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Abstract: Most existing data synthesis methods are designed to tackle problems with dataset im-
balance, data anonymization, and an insufficient sample size. There is a lack of effective synthesis
methods in cases where the actual datasets have a limited number of data points but a large number
of features and unknown noise. Thus, in this paper we propose a data synthesis method named
Adaptive Subspace Interpolation for Data Synthesis (ASIDS). The idea is to divide the original data
feature space into several subspaces with an equal number of data points, and then perform interpo-
lation on the data points in the adjacent subspaces. This method can adaptively adjust the sample
size of the synthetic dataset that contains unknown noise, and the generated sample data typically
contain minimal errors. Moreover, it adjusts the feature composition of the data points, which can
significantly reduce the proportion of the data points with large fitting errors. Furthermore, the
hyperparameters of this method have an intuitive interpretation and usually require little calibration.
Analysis results obtained using simulated original data and benchmark original datasets demonstrate
that ASIDS is a robust and stable method for data synthesis.

Keywords: data synthesis; unknown noise; interpolation; sample optimization; robust and stable

MSC: 62-11; 68T09

1. Introduction

Synthetic data present an effective solution to the challenges of inadequate or low-
quality samples, particularly in the era of big data. The use of data synthesis methods to
generate synthetic data provides a cost-effective and efficient alternative to collecting and
labeling large amounts of real-world data. Furthermore, these methods can address privacy
concerns associated with real-world data, making it safer to share and analyze [1]. Recently,
there has been a surge in the use of synthetic data in machine learning, with various
synthetic methods being developed [2,3].

Representative data synthesis methods can be classified into three categories. The first
category entails techniques such as interpolation, extrapolation, and other methods [4] that
generate additional data points representative of the underlying distribution. These data
synthesis methods can extract more information from the dataset, thereby enhancing model
generalization. For image data, deep-learning-based methods such as VAE and GAN can
also be used to generate new data [5,6]. These methods are useful for improving the quality
of the dataset and model generalization. The second category is meant to address the issue
of dataset imbalance, such as with SMOTE [7] and some of its enhanced versions [8–10].
These methods can synthesize minority class samples to balance the dataset and improve
the model’s performance. Finally, data sharing and research require sensitive data privacy
protection. Synthetic data can help protect sensitive information while still enabling data
sharing and research. Normally, we can add random noise to protect original data, like
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in differential privacy methods [11], generating synthetic data for sharing and research
purposes. Overall, these methods help optimize the representation and use of data in
various applications.

For some actual tasks, original data often contain a multitude of features and unknown
noise [12]. Since the synthetic method involves generating new data based on existing data,
the quality of the new points depends on the quality and quantity of the original data. If the
quality of the original data is poor or the quantity is insufficient, then the synthetic data
may have limitations in terms of quality [13]. However, there is a lack of effective synthetic
methods for datasets with a restricted size and complex noise that can expand the size of
the dataset.

Based on the purpose of improving the quality and quantity of the dataset, and moti-
vated by piecewise linear interpolation and spline interpolation, we propose a robust and
stable data synthesis method named Adaptive Subspace Interpolation for Data Synthesis
(ASIDS), which aims to adaptively adjust the sample size and structure of the original
dataset containing unknown noise. The idea is to divide the original feature space into
several subspaces with an equal number of samples, and then perform linear interpolation
for the samples in the adjacent subspaces. This method achieves sample optimization via
two aspects. First, it can adaptively adjust the size of the dataset, and the expanded data
typically contain minimal errors. Second, it adjusts the structure of the samples, which
can significantly reduce the proportion of samples with large errors, thereby minimizing
the impact of the noise in model generalization. Compared with other methods, ASIDS is
particularly suitable for data containing unknown noise. Its main purpose is to expand the
sample size and optimize the sample structure to uncover more hidden information in the
data. Also, the samples synthesized by ASIDS tend to have smaller errors.

The rest of this paper is organized as follows: The existing interpolation research is
reviewed in Section 2. Section 3 details the concept of the proposed ASIDS method and
provides proof of the effectiveness of this method. The experimental results are presented
and analyzed in Section 4. Finally, we conclude this paper in Section 5.

