.7812 0.8112 0.9212 0.9896
MKD 0.4220 0.4992 0.5065 0.5602 0.5998 0.7401 0.9232

(3.3, 1) RML 0.6006 0.7136 0.7766 0.8186 0.8532 0.9376 0.9936
MKD 0.4236 0.4933 0.5074 0.5678 0.6002 0.7411 0.9235

(2.5, 1.5) RML 0.4894 0.5604 0.6224 0.6696 0.7188 0.8254 0.9510
MKD 0.3804 0.4238 0.4690 0.5070 0.5260 0.6514 0.8322

(2.7, 1.5) RML 0.5154 0.6278 0.6790 0.7354 0.7830 0.8892 0.9842
MKD 0.4188 0.4777 0.5077 0.5613 0.6005 0.7416 0.9235

(2.9, 1.5) RML 0.5592 0.6716 0.7326 0.7848 0.8128 0.9238 0.9910
MKD 0.4222 0.5009 0.5112 0.5622 0.6015 0.7554 0.9245

(3.3, 1.5) RML 0.6098 0.7208 0.7820 0.8246 0.8536 0.9398 0.9954
MKD 0.4288 0.4955 0.5142 0.5688 0.6116 0.7623 0.9255
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Table 3. The PCSs based on the Monte Carlo simulation when using data from the WB distribution.

(γ, θ) PCS 20 40 60 80 100 200 500

(2.5, 0.5) RML 0.7356 0.8264 0.8894 0.9264 0.9458 0.9888 1
MKD 0.4326 0.6158 0.7206 0.7882 0.8324 0.9418 0.9956

(2.7, 0.5) RML 0.7660 0.8600 0.9058 0.9368 0.9532 0.9944 1
MKD 0.4628 0.6406 0.7564 0.8106 0.8590 0.9576 0.9978

(2.9, 0.5) RML 0.7698 0.8642 0.9214 0.9452 0.9682 0.9954 1
MKD 0.4816 0.6566 0.7652 0.8250 0.8688 0.9630 0.9990

(3.3, 0.5) RML 0.7946 0.8850 0.9348 0.9634 0.9782 0.9984 1
MKD 0.5260 0.6880 0.8044 0.8604 0.9074 0.9782 0.9996

(2.5, 1) RML 0.7406 0.8284 0.8968 0.9294 0.9480 0.9914 1
MKD 0.4450 0.6214 0.7232 0.7912 0.8416 0.9442 0.9958

(2.7, 1) RML 0.7628 0.8610 0.9084 0.9396 0.9588 0.9948 1
MKD 0.4633 0.6423 0.7612 0.8226 0.8599 0.9662 0.9981

(2.9, 1) RML 0.7746 0.8680 0.9228 0.9462 0.9696 0.9966 1
MKD 0.4822 0.6589 0.7668 0.8288 0.8696 0.9676 0.9995

(3.3, 1) RML 0.7996 0.8868 0.9350 0.9664 0.9784 0.9986 1
MKD 0.5311 0.6885 0.8123 0.8698 0.9122 0.9881 0.9998

(2.5, 1.5) RML 0.7468 0.8456 0.8990 0.9302 0.9522 0.9922 1
MKD 0.4466 0.6234 0.7252 0.7930 0.8426 0.9464 0.9970

(2.7, 1.5) RML 0.7672 0.8694 0.9088 0.9442 0.9604 0.9954 1
MKD 0.4665 0.6466 0.7655 0.8239 0.8623 0.9702 0.9985

(2.9, 1.5) RML 0.7778 0.8768 0.9266 0.9520 0.9714 0.9974 1
MKD 0.4836 0.6612 0.7670 0.8295 0.8702 0.9702 0.9998

(3.3, 1.5) RML 0.8002 0.8912 0.9384 0.9678 0.9804 0.9992 1
MKD 0.5326 0.6892 0.8133 0.8706 0.9222 0.9905 1

Next, in the SPRT procedure, we computed Λ1
t , Λ2

t , and Λ3
t as defined in (10) and then

found the best-fitting distribution based on the criterion given in Section 2.3. We considered
the SPRT procedure for some prefixed values of α = 0.1, 0.2. Meanwhile, we set k = 10
fixed sample sizes here and repeated the purely sequential procedure 1000 times. Using the
same procedures as Paul et al. [22], the PCSs are obtained in the following,

