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Abstract: This paper discusses the problem of the mean changes in time series with heavy-tailed
AR(p) noise. Firstly, it proposes a modified ratio-type test statistic, and the results show that under the
null hypothesis of no mean change, the asymptotic distribution of the modified statistic is a functional
of Lévy processes and the consistency under the alternative hypothesis is obtained. However, a
heavy-tailed index exists in the asymptotic distribution and is difficult to estimate. This paper uses
bootstrap sampling, jackknife sampling, and subsampling to approximate the distribution under the
null hypothesis, and obtain more accurate critical values and empirical power. In addition, some
results from a small simulation study and a practical example give an idea of the finite sample
behavior of the proposed statistic.
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1. Introduction and Statistical Framework

The problem of detecting change points in real data series has attracted attention due
to the heterogeneities of real data series. The aim of change point detection and estimation
is to partition data sequences into multiple homogeneous segments, and the theories have
been applied in a variety of fields such as finance [1], medicine [2], the environment [3], and
so on. Traditionally, change point problems are generally described as typical hypothesis
testing problems. What most scholars are interested in is testing the null hypothesis
that all observations are samples from distributions with equal means, then, deriving the
distributions of the statistics (see [4–8]). A similar reasoning holds for other change point
problems, such as variance change points [9].

In the past 40 years, new models have continuously been established for more precise
descriptions of financial data. Many empirical studies have shown that the phenomenon of
heavy tails frequently exists in economic and financial sequences, but most previous studies
have been based on finite variance (see Guillaume et al. [10] and Mittnik and Rachev [11]),
and there have been few simulations using infinite variance processes. In the case of infinite
variance, there will be more factors to consider and the problem will be more complex.
Qin et al. [12] proposed a modified ratio test statistic that can effectively detect changes in
the second half of the observed values, and established the asymptotic properties under the
null and alternative hypotheses. Then, Jin et al. [13] also proposed a modified ratio statistic
to test the possible trend term changes in the sequences and, based on the subsampling
method, more accurate critical values were obtained.

In the change point problems of heavy-tailed sequences, due to the influence of extreme
values in heavy-tailed sequences, it is generally not possible to directly locate the critical
value of the test statistic. Therefore, this paper proposes using multiple resampling methods
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to approximate the distribution of the original statistic and obtain accurate critical values
and power, then comparing and analyzing the performance of these sampling methods.

As for the error terms in some models, many scholars default to the error terms being
independently and identically distributed. As Aue and Horváth [14] commented in a
review paper, many methods were initially developed for independent observation. But the
concept of simple independent observation models is very narrow, and most real sequences
do not satisfy such models. Therefore, we would like to consider more general weakly
dependent cases, such as the autoregressive model. The latest research and applications
can be found in [15–17], and this classic model will not be introduced too much here.

So, this paper discusses the problem of mean changes in time series with heavy-
tailed AR(p) errors. More specifically, observations X1, X2, · · · , Xn, which conform to the
following structure:

Xt = µ + et, t = p + 1, p + 2, · · · , n, (1)

et = ρ1et−1 + ρ2et−2 + · · ·+ ρpet−p + ηt, (2)

where µ is a constant, ρ1, ρ2, · · · are coefficients, and ηt is a heavy-tailed sequence.

Remark 1. A heavy-tailed distribution is a special type of distribution in statistics, where the
probability of the tail (i.e., extreme case) is greater than that of a normal distribution. This means
that in actual observational data, the distribution is more likely to exhibit extreme and far off average
values than a normal distribution.

There are two main characteristics of heavy-tailed sequences: firstly, the probability decay
rate of the tail is slow; and secondly, the variance of the tail may be infinite. Common heavy-tailed
distributions include the Pareto distribution, the Cauchy distribution, the t-distribution, etc. These
characteristics will be implied in the assumptions in the next section.

The rest of the paper is arranged as follows: The main ideas for constructing the test
statistic are detailed in Section 2. The main results are presented in Section 3. A small
simulation study under different parameters is provided in Section 4. A real example is
provided in Section 5. Section 6 contains the conclusions and outlooks.

2. Main Ideas

Assumption 1. All the characteristic roots of ρ(z) = 1− ρ1z− ρ2z2− · · · − ρpzp = 0 lie outside
the unit circle.

Assumption 2. ηt lies in the domain of attraction of a stable law with a heavy-tailed index
κ ∈ (1, 2), and Eηt = 0.