2. Related Work

Traditional interpolation methods are based on the function values of known data
points for extrapolation and prediction. For a given dataset, there are generally two cases.
In the case of two known data points and interpolation in between, the interpolation
method can be selected based on distance, such as in nearest neighbor interpolation [14].
If it is assumed that the unknown point between these two data points is consistent with the
straight line between them, a linear function, such as linear interpolation or piecewise linear
interpolation [15,16], can be used to fit and interpolate. For interpolation among multiple
given points, a commonly used method is to predict the value of the unknown point by
constructing a high-degree polynomial based on the given points, such as is performed
with Lagrange interpolation or Newton interpolation [17,18]. However, with an increase in
the number of data points and the degree of the polynomial, there is a risk of overfitting
and numerical instability (Runge’s phenomenon) [19]. Another solution is to construct a
global smooth function by fitting a low-degree polynomial in a local region. In comparison
to high-degree polynomial interpolation methods, this method has better smoothness
and numerical stability, such as is seen in spline interpolation [20]. Nevertheless, as it is
necessary to fit multiple local low-degree polynomials, this method can lead to relatively
high computational complexity.

When expanding the sample size using interpolation methods, the selection of node
positions and quantities has a significant impact on the accuracy and stability of the interpo-
lation results. Typically, equidistant nodes [21] are used for interpolation position selection,
which means the nodes are equally spaced within the interpolation interval. Chebyshev
nodes [22] are selected within the interpolation interval to satisfy certain conditions for
better fitting of the function. In addition, the choice of the number of interpolations can
lead to instability of the data and insufficient validation accuracy. One way to determine
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the appropriate number of interpolations is by comparing the fitting degree of the model
trained under different interpolation numbers with the original data [23], but this may lead
to overfitting and the model having a poor generalization ability.

3. Proposed Method

In this section, we will explain the proposed ASIDS method in detail. ASIDS consists
of two algorithms: K-Space and K-Match. To clearly illustrate the proposed method, we will
first provide an overview of ASIDS and then introduce the specific algorithms involved.

3.1. Overview

ASIDS is mainly based on linear interpolation to increase the size and improve the
quality of the original dataset. The idea is to divide the original feature space into several
subspaces with an equal number of samples, and then perform linear interpolation for the
samples in the adjacent subspaces. This method requires two hyperparameters (k and η) in
advance. Parameter k is the number of samples existing in each feature subspace, while η
is the number of equidistant nodes interpolated per unit distance in the linear interpolation
of the samples. This proposed method is illustrated in Figure 1.

Figure 1. Overview of the proposed approach for ASIDS. (a) The dataset contains multiple noisy data
points, and the true functional relationship between x and y is f(·). (b) In the first step, we use the
K-Space algorithm to perform unsupervised clustering on the dataset and divide the original feature
space into several subspaces. (c) Interpolation matching of data points between adjacent subspaces
is performed using the K-Match algorithm, and data points with the same color belong to the same
class to be interpolated. (d) Piecewise linear interpolation is performed on data points under different
classes, where equidistant data points are inserted onto lines of different colors in adjacent subspaces.

The dataset D = {xi, yi}n
i=1 is given and is assumed to be contaminated with unknown

noise, where xi ∈ X = Rp and yi ∈ Y = R. Assuming ẏi = f (ẋi), where ẋi is the actual
value of xi, ẏi is the actual value of yi, and f (·) is a continuous function, then it can be taken
to represent the real relationship between xi and y. Consider the model:

ẏi + εi,y = f (ẋi + εi,x) + εi, (1)

where εi,y is the noise in ẏi, εi,x is the noise in ẋi, and εi represents the error term.
Expression (1) can be rewritten as

yi = f (xi) + εi. (2)
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Let x0 = {x1
0, . . . , xp

0}, where xj
0 = in f {xj

i}
n
i=1 for ∀j = 1, . . . , p, and call x0 the sample

minimum point.
Given the hyperparameter k, we provide an unsupervised clustering method called

K-Space. As is shown in Figure 1b, the space can be partitioned into n/k subspaces,
each containing k samples; i.e., X = ∪n/k

s=1Xs, Xi ∩ Xj = ∅, i, j = 1, 2, . . . , n
k , and i 6= j.