PCSSPRT
WE = P(Λ1

t ≤ b1, Λ2
t ≥ a2| data from the WE distribution),

PCSSPRT
GE = P(Λ1

t ≥ a1, Λ3
t ≥ a3| data from the GE distribution),

PCSSPRT
WB = P(Λ2

t ≤ b2, Λ3
t ≤ b3| data from the WB distribution).

Tables 4–6 compare the performances of the fixed-sample procedure; here we pick the
RML procedure to discriminate among these three distributions with the SPRT procedure.
E(t) and nRML denote the estimated expected sample size for the SPRT procedure and the
sample size of the RML procedure. nRML is chosen such that PCSRML is approximately
equal to PCSSPRT without sacrificing the PCS. The last columns of these tables report the
savings in the average (expected) sample sizes as nRML−E(t)

nRML
× 100%.

Table 4. Comparing the method of RML discrimination and the SPRT procedure when using data
from the WE distribution.

True
Distribution

Boundaries
|bj| = aj = | ln ( α

2 )|
PCSSPRT PCSRML E(t) nRML

Savings
%

WE (5, 0.5) 2.9957 0.9662 0.9605 521.33 800 34.83
2.3026 0.9009 0.9025 483.66 700 30.91

WE (5.2, 0.5) 2.9957 0.9447 0.9436 506.66 750 32.45
2.3026 0.9118 0.9156 452.22 660 34.63

WE (5.4, 0.5) 2.9957 0.9502 0.9500 485.99 690 29.57
2.3026 0.9100 0.9164 421.20 610 30.95

WE (5.8, 0.5) 2.9957 0.9409 0.9438 458.66 640 28.33
2.3026 0.9009 0.9066 396.88 560 29.13
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Table 5. Comparing the method of RML discrimination and the SPRT procedure when using data
from the GE distribution.

True
Distribution

Boundaries
|bj| = aj = | ln ( α

2 )| PCSSPRT PCSRML E(t) nRML Savings %

GE (2.5, 0.5) 2.9957 0.9420 0.9446 452.22 780 42.02
2.3026 0.9002 0.9056 411.32 660 37.68

GE (2.7, 0.5) 2.9957 0.9500 0.9588 422.60 710 40.48
2.3026 0.9118 0.9156 395.66 620 36.18

GE (2.9, 0.5) 2.9957 0.9444 0.9494 400.22 650 38.43
2.3026 0.9103 0.9111 378.60 580 34.72

GE (3.3, 0.5) 2.9957 0.9599 0.9556 385.89 600 35.69
2.3026 0.9101 0.9119 346.22 550 37.05

Table 6. Comparing the method of RML discrimination and the SPRT procedure when using data
from the WB distribution.

True
Distribution

Boundaries
|bj| = aj = | ln ( α

2 )| PCSSPRT PCSRML E(t) nRML Savings %

WB (2.5, 0.5) 2.9957 0.9433 0.9450 243.22 500 51.36
2.3026 0.9006 0.9063 205.12 380 46.02

WB (2.7, 0.5) 2.9957 0.9336 0.9380 228.62 450 49.20
2.3026 0.9112 0.9156 186.23 340 45.23

WB (2.9, 0.5) 2.9957 0.9503 0.9551 206.88 410 49.54
2.3026 0.9050 0.9066 206.88 320 35.35

WB (3.3, 0.5) 2.9957 0.9333 0.9368 206.88 380 45.56
2.3026 0.9034 0.9067 126.33 290 56.44

From Tables 4–6, it is clear that as α increases, the value of nRML and E(t) decrease.
With approximately equal PCSs, the SPRT methods require a much lower expected sample
size than that of the corresponding RML procedure. Tables 4–6 illustrate that the SPRT
procedure requires fewer observations to draw the same conclusion than the the fixed-
sample procedure.