Remark 2. Assumptions 1 and 2 guarantee that the heavy-tailed AR(p) sequence is smooth and
has infinite variance; they are necessary underlying assumptions.

In addition, Assumption 2 implies

nP(|ηt| > anx)→ x−κ , (3)

where an = inf{x : P(|ηt| > x) ≤ n−1} and

lim
x→∞

P(ηt > x)
P(|ηt| > x)

= q ∈ (0, 1). (4)

It is not difficult to find that, by combining Equations (3) and (4), there is a constant bn such that

a−1
n

n

∑
t=1

(ηt − bn)
d−→ Sk, (5)
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where Sk is a stable random variable. In addition, it can be verified that in the special cases of κ = 2
and κ = 1, Sk is a Gaussian and Cauchy distribution, respectively. Here, if we assume that bn = 0,
it implies that Eηt = 0 in Assumption 2. As a special case, if ηt is an independent and identically
distributed sequence, Kokoszka [18] obtained the following:(

a−1
n

bnrc

∑
t=1

ηt, a−2
n

bnrc

∑
t=1

η2
t

)
d−→ (L1(r), L2(r)), (6)

where L1(r) and L2(r) are κ-stable and κ/2-stable Lévy processes in the space D[0, 1] with the
Skorohod topology, respectively. It is worth noting that an can be rewritten as an = n1/kL(n); L(·)
is a slowly changing function.

Since the characteristic roots are outside the unit circle, then B–N (Beveridge–Nelson) decom-
position can be used to rewrite the partial sum of et as

a−1
n

bnrc

∑
t=1

et = D(1)a−1
n

bnrc

∑
t=1

ηt + a−1
n (η̃0 − η̃bnrc), (7)

where D(L) = (1− ρ1L− ρ2L2 − · · · − ρpLp)−1 := ∑
p
j=0 djLj, η̃t := ∑∞

j=0(∑
∞
s=j+1 ds)ηt−j.

Remark 3. L1(·) is a stationary process that can be expressed as:

L1(v) =


∞

∑
j=1

δjΓ
−1/κ
j I(Uj ≤ v), κ ∈ (1, 2),

W(v), κ = 2.

(8)

where W(v) is a standard Brownian motion. {Uj} is a uniformly distributed random variable
independently and identically distributed on the interval [0, 1], {δj} is an independently and
identically distributed random variable sequence with P(δj = 1) = p; P(δj = −1) = 1− p. Γ1,
Γ2, · · · are the arrival times of the Poisson process with the Lebesgue measure, and {Uj, δj, Γj} are
independent of each other.

Observation Xt can be rewritten as

Xt = µ + ∆1 I(k∗ < t < n) + et, (9)

where et is defined by (1), µ is the mean, k∗ is the time point of abrupt change, and I(·) is
characteristic function. The null hypothesis for testing the change is

H0 : k∗ = n,

against the alternative hypothesis
H1 : k∗ < n.

Shao [19] proposed a ratio test to detect the mean change point.

Ξ = max
nv1≤k≤nv2

R(k),

R(k) =
n
∣∣X̄1,k − X̄k+1,n

∣∣
n−1/2

{
∑k

i=1

[
∑i

j=1(Xj − X̄1,k)
]2

+ ∑n
i=k+1

[
∑i

j=1(Xj − X̄k+1,n)
]2
}1/2 ,

where X̄m,n = (n−m + 1)−1 ∑n
t=m Xt.

When dealing with the mean change point problem for heavy-tailed sequences, it
is common to choose to intercept some part of the sequence for processing. Often, it is
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desirable to retain a large portion of the data while effectively minimizing the effect of
extreme values. So, the truncated parameters are set to (v1, v2) = (0.2, 0.8).

The statistic is not actually directly substitutable into the change point model presented
in this paper. The reason is the limiting distribution of a−1

n ∑
bnrc
t=1 et is not available under

the case of H0. To solve this resistance, we suggest using ηt instead of Xt and re-establishing
the test statistics. Because of the heavy-tail feature of ηt, the new test statistics are based on
the residual error η̂t. The improved ratio tests are as follows:

Ξ1 = max
nv1≤k≤nv2

R1(k),

R1(k) = ∣∣∣∑k
t=p+1(η̂0,t − ¯̂η0,(p+1,n))