The datasets corresponding to different subspaces are defined with D = ∪n/k
s=1Ds,

Ds = {(xs
i , ys

i )}k
i=1, and xs

i ∈ Xs. For two adjacent subspaces, since f (·) is a continu-
ous function, we assume that it can be approximated as a linear function g(·), and then
Equation (2) can be transformed into

yi = g(xi) + εi + ε′i , (3)

where ε′i is the linear fitting error term. When the distance between two adjacent subspaces
approaches zero and the measurements of the subspaces tend to be zero, then ε′i → 0 is
obtained. Next, we will perform sample interpolation between adjacent subspaces.

We need to calculate the centers of each cluster, as follows:

xs =
1
k ∑

xs
i∈Ds

xs
i . (4)

To achieve ε′i → 0, we need to ensure that the interpolation is performed between
clusters that are as close in distance as possible. For {Ds}n/k

s=1, we define D(1), whose cluster
center has the minimum distance to the sample minimum point x0, and define D(d), whose
cluster center has the minimum distance to the center of D(d−1), D(d−1) 6= D(1), . . . , D(d−1),
and d > 1.

D(1) = argmin
Ds∈D

dist(x0, xs), (5)

D(d) = argmin
{Ds∈D},Ds 6=D(1),...,D(d−1)

dist(x(d−1)
0 , xs), (6)

where x(d−1) is the center of D(d−1). Interpolation is performed on {D(d)}n/k
d=1 sequentially

according to the order of the d values, and interpolation is carried out only between adjacent
subspaces (i.e., interpolate between D(1) and D(2), between D(2) and D(3), and so on).

When performing linear interpolation between adjacent subspaces, we should pair
the k samples from the first subspace with an equal number of samples from the second
subspace. The interpolation rules between adjacent subspaces are as follows:

1. Linear interpolation can only be performed between two samples belonging to differ-
ent adjacent subspace sets.

2. Interpolation must be performed for each sample.
3. Participation of each sample point is restricted to a single interpolation instance.

The number of matching schemes is k!. As is shown in Figure 1c, we provide a
matching method called K-Match. Supposing ε′i → 0, then this method can select a

good-performing matching scheme of {(x(d)i , y(d)i ), (x(d+1)
i , y(d+1)

i )}k
i=1 from k!.

Assuming x and y are continuous variables, and given another hyperparameter η, then
the number of samples inserted using the linear interpolation method between D(d) and

D(d+1) is
k
∑

i=1
bη · dist(x(d)i , x(d+1)

i )c. Taking (x(d)i , y(d)i ) ∈ D(d) and (x(d+1)
i , y(d+1)

i ) ∈ D(d+1)

as an example, then {(x(m,i)
(d,d+1), y(m,i)

(d,d+1))}
bη·dist(x(d)i ,x(d+1)

i )c
m=1 is the set of inserted samples,

and the linear interpolation formula is defined as

x(m,i)
(d,d+1) = x(d)i + m ·

x(d+1)
i − x(d)i

bη · dist(x(d)i , x(d+1)
i )c+ 1

, (7)
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y(m,i)
(d,d+1) = y(d)i + m ·

y(d+1)
i − y(d)i

bη · dist(y(d)i , y(d+1)
i )c+ 1

. (8)

After ASIDS processing, the original dataset will be optimized. The main steps of the
ASIDS algorithm are summarized in Algorithm 1.