4. Data Analysis

In this section, we analyze a real data set and use the above methods to discriminate
the WE, the GE and the WB distributions.

4.1. Malignant Melanoma Data

This data set is available in Andersen et al. [25] and R package “timereg” (see, Scheike
and Zhang [26]), and contains the survival times (in years) of 205 patients after surgery
for malignant melanoma (skin cancer) between the years 1962 and 1977 collected at the
University Hospital of Odense, Denmark, by K.T. Drzewiecki. The data set can also be
found in Appendix A.

We analyzed the data set based on the RML, the MKD, and the SPRT methods, and the
results are summarized in Table 7. For the SPRT procedure, we set aj = 2.3026, bj = −2.3026,
and j = 1, 2, 3. From the table, we can find that T2

n = 23.4740 > 0 and T3
n = 16.8645 > 0,

which means the WB distribution is selected. Similarly, the MKDs for these three distri-
butions are 0.1700, 0.1813, and 0.1127, respectively. Therefore, the MKD criterion also
suggests choosing the WB model for this data set. Next, Λ2

t = −2.3319 < −2.3026 and
Λ3

t = −2.3102 < −2.3026, which illustrates that the SPRT procedure also supports this fact
in this case. However, it is remarkable that the average sample size E(t) is only 106, which
is much less than nF = 205, giving 48.29% savings in the average sample size.
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Table 7. Summary of the RML, the MKD, and the SPRT procedures and the goodness of fit test of the
malignant melanoma data.

Model GE WE WB

shape parameters’ estimation γ̂ = 2.3371 η̂ = 2.1321 β̂ = 1.8895
scale parameters’ estimation θ̂ = 0.2712 λ̂ = 0.2152 ξ̂ = 0.1521

T1
n −6.6095

T2
n 23.4740

T3
n 16.8645

Λ1
t 2.1162

Λ2
t −2.3319

Λ3
t −2.3102

AIC 1081.2700 1094.4870 1047.5400
BIC 1087.9160 1101.1330 1054.1860

MKD 0.1700 0.1813 0.1127

Figure 3 depicts the histogram of the malignant melanoma data, and pdfs of the WE,
the GE, and the WB fitted models. From the fitted density functions, it appears that the WB
distribution provides a better fit than the WE and the GE distributions in this case. Andersen
et al. [25] suggested using a WB model for this data set and Paul et al. [22] used SPRT criteria
to choose the WB distribution, which all confirm the result we obtained above.

Figure 3. Histogram of the malignant melanoma data sets and the density functions of the fitted GE,
WE, and WB models on the left, and estimated cdfs for the data set of the malignant melanoma on
the right.

4.2. Daily Ozone Data

The second data set records the daily measurements of ozone concentration in the
atmosphere of New York City from May to September 1973; for details, see Nadarajah [27].
The data are given in Appendix A.

In Table 8, we obtain the results by applying the RML, MKD, and SPRT methods. We
first consider the RML criterion to analyze these real data. Since T1

n = 0.4501 > 0 and
T2

n = −1.6644 < 0, we can say that the WE model fits best. Next, the MKDs between the
empirical distribution function and the fitted GE, WE, and WB distribution functions are
0.0846, 0.0564 and 0.0900, respectively. Therefore, the MKD criterion also suggest choosing
the WE model for this data set. The RML and the MKD criteria all lead to the same
conclusion. Finally, we use the SPRT procedure with boundaries aj = 2.3026, bj = −2.3026,
and j = 1, 2, 3. Then, Λ1

t = −2.3088 < −2.3026 and Λ2
t = 2.3112 > 2.3026, which mean that

we still prefer the WE distribution rather than the GE and WB distributions. Moreover, the
average sample size E(t) is about 93, which is less than nF=116, giving 19.83% savings in
the average sample size.
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Table 8. Summary of the RML, the MKD, the SPRT procedures, and the goodness of fit test of the
daily ozone data.