∣∣∣
n−1/2

{
∑k

i=p+1

[
∑i

t=p+1(η̂1,t − ¯̂η1,(p+1,k))
]2

+ ∑n
i=k+p+1

[
∑i

t=k+p+1(η̂2,t − ¯̂η2,(k+p+1,n))
]2
}1/2 ,

where ¯̂ηi,(m,n) = (n−m + 1)−1 ∑n
t=m η̂i,t. The process of obtaining η̂0,t is not difficult. First,

use the regression of Xt on the intercept to calculate the ordinary least squares residual
ê0,t. Then, repeating the same method, calculate the residual η̂0,t from the regression of ê0,t
on ê0,t−j, where j = 1, · · · , p, t = p + 1, · · · , n. Similarly, η̂1,t and η̂2,t can be obtained in
{Xt}k

t=p+1 and {Xt}n
t=k+1, respectively.

3. Asymptotic Results

This section gives the limit distribution of the test statistic under the null hypothesis
and the consistency under the alternative hypothesis. Let v = k/n, s = i/n, v∗ = k∗/n,
then we obtain Theorem 1:

Theorem 1. Let Xt be defined by (9). If the null hypothesis is true and Xt satisfies Assumptions 1
and 2, when n→ ∞,

Ξ1
d−→ sup

v∗1≤v≤v∗2

|V(v; 0, 1)|{∫ v
0 V2(s; 0, v)ds +

∫ 1
v V2(s; v, 1)ds

}1/2 ,

V(a; b, c) is defined as: V(a; b, c) = L1(a)− L1(b)− (a− b)(c− b)−1(L1(c)− L1(b)), where
0 ≤ b ≤ a ≤ c ≤ 1.

Proof of Theorem 1. Considering a prior claim about the first term in the denominator.
First, using ordinary least squares (OLS), calculate the residual ê1,t = Xt − k−1 ∑k

t=1 Xt

= et − k−1 ∑k
t=1 et := et − ė according to the expression of Xt in (9). Therefore, we can

rewrite ê1,t.
ê1,t = et − ė = ρ1 ê1,t−1 + · · ·+ ρp ê1,t−p + ξ̂t, (10)

where ξ̂t = (ρ1 + · · ·+ ρp − 1)ė + ηt, t = p + 1, · · · , k.
Let θ = (ρ1, ρ2, · · · , ρp)>, ξ̂ = (ξ̂p+1, · · · , ξ̂k)

>,

ê =


ê1,p ê1,p−1 ê1,p−2 · · · ê1,1

ê1,p+1 ê1,p ê1,p−1 · · · ê1,2
ê1,p+2 ê1,p+1 ê1,p · · · ê1,3
· · · · · · · · · · · · · · ·

ê1,k−1 ê1,k−2 ê1,k−3 · · · ê1,k−p

. (11)

At this point, we let G = (ê1,p+1, ê1,p+2, · · · , ê1,k). Then, combined with (10), we can obtain

G = êθ + ξ̂.
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Therefore, using OLS again we can obtain

θ̂ − θ = (ê> ê)−1 ê> ξ̂.

where ê> ξ̂ =
(

∑k−1
t=p ê1,t ξ̂t+1, ∑k−2

t=p ê1,t ξ̂t+2, · · · , ∑
k−p
t=p ê1,t ξ̂t+p

)>
and

ê> ê =


∑k−1

t=p ê1,t ê1,t ∑k−1
t=p ê1,t ê1,t−1 ∑k−1

t=p ê1,t ê1,t−2 · · · ∑k−1
t=p ê1,t ê1,t−p+1

∑k−2
t=p−1 ê1,t ê1,t+1 ∑k−2

t=p−1 ê1,t ê1,t ∑k−2
t=p−1 ê1,t ê1,t−1 · · · ∑k−2

t=p−1 ê1,t ê1,t−p+2

∑k−3
t=p−2 ê1,t ê1,t+2 ∑k−3

t=p−2 ê1,t ê1,t+1 ∑k−3
t=p−2 ê1,t ê1,t · · · ∑k−3

t=p−2 ê1,t ê1,t−p+3

· · · · · · · · · · · · · · ·
∑

k−p
t=1 ê1,t ê1,t+p−1 ∑

k−p
t=1 ê1,t ê1,t+p−2 ∑

k−p
t=1 ê1,t ê1,t+p−3 · · · ∑

k−p
t=1 ê1,t ê1,t

.