Algorithm 1: ASIDS.
Input: Dataset D = {(xi, yi}n

i=1; hyperparameters k and η
Output: Optimized dataset D′

1 Perform unsupervised clustering using K-Space to obtain D = {Ds}n/k
s=1, where

Ds = {xs
i , ys

i }k
i=1

2 Calculate cluster centers of each cluster: {xs}n/k
s=1

3 Obtain {D(d)}d=1n/k based on Equations (5) and (6)
4 for d = 1, . . . , n

k − 1 do
5 Match samples between D(d) and D(d+1) using K-Match to obtain

{(x(d)i , y(d)i ), (x(d+1)
i , y(d+1)

i )}
6 for i = 1, . . . , k do

7 Synthesize new samples {(x(m,i)
(d,d+1), y(m,i)

(d,d+1))}
bη·dist(x(d)i ,x(d+1)

i )c
m=1 using

Equations (7) and (8)

8 D′ ← {(x(m,i)
(d,d+1), y(m,i)

(d,d+1))}
bη·dist(x(d)i ,x(d+1)

i )c
m=1

9 end
10 end

The assumptions of ASIDS are as follows:

1. f (·) is a continuous function.
2. The linear fitting error is ε′i → 0.
3. x and y are continuous variables.

3.2. K-Space

The implementation of ASIDS requires an unsupervised clustering method to partition
the feature space into multiple subspaces, each containing k samples. Based on this,
we propose the K-Space clustering method. The clustering method has the following
performance parameters:

1. Each subspace contains an equal number of samples, i.e., D = ∪n/k
s=1Ds, Ds = {(xs

i , ys
i )}k

i=1;
2. Each sample belongs to only one subset, i.e., Di ∩ Dj = ∅, i 6= j.

Maintaining continuity and similarity between adjacent subspaces is essential for
synthesizing data via multiple linear interpolations in ASIDS. Our objective is to minimize
the linear fitting error ε′i , which helps to satisfy ASIDS assumption 2 as much as possible.

To determine the sample set Ds for subspace Xs, it is necessary to determine the first
sample xs

1 in Ds.
xs

1 = argmin
x:x∈D,x/∈D1,...,Ds−1

dist(x, xs−1), (9)

where s = 1, . . . , n
k , xs−1 is the cluster center of Ds−1, and x0 = x0. We define Ds = {xs

1}
and determine xs

d as follows:

xs
d = argmin

x:x∈D,x/∈D1,...,Ds

dist(x, xs), (10)

where d = 2, . . . , k. xs
d is obtained and Ds ← Ds ∪ {xs

d} is updated.
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The main steps of the K-Space algorithm are summarized in Algorithm 2.

Algorithm 2: K-Space.
Input: Dataset D = {(xi, yi)}n

i=1; hyperparameter k
Output: {Ds}n/k

s=1

1 Obtain the sample minimum point x0
2 for s = 1, . . . , n

k do
3 xs

1 = argmin
x:x∈D,x/∈D1,...,Ds−1

dist(x, xs−1)

4 Ds = {xs
1}

5 for d = 2, . . . , k do
6 xs

d = argmin
x:x∈D,x/∈D1,...,Ds

dist(x, xs)

7 Ds ← Ds ∪ {xs
d}

8 end
9 end

3.3. K-Match

We can calculate the total error of the matching scheme to measure the quality of the
scheme; for the sake of simplicity, let X = R, and we calculate it as follows:

k

∑
i=1

S(x(d)i , x(d+1)
i ) =

k

∑
i=1

∫ x(d+1)
i

x(d)i

| f (x)− Li(x)|dx, (11)

where Li(x) is the linear expression passing through the points (x(d)i , y(d)i ) and (x(d+1)
i , y(d+1)

i ).

Theorem 1. Let X(d) and X(d+1) be two adjacent subspaces; the datasets corresponding to different

subspaces are D(d), D(d+1), and (x(d)i , y(d)i ) ∈ D(d), (x(d+1)
i , y(d+1)

i ) ∈ D(d+1). Consider the

model yi = f (xi) + εi, and let ε
(d)
i = y(d)i − f (x(d)i ). For ∀i = 1, 2, . . . , k, suppose that ε′i → 0;

then, E

(
S(x(d)i , x(d+1)

i )

|x(d)i − x(d+1)
i |

)
< E

(
|ε(d)i |+ |ε

(d+1)
i |

2

)
.