Model GE WE WB

shape parameters’
estimation γ̂ = 1.7960 η̂ = 9.4201 β̂ = 1.3402

scale parameters’ estimation θ̂ = 0.0337 λ = 0.0205 ξ̂ = 0.0217

T1
n 0.4501

T2
n −1.6644

T3
n −1.2143

Λ1
t −2.3088

Λ2
t 2.3112

Λ3
t 2.0036

AIC 1086.7920 1085.8920 1089.2210
BIC 1092.2990 1091.3990 1094.7280

MKD 0.0846 0.0564 0.0900

The histogram in Figure 4 indicates that a positively skewed distribution may fit the
data well. We provide the histogram of data set 2 and the pdfs of the GE, WE, and WB
fitted distributions in Figure 4. From Figure 4, it appears that the WE distribution provides
a better fit than the GE and the WB distributions in this case. Finally, we also conduct the
goodness of fit test on the daily ozone data set, and the results are shown in Table 8. It is
found that the WE distribution fits best.

Figure 4. Histogram of the daily ozone data set and the density functions of the fitted GE, WE, and
WB models on the left, and estimated cdfs for the data set of daily ozone on the right.

5. Conclusions

In this paper, we consider the problem of discriminating among the WE, the GE, and
the WB distributions using three different methods. Simulation studies are conducted for
the various shapes and scales of parameters, and the performance of the RML, MKD, and
SPRT methods are analyzed and compared. We compute their corresponding values of PCS
based on the Monte Carlo simulation for different sceneries. Through simulation studies,
we find that the RML method is superior to the MKD method in distinguishing these three
distributions under the fixed sample size. At the same time, without losing the values
of PCS, we compare the RML method with the SPRT procedure and find that the SPRT
method provides savings on the sample size. The results for the application show that the
SPRT requires fewer observations to obtain the same PCS than the existing fitting test with
the RML and the MKD.
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Appendix A

Appendix A.1. Malignant Melanoma Data

0.0274, 0.0822, 0.0959, 0.2712, 0.5068, 0.5589, 0.5753, 0.6356, 0.6356, 0.7644, 0.8082,
0.9726, 1.0575, 1.1671, 1.2849, 1.3507, 1.4493, 1.7014, 1.7233, 1.8055, 1.8274, 1.9671, 2.0603,
2.1342, 2.1726, 2.2384, 2.2630, 2.2822, 2.3507, 2.3808, 2.3890, 2.6493, 2.6767, 2.6904, 2.8521,
2.8904, 2.9096, 2.9452, 3.1671, 3.3644, 3.4301, 3.4822, 3.5945, 3.9096, 3.9315, 4.1068, 4.1260,
4.1315, 4.1370, 4.1425, 4.1534, 4.1781, 4.2247, 4.2411, 4.2658, 4.2740, 4.2822, 4.3397, 4.3973,
4.4411, 4.4575, 4.4767, 4.4959, 4.4959, 4.5151, 4.5260, 4.5315, 4.5315, 4.5671, 4.5973, 4.6164,
4.6301, 4.6849, 4.6849, 4.7288, 4.7808, 4.8274, 4.8740, 4.8959, 4.8959, 4.9123, 4.9425, 4.9644,
5.0301, 5.0384, 5.0384, 5.0795, 5.0849, 5.0959, 5.1068, 5.2027, 5.2438, 5.2575, 5.2603, 5.2795,
5.2959, 5.3205, 5.3562, 5.3589, 5.3644, 5.3781, 5.3973, 5.4932, 5.4986, 5.5096, 5.5452, 5.5562,
5.5836, 5.6329, 5.6411, 5.6466, 5.6493, 5.6849, 5.7123, 5.7589, 5.7616, 5.7644, 5.7753, 5.7863,
5.8904, 5.9068, 5.9315, 6.0521, 6.1014, 6.1014, 6.1808, 6.2027, 6.4082, 6.4685, 6.5397, 6.5425,
6.5836, 6.6466, 6.6466, 6.6603, 6.7397, 6.7589, 6.8274, 6.8301, 6.9068, 6.9644, 7.0110, 7.0274,
7.0411, 7.2877, 7.3041, 7.3315, 7.5014, 7.6219, 7.6356, 8.1753, 8.3068, 8.3288, 8.3342, 8.4027,
8.4356, 8.4959, 8.6137, 8.6356, 8.6411, 8.7123, 8.7178, 8.7260, 8.7644, 8.8438, 8.8466, 8.9808,
9.0329, 9.1178, 9.1233, 9.1452, 9.2685, 9.2712, 9.2740, 9.2822, 9.3205, 9.4274, 9.4740, 9.4767,
9.4767, 9.5233, 9.6521, 10.0466, 10.1233, 10.1233, 10.3452, 10.3452, 10.4932, 10.5644, 10.6082,
10.7096, 10.8712, 10.9616, 11.2411, 11.2849, 11.2986, 11.5260, 11.8082, 12.0274, 12.2712,
12.3068, 12.7890, 12.7890, 13.4959, 15.2466.