Phillips proved the following fact in Theorem 3.19 of [20]: For all j, a−1
n ∑n·

t=1 et = Op(1)
and a−2

n ∑n·
t=1 etet−j = Op(1) are valid. After basic calculation, we can obtain

ė = Op(ann−1)

and

k−1

∑
t=p

ê1,t ê1,t−j =
k−1

∑
t=p

(et − ė)(et−j − ė) = Op(a2
n) + Op(a2

nn−1) = Op(a2
n), j = 0, · · · , p− 1. (12)

Other elements in the matrix ê> ê can be treated similarly, and their convergence rate is
Op(a2

n). Therefore, we will only consider the convergence rate of the first element in
matrix ê> ξ̂. Using B–N decomposition, ê1,t can be rewritten as ê1,t = ∑∞

s=0 ds ξ̂1,t−s, where
∑∞

s=0 ds < ∞.
Combining ξ̂t = (ρ1 + · · ·+ ρp)ėt + ηt, then we can obtain that

k−1

∑
t=p

ê1,t ξ̂t+1 =
k−1

∑
t=p

∞

∑
s=0

ds ξ̂t−s ξ̂t+1 =
∞

∑
s=0

ds

k−1

∑
t=p

ηt−sηt+1 + Op(a2
nn−1) = Op(an). (13)

Owing to ηt+1 being independent of ηt−s, ηt+1ηt−s ∈ D(κ), i.e., ∑k−1
t=p ηt+1ηt−s = Op(an).

Let

A =


a−1

n
a−1

n
. . .

a−1
n

, (14)

Combining (12) and (13),

θ̂ − θ = A(Aê> êA)−1 Aê> ξ̂ = [Op(a−1
n ), Op(a−1

n ), · · · , Op(a−1
n )]>. (15)

Then, for t = p + 1, · · · , k,

η̂1,t =ê1,t − (ρ̂1 ê1,t−1 + ρ̂2 ê1,t−2 + · · ·+ ρ̂p ê1,t−p)

=
p

∑
l=1

(ρl − ρ̂l)ê1,t−l + (ρ1 + ρ2 + · · ·+ ρp − 1)ė + ηt.
(16)

It is not difficult to see that

[n·]

∑
t=1

ê1,t =
[n·]

∑
t=1

(et + ė) = Op(an). (17)
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Let i = [ns], k = [nv], where 0 < s, v < 1. Due to the independence of ηt and Assumption 2,
we combine (15), (16) and (17), then

a−1
n

i

∑
t=p+1

(η̂1,t − ¯̂η1,(p+1,k))

=a−1
n

i

∑
t=p+1

ηt − (i− p)(k− p)−1a−1
n

k

∑
t=p+1

ηt + op(1)
d−→ L1(s)− sv−1L1(v)

(18)

Next, we consider the numerator of R1(k). Let k = n, using the same proof method the
following fact can be obtained:

a−1
n

i

∑
t=p+1

(η̂0,t − ¯̂η0,(p+1,n))
d−→ L1(s)− sL1(1). (19)

Finally, deal with the second term in the denominator of R1(k). After simple processing, it
can be obtained that

η̂2,t =
p

∑
s=1

(ρs − ρ̂s)ê2,t−s + (ρ1 + ρ2 + · · ·+ ρp − 1)ë + ηt, (20)

where ë = (n− k)−1 ∑n
t=k+1 et, ê2,t−s = et−s − ë. It is not difficult to see that from Xk+1 to

Xn the limiting distribution of (15) is still valid. Since ∑
[n·]
t=1 ê2,t = ∑

[n·]
t=1(et + ë) = Op(an),

we obtain that

η̂2,t − ¯̂η2,(k+p+1,n) = ηt − (n− k)−1
n

∑
j=k+p+1

ηj + Op(a−1
n ). (21)

At this time, for i > k + p + 1, we can easily obtain that

a−1
n

i

∑
t=k+p+1

(η̂2,t − ¯̂η2,(k+p+1,n))

=a−1
n

i

∑
t=1

(η̂2,t − ¯̂η2,(k+p+1,n))− a−1
n

k+p

∑
t=1

(η̂2,t − ¯̂η2,(k+p+1,n)) + Op(na−2
n )

d−→L1(s)− L1(v)− (s− v)(1− v)−1[L1(1)− L1(v)].

(22)

So, combined with (18)−(22), it can be obtained that

Ξ1
d−→ sup

v∗1≤v≤v∗2

|V(v; 0, 1)|{∫ v
0 V2(s; 0, v)ds +

∫ 1
v V2(s; v, 1)ds

}1/2 ,

the proof of Theorem 1 is completed.