Proof of Theorem 1. Since ε′i → 0, according to Equation (3) the model can be transformed
into

yi = g(xi) + εi,

where g(·) is a linear function. According to Equation (11), it follows that

S(x(d)i , x(d+1)
i ) =

∫ x(d+1)
i

x(d)i

|g(x)− Li(x)|dx.

When ε
(d)
i · ε

(d+1)
i < 0, let (x′, y′) be the intersection point between y = Li(x) and

y = g(x). We can simplify S(x(d)i , x(d+1)
i ) using basic geometric area calculations, and ac-

cording to the law of iterated expectations (LIE),
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E

(
S(x(d)i , x(d+1)

i )

|x(d)i − x(d+1)
i |

)
=

E
(

S(x(d)i , x(d+1)
i )|ε(d)i · ε

(d+1)
i ≥ 0

)
P(ε(d)i · ε

(d+1)
i ≥ 0)

|x(d)i − x(d+1)
i |

+
E
(

S(x(d)i , x(d+1)
i )|ε(d)i · ε

(d+1)
i < 0

)
P(ε(d)i · ε

(d+1)
i < 0)

|x(d)i − x(d+1)
i |

=
E
(
|ε(d)i |+ |ε

(d+1)
i |

)
P(ε(d)i · ε

(d+1)
i ≥ 0)

2

+

(
h1 · E|ε

(d)
i |+ h2 · E|ε

(d+1)
i |

)
P(ε(d)i · ε

(d+1)
i < 0)

2
,

where h1 =
|x′ − x(d)i |

|x(d)i − x(d+1)
i |

and h2 =
|x′ − x(d+1)

i |

|x(d)i − x(d+1)
i |

. Since P(ε(d)i · ε
(d+1)
i ≥ 0) + P(ε(d)i ·

ε
(d+1)
i < 0) = 1, and h1 + h2 = 1, it follows that E

(
S(x(d)i , x(d+1)

i )

|x(d)i − x(d+1)
i |

)
< E

(
|ε(d)i |+ |ε

(d+1)
i |

2

)
.

If our approach is to randomly select a matching scheme, the validity of this method
can be proved by Theorem 1. However, randomly selecting a matching scheme does
not guarantee the uniqueness of the results, and it also does not guarantee that we will
necessarily select a good-performing matching scheme. We found that for x(d)i and x(d+1)

i ,

if ε
(d)
i · ε

(d+1)
i < 0, there will be a better interpolation effect.

Theorem 2. Let y(d)i = f (x(d)i ) + ε
(d)
i , y(d+1)

i = f (x(d+1)
i ) + ε

(d+1)
i . Suppose that ε′i → 0; then,

we can obtain E
(

S(x(d)i , x(d+1)
i )|ε(d)i · ε

(d+1)
i < 0

)
< E

(
S(x(d)i , x(d+1)

i )|ε(d)i · ε
(d+1)
i ≥ 0

)
.

Proof of Theorem 2. Since ε′i → 0, as based on the proof of Theorem 1, we can obtain

E
(

S(x(d)i , x(d+1)
i )|ε(d)i ε

(d+1)
i ≥ 0

)
=
|x(d)i − x(d+1)

i | · E|ε(d)i |+ |x
(d)
i − x(d+1)

i | · E|ε(d+1)
i |

2
,

E
(

S(x(d)i , x(d+1)
i )|ε(d)i ε

(d+1)
i < 0

)
=
|x′ − x(d)i | · E|ε

(d)
i |+ |x

′ − x(d+1)
i | · E|ε(d+1)

i |
2

.

It follows that

E
(

S(x(d)i , x(d+1)
i )|ε(d)i ε

(d+1)
i < 0

)
< E

(
S(x(d)i , x(d+1)

i )|ε(d)i ε
(d+1)
i ≥ 0

)
.