Appendix A.2. Daily Ozone Data

41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34, 6, 30, 11, 1, 11, 4, 32, 23, 45, 115, 37, 29,
71, 39, 23, 21, 37, 20, 12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35, 61, 79, 63, 16, 80,
108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 28, 65, 22, 59, 23, 31, 44, 21, 9,
45, 168, 73, 76, 118, 84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13, 46, 18, 13, 24,
16, 13, 23, 36, 7, 14, 30, 14 ,18, 20.

Appendix B

# the RML procedure
for (i in 1:p)
{ logWE<-function(theta){

beta=theta[1]
lambda=theta[2]

h=n*log(beta+1)-n*log(beta)+n*log(lambda)-lambda*sum(x)+sum(log(1-exp(-beta*lambda*x)))
return(-h) }

result1=optim(par=c(1,1),fn=logWE,control=list(maxit=1000),hessian = FALSE)
logGE <- function(theta){

gamma=theta[1]
alpha=theta[2]

h=n*log(gamma)+n*log(alpha)+(gamma-1)*sum(log(1-exp(-alpha*x)))-alpha*sum(x)
return(h) }
result2=maxLik(logLik=logGE, star=c(1,1),method=‘‘BFGS’’)
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logWB<-function(theta){
eta=theta[1]
delta=theta[2]

h=n*log(eta)+n*eta*log(delta)+(eta-1)*sum(log(x))-sum((delta*x)$^$eta)
return(h) }
result3=maxLik(logLik = logWB, start =c(1,1),method=‘‘BFGS’’)
LWE=n*log(result1$par[1]+1)-n*log(result1$par[1])+n*log(result1$par[2])-result1$par[2]*sum(x)+

sum(log(1-exp(-result1$par[1]*result1$par[2]*x)))
LGE=n*log(result2$estimate[1])+n*log(result2$estimate[2])+(result2$estimate[1]-1)*sum(log(1-exp

(-result2$estimate[2]*x)))-result2$estimate[2]*sum(x)
LWB=n*log(result3$estimate[1])+n*result3$estimate[1]*log(result3$estimate[2])+(result3$estimate

[1]-1)*sum(log(x))-sum((result3$estimate[2]*x)^(result3$estimate[1])
if((LWE-LGE)>0 & (LWE-LWB)>0){

li=1 }
else{ li=0 }
qff=rbind(qff,li)}

# the MKD procedure
for(i in 1:p)
{ logWE<-function(theta){

beta=theta[1]
lambda=theta[2]

h=n*log(beta+1)-n*log(beta)+n*log(lambda)-lambda*sum(x)+sum(log(1-exp(-beta*lambda*x)))
return(h) }

result1=maxLik(logLik = logWE, start =c(1,1),method=‘‘SANN’’)
x1=sort(x)
FWE=1+(1/result1$estimate[1])*exp(-result1$estimate[2]*(result1$estimate[1]+1)*x1)