Theorem 2. Let Xt be defined by (9). If the alternative hypothesis is true and Xt satisfies Assump-
tions 1 and 2, then, Ξ1 = R1(k∗). When n→ ∞,

n−1anΞ1
d−→

v∗(1− v∗)
∣∣(ρ1 + · · ·+ ρp − 1)

∣∣|∆1|{∫ v∗
0 V2(s; 0, v)ds +

∫ 1
v∗ V2(s; v∗, 1)ds

}1/2 .
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Proof of Theorem 2. We consider the case of k∗ < k. The residuals ê1,t can be written as

ê1,t = Xt −
1
k

k

∑
t=1

Xt = ∆1

[
I(t > k∗)− k− k∗

k

]
+ et − ė, t = 1, 2, · · · , p. (23)

We can define that S1,t = ∆1

[
I(t > k∗)− k−k∗

k

]
and S2,t = et− ė. Since ∑

k+l−p−1
t=l S1,tS1,t−j =

Op(n), we combine the proof of Theorem 1 for all j, then

k+l−p−1

∑
t=l

ê1,t ê1,t−j =
k+l−p−1

∑
t=l

(S1,t + S2,t)(S1,t−j + S2,t−j) = Op(a2
n), l = 1, 2, · · · , p, (24)

then, we substitute (2) into (23) and obtain that

ê1,t = ρ1 ê1,t−1 + · · ·+ ρp ê1,t−p + φ̂t,

where φ̂t = (ρ1 + · · ·+ ρp − 1)ė + (S1,t − ρ1S1,t−1 − · · · − ρpS1,t−p) + ηt. Since the second
term in φ̂t is not a random variable, the following result can be obtained by using B–N
decomposition again:

k−1

∑
t=p

ê1,tφ̂t+1

=
k−1

∑
t=p

∞

∑
q=0

dqφ̂t+1φ̂t−q

=
∞

∑
q=0

dq

k−1

∑
t=p

(S1,t+1 − ρ1S1,t − · · · − ρpS1,t+1−p)(S1,t−q − ρ1S1,t−1−q − · · · − ρpS1,t−q−p) + Op(an)

=Op(n).

(25)

Let

N =


n

n
. . .

n

,

According to the proof of Theorem 1, (24), and (25), we can obtain that

θ̂ − θ = N(Nê> êA)−1 ANN−1 ê> ξ̂ =
[
Op(a−2

n n), Op(a−2
n n), · · · , Op(a−2

n n)
]>

. (26)

So, for t = p + 1, p + 2, · · · , k,

η̂1,t =ê1,t − (ρ̂1 ê1,t−1 + · · ·+ ρ̂p ê1,t−p)

=
p

∑
l=1

(ρl − ρ̂l)ê1,t−l + (ρ1 + · · ·+ ρp − 1)ė + (S1,t − ρ1S1,t−1 − · · · − ρpS1,t−p) + ηt.
(27)

Then, for p + 1 ≤ i ≤ k,

i

∑
t=p+1

(η̂1,t − ¯̂η1,(p+1,k))

=
i

∑
t=p+1

(S1,t − · · · − ρpS1,t−p)−
i− p
k− p

k

∑
t=p+1

(S1,t − · · · − ρpS1,t−p) + Op(an)

=Op(n).

(28)
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Then,

k

∑
t=p+1

(η̂0,t − ¯̂η0,(p+1,n)) = Op(n) (29)

and
i

∑
t=k+p+1

(η̂2,t − ¯̂η2,(k+p+1,n)) = Op(an) (30)

can be proved in the same way. (28)−(30) imply Ξ1 = Op(1). If k < k∗, Ξ = Op(1) can be
equally concluded. Finally, we let k = k∗, multiply the denominator of R1(k) by a−1

n , and
use the proof of Theorem 1 again, thus we obtain

a−1
n n−1/2

 k∗

∑
i=p+1

[
i

∑
t=p+1

(η̂1,t − ¯̂η1,(p+1,k∗))

]2

+
n

∑
i=k∗+p+1

[
i

∑
t=k∗+p+1

(η̂2,t − ¯̂η2,(k∗+p+1,n))

]2


1/2

d−→
{∫ v∗

0
V2(s; 0, v∗1)ds +

∫ 1

v∗
V2(s; v∗, 1)ds

}1/2

,

(31)

It is not difficult to find that (28) and (30) imply the limit distribution of the molecular part:

n−1

∣∣∣∣∣ k∗

∑
t=p+1

(η̂0,t − ¯̂η0,(p+1,n))

∣∣∣∣∣ d−→ v∗(1− v∗)
∣∣∆1(ρ1 + · · ·+ ρp − 1)

∣∣. (32)

Hence, (31) and (32) imply Theorem 2.