According to Theorem 2, we can match samples with the opposite signs of εi to achieve
a good data synthesis effect. Therefore, the core idea of K-Match is to judge whether the
sign of εi is positive or negative for each sample, and then interpolate the samples with
opposite signs as much as possible.
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In K-Match, we need to choose an appropriate linear regression method to fit the
dataset D(d) ∪ D(d+1) based on the performance of the noise. For example, lasso regression,
locally weighted linear regression (LWLR) [24], and other methods can be used [25,26].
In our experiments, we used the OLS or SVR method to fit and obtain ĝ(·). Notably,
the kernel function is linear in SVR. According to Equation (3), and supposing that the
linear fitting error is ε′i → 0 for dataset D(d) ∪ D(d+1), we can obtain

εi = yi − ĝ(xi). (12)

Then, we sort the samples in dataset D(d) in ascending order according to the value of

εi, and obtain {(x(d)i , y(d+1)
i )}k

i=1, whereas we sort the samples in dataset D(d+1) in descend-

ing order and obtain {(x(d+1)
i , y(d+1)

i )}k
i=1. As is shown in Figure 1d, the sorted datasets

D(d) and D(d+1) are combined into the matching scheme {(x(d)i , y(d)i ), (x(d+1)
i , y(d+1)

i )}k
i=1,

the main steps of the K-Space algorithm are summarized in Algorithm 3.

Algorithm 3: K-Match.

Input: Subset D(d) = {(x(d)i , y(d)i )}k
i=1, D(d+1) = {(x(d+1)

i , y(d+1)
i }k

i=1

Output: Matching scheme {(x(d)i , y(d)i ), (x(d+1)
i , y(d+1)

i )}k
i=1

1 Fit the dataset D(d) ∪ D(d+1) and obtain ĝ(·)
2 Obtain {εi} using Equation (10)
3 Sort the samples in D(d) and D(d+1) according to the value of εi, and obtain D′(d)

and D′(d+1)

4 Combine D′(d) and D′(d+1) into {(x(d)i , y(d)i ), (x(d+1)
i , y(d+1)

i )}k
i=1

3.4. Supplementary Notes

The proposed method can effectively expand the size of the dataset and adjust the
dataset structure, reducing the proportion of samples that deviate significantly from the
actual distribution, and thereby improve model generalization performance (see Figure 2).

Figure 2. The synthetic data from ASIDS. (a) The true relationship between x and y is y = x3. The
sample size of the original data is 200 (b) Adding Gaussian noise. (c) Let k = 6 and η = 100; by
processing with ASIDS, the sample size of the generated synthetic data was 3808.

The supplements to ASIDS are given below:

1. The choice of the hyperparameter k is crucial, as different datasets require different
values of k. Conversely, the hyperparameter η tends to exhibit a better performance
as its value increases, which will be illustrated in the experimental results in the
following section.

2. It is necessary to normalize the data if there is a significant difference in the dimen-
sional scale between the features of the data. This avoids the issue of generating an
excessive number of samples.

3. In most cases, n/k is not an integer, and for the excess samples, we usually have two
solutions for handling this. The first one is to use the LOF algorithm [27] to filter out
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the excess samples that are not needed for ASIDS, as is shown in Figure 2c. Another so-
lution is to treat the excess samples as a dataset D′ of a subspace D′ = {(xi, yi)}n mod k

i=1 .
When interpolating between D′ and other subspaces D′′, we choose an appropriate
linear regression method to fit the dataset D′ ∪ D′′ and obtain ĝ(·). Then, we use the
same method to sort D′ and D′′. Only n mod k interpolations are performed, with each
sample in D′ being interpolated, while for D′′, only n mod k samples are interpolated.
Moreover, we interpolate the samples with the opposite signs of εi as much as possible,
as is shown in Figure 3.

Figure 3. Interpolations in subspaces with different number of samples.

4. Verification of the Performances of ASIDS

For the artificial data, which are also known as f (·), we investigated the hyperparame-
ter selection and optimization performance after processing with ASIDS. For the benchmark
data, we studied the prediction performance using this method.