-((result1$estimate[1]+1)/result1$estimate[1])*exp(-result1$estimate[2]*x1)
fn=ecdf(x1)
WEKD=max(abs(FWE-fn(x1)))
logGE<-function(theta){

gamma=theta[1]
alpha=theta[2]

h=n*log(gamma)+n*log(alpha)+(gamma-1)*sum(log(1-exp(-alpha*x)))-alpha*sum(x)
return(h) }
result2=maxLik(logLik = logGE, start =c(1,1),method=‘‘BFGS’’)
FGE=(1-exp(-result2$estimate[2]*x1))^(result2$estimate[1])
GEKD=max(abs(FGE-fn(x1)))
logWB<-function(theta){

eta=theta[1]
delta=theta[2]

h3=n*log(eta)+n*eta*log(delta)+(eta-1)*sum(log(x))-sum((delta*x)^eta)
return(h3) }
result3=maxLik(logLik = logWB, start =c(1,1),method=‘‘BFGS’’)
FWB=1-exp(-(result3$estimate[2]*x1)^(result3$estimate[1]))
WBKD=max(abs(FWB-fn(x1)))
if((GEKD-WEKD)>0 & (WBKD-WEKD)>0){ li=1}
else{ li=0 }
qff=rbind(qff,li)}

# the SPRT procedure
for (i in 1:p)
{ while (b1<=S1 & S1<=a1 & b1<=S2 & S2<=a1 & b1<=S3 & S3<=a1 & k<=n){

x <- x1[1:k]
logWE<-function(theta){

beta=theta[1]
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lambda=theta[2]
h=k*log(beta+1)-k*log(beta)+k*log(lambda)-lambda*sum(x)+sum(log(1-exp(-beta*lambda*x)))
return(-h)}

result1=optim(par=c(1,1),fn=logWE,control = list(maxit=1000),hessian = FALSE)
logGE <- function(theta){

gamma=theta[1]
alpha=theta[2]

h=k*log(gamma)+k*log(alpha)+(gamma-1)*sum(log(1-exp(-alpha*x)))-alpha*sum(x)
return(h) }
result2=maxLik(logLik = logGE, start =c(1,1),method=‘‘SANN’’)
logWB<-function(theta){

eta=theta[1]
delta=theta[2]

h=k*log(eta)+k*eta*log(delta)+(eta-1)*sum(log(x))-sum((delta*x)^eta)
return(h) }
result3=maxLik(logLik = logWB, start =c(1,1),method=‘‘SANN’’)

s1<-function(x)
{ P<-log(((result1$par[1]+1)/result1$par[1])*result1$par[2]*exp(-result1$par[2]*x)*

(1-exp(-result1$par[1]*result1$par[2]*x)))
return(P) }

s2<-function(x)
{ K<-log(result2$estimate[1]*result2$estimate[2]*((1-exp(-result2$estimate[2]*x))^

(result2$estimate[1]-1))*exp(-result2$estimate[2]*x))
return(K) }

s3<-function(x)
{ Q<-log(result3$estimate[1]*(result3$estimate[2]^(result3$estimate[1]))*(x^

(result3$estimate[1]-1))*exp(-(result3$estimate[2]*x)^result3$estimate[1]))
return(Q) }

P=s1(x)
K=s2(x)
Q=s3(x)
S1=sum(K-P)
S2=sum(P-Q)
S3=sum(K-Q)
k<-k+1 }

if(S1>=a1 & S3>=a1){ li=1 }
else{ li=0 }
qff=rbind(qff,li)
N=rbind(N,k)}
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