4.1. Simulated Datasets

Some verification indicators, including the proportion of samples with εi greater than
α and the mean square error (MSE), can be selected to test the optimization effect of ASIDS
on the original sample after processing as follows:

p(α) =
1
n

n

∑
i=1

I(| f (xi)− yi| > α), (13)

MSE =
1
n

n

∑
i=1

( f (xi)− yi)
2. (14)

For the simulated datasets, {xi}n
i=1 is generated using Np(0, E). Let W1 ∈ R(p×p1)

and
W2 ∈ R(p1×1), where all elements of both W1 and W2 are independently and identically
distributed as N(0, 1). Consider that yi = f (xi) + εi = tanh(x′iW1)W2 + εi.

tanh(x) =
ex − e−x

ex + e−x .

For a given dataset, we typically cannot ascertain the distribution of noise. Hence, we
constructed datasets that contain unknown noises [12]. The unknown noises are simulated
by a mixture of noises that contain uniform noises and Gaussian noises. The generation of εi
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is explained in [28]. We fixed the random effects of the generated datasets; the experiments
were repeated 100 times for each simulated dataset. Table 1 shows six simulated datasets.
Specifically, P is the number of features in each sample of the simulated datasets. P1 is the
dimension of the intermediate layer used to generate the y values.

Table 1. Simulated datasets.

Simulated Datasets εi Distribution Sample Size (P, P1)

D1
20%-N(0, 64)
30%-U(−8,8)
50%-N(0, 0.04)

500 (5, 3)

D2
20%-N(0, 64)
30%-U(−8,8)
50%-N(0, 0.04)

200 (5, 3)

D3
20%-N(0, 64)
30%-U(−8,8)
50%-N(0, 0.04)

1500 (5, 3)

D4
20%-N(0, 64)
30%-U(−8,8)
50%-N(0, 0.04)

500 (1, 3)

D5
20%-N(0, 64)
30%-U(−8,8)
50%-N(0, 0.04)

500 (20, 10)

D6
40%-N(0, 64)
45%-U(−8,8)
15%-N(0, 0.04)

500 (5, 3)

4.1.1. Hyperparameter Selection

First, we investigated the determination of parameter k. To ensure that the number of
feature subspaces was sufficient, we set the hyperparameter η = 1, letting k = 1, 2, . . . , b n

2 c.
To calculate the changes in the MSE of the datasets at different values of k, we obtained
k′ = argmin

k:k=1,2,...,b n
2 c,η=1

MSE. The change trend in the MSE index before and after the ASISO

processing is shown in Figure 4. Then, by letting η = 1, 2, . . . , 30, k = k′, we calculated
the changes in the MSE of the datasets (Figure 5), and obtained η′ = argmin

η:η=1,2,...,30,k=k′
MSE.

At last, we let k = k′, η = 1, and η′, and we calculated the changes in p(α) of the simulated
datasets (Figure 6).

As can be seen from Figure 4, ASIDS demonstrates good optimization performance
for datasets with varying sample sizes or feature dimensions. The experimental results
also show that the performance of ASIDS does not decline dramatically as the content of
noise with large variances increases. Hence, it can deal with unknown noise well and has
good robustness. In addition, it was shown by the experimental results that ASIDS exhibits
good optimization performance for all datasets; thus, it is also a stable data synthesis
method. As can be seen from Figure 5, the hyperparameter η has a generally monotonically
decreasing relationship with the MSE, and the larger the value of η, the more significant
the effect. From Figure 6, it can be observed that ASIDS can adaptively adjust the sample
structure, which reduces the proportion of samples with large errors.
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Figure 4. Changes in the MSE under different k values: (a) simulation study results of dataset D1;
(b) simulation study results of dataset D2; (c) simulation study results of dataset D3; (d) simulation
study results of dataset D4; (e) simulation study results of dataset D5; and (f) simulation study results
of dataset D6, which will not be specifically mentioned below.

Figure 5. Changes in the MSE under different η values.
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Figure 6. Changes in the p(α) under different η values.

4.1.2. Comparison of Optimization Performance

To verify the optimization performance of ASIDS, we compared it with three other
methods: piecewise linear interpolation, linear extrapolation, and nearest neighbor inter-
polation. Specifically, we let k = k′ and η = η′ for ASIDS. Based on the given dataset,
we used the samples generated by ASIDS as interpolation points to calculate the output
values of linear extrapolation and nearest neighbor interpolation. Moreover, by letting
k = 1 and η = η′ for ASIDS, we can regard it as piecewise linear interpolation. The experi-
mental results show that ASIDS has the smallest MSE among all methods for each dataset
(Figure 7).

Figure 7. Comparison of MSEs of simulated datasets.
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4.2. Benchmark Datasets

To verify the prediction performance of ASIDS, four benchmark datasets were
used [29,30]. We partitioned the dataset into training and testing sets using a 7:3 ratio
and normalized the data using the min–max normalization method. We preprocessed the
training data using ASIDS, trained multiple machine learning models on the training set,
and evaluated the prediction performance of the models on the testing set. The evaluation
metric we used was the mean absolute error (MAE).

MAE =
1
n

n

∑
i=1
|yi − ŷi|. (15)

In addition, we removed features that cannot be directly used, such as “Datetime” for
bike sharing demand, “Month” for forest fires, and so on. We chose the K-nearest neighbor
(KNN), random forest (RF), gradient boosting decision tree (GBDT), multilayer perceptron
(MLP), and support vector regression (SVR) as the machine learning prediction models.
Specifically, the kernel function is the radial basis function (RBF) in SVR. Moreover, we set
the number of hidden layers to 3 for the MLP and used different numbers of neurons based
on the input dimensionality and sample size. Prior to and subsequent to the application of
ASIDS, the MLP retains an identical network architecture. Additionally, there are negligible
variations in the count of base learners within ensemble methodologies, such as RF and
GBDT. On a holistic level, these variations do not impart significant changes to the model’s
complexity.

The experimental results of the five models are shown in Table 2 (the parameters for
both the models and algorithms across diverse datasets were optimized using grid search
and cross-validation). It is evident that ASIDS performs well on each benchmark dataset.
This method is highly applicable to all five models, and in most cases, it can improve the
predictive performance. It is worth mentioning that the dataset contains many categorical
features which are not continuous variables. Moreover, for sparse samples (Facebook
Metrics and Forest Fires), it is difficult to guarantee that the linear fitting error is ε′i → 0
when interpolating between subspaces. This indicates that even if there are violations
of the ASIDS assumptions in practical applications, this method may still achieve good
optimization results. This further demonstrates that this method is robust and stable.

Table 2. Experimental results for benchmark datasets.

Datasets Processing Hyperparameter
Testing MAE (10−2)

KNN RF MLP SVR GBDT

Bike Sharing - - 2.20 0.12 0.54 4.26 0.23
ASIDS k = 150, η = 10 2.00 0.06 0.25 4.12 0.19

Facebook - - 6.60 2.25 8.19 7.34 1.33
ASIDS k = 2, η = 10 6.41 1.59 2.02 7.36 1.12

Air Quality - - 2.99 2.57 4.80 3.87 2.58
ASIDS k = 20, η = 100 2.89 2.55 2.08 3.84 2.77

Forest Fires - - 4.06 4.93 10.58 7.36 4.49
ASIDS k = 10, η = 100 3.89 4.32 4.80 10.05 4.14

5. Conclusions

In this paper, we proposed a data synthesis method, ASIDS, which can adaptively
adjust the size of the dataset, and the generated synthetic data typically contain minimal
errors. Moreover, it can adjust the structure of the samples, which can significantly reduce
the proportion of samples with large errors. The experimental results from the simulated
datasets demonstrate that ASIDS can optimize the samples, and compared to other methods,
the data generated using this method had smaller errors. ASIDS can deal with unknown
noise better and has good robustness. The results from the benchmark datasets show
that the proposed method is applicable for many machine models, and in most cases,
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it can improve the model generalization. ASIDS has some deficiencies and limitations.
In practical applications, it should be considered whether the real scenario data can satisfy
the assumptions of ASIDS. From the experimental results, it can be seen that the choice of
hyperparameters has a great influence on the results. Future work may focus on practical
applications and its integration with advanced machine learning techniques, and study of
how to automatically or effectively select hyperparameters.
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