4. Simulations

In this section, we conduct some simulations to verify the effectiveness of our ratio test.
Due to the representativeness of first-order autoregressive models, we consider a first-order
autoregressive model:

Xt =

{
µ + et, 1 < t ≤ k∗1,

µ + ∆1 + et, k∗1 + 1 ≤ t < n.

where et = ρet−1 + ηt. Without losing generality, set the significance level α = 0.05, µ = 0.
The results are as follows:

Comparing Figures 1–4, it is not difficult to find that Ξ1 has a relatively stable empirical
size and a high empirical power, but when the change point appears in the latter half of the
observation sequence the empirical power is not satisfactory.

Figure 1. Empirical sizes of Ξ1 with n = 200, 500, 800.
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Figure 2. Empirical power of Ξ1 with ∆1 = 2, k∗ = 0.3n, and n = 200, 500, 800.

Figure 3. Empirical power of Ξ1 with ∆1 = 4, k∗ = 0.3n, and n = 200, 500, 800.

Figure 4. Empirical power of Ξ1 with ∆1 = 2, k∗ = 0.7n, and n = 200, 500, 800.

It is not difficult to find that the heavy-tailed index κ is in the limit distribution.
Although some scholars have proposed a series of methods to estimate κ (see [21,22]), their
effectiveness is not satisfactory. Therefore, in order to avoid estimating κ, we recommend
using bootstrap sampling to approximate the limit distribution of the statistic under the
null hypothesis, so as to obtain an accurate critical value. The specific steps are as follows:

Step 1. Use the regression of Xt on the intercept to calculate the ordinary least squares
(OLS) residual êj, and then calculate the OLS residual η̂j from the regression of êj on êj−1.

Step 2. Compute the centered residuals

η0
t = η̂t+1 − (n− 1)−1

n

∑
j=2

η̂j,

η1
t = η̂t+1 − (k− 1)−1

k

∑
j=2

η̂j,
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and

η2
t = η̂t+1 − (n− k− 1)−1

n

∑
j=k+2

η̂j.

Step 3. For a fixed number m < n, we extract bootstrap samples η̌2, · · · , η̌m from η0
2 ,

· · · , η0
n, η̃2, · · · , η̃k′ from η1

2 , · · · , η1
k , and η̃k′+2, · · · , η̃m from η2

k+2, η2
k+3, · · · , η1

n.
Step 4. Constructing the bootstrap statistic:

Ξ̃∗1 = max
mv1≤k′≤mv2

R̃1(k′),

R̃1(k′) =

∣∣∣∑k′
j=2(η̌j − ¯̌ηm)

∣∣∣
m−1/2

{
∑k′

i=2

[
∑i

j=2(η̃j − ¯̃ηk′)
]2

+ ∑m
i=k′+2

[
∑i

j=k′+2(η̃j − ˜̃ηk′)
]2
}1/2 ,

where ¯̌ηm = (m− 1)−1 ∑m
j=2 η̌j, ¯̃ηk′ = (k′− 1)−1 ∑k′

j=2 η̃j, and ˜̃ηk′ = (m− k′− 1)−1 ∑m
j=k′+2 η̃j.

Step 5. Repeat steps 3 and 4 1000 times, then we obtain a set of statistics {Ξ̃∗11 , · · · , Ξ̃∗1000
1 }.

Step 6. Calculate the α-quantile Ξ̃∗1(α) of {Ξ̃∗11 , · · · , Ξ̃∗1000
1 }. If Ξ1 > Ξ̃∗1(α), then reject

the null hypothesis.

Remark 4. Choosing a suitable m is very difficult, but Mcmurry et al. [23] provided an ideal choice
for controlling the empirical power: m = [ 4n

log n ]. Therefore, it is necessary to use this numerical
value for the simulation experiments.

As we guessed, Figure 5 shows a satisfactory result, especially for the case of ρ = 0.5,
where the increase in empirical power is significant, and this indicates that the position of
the change point has a small impact on the newly constructed statistic.

Figure 5. Empirical power of Ξ̃∗1 with ∆1 = 2, k∗ = 0.7n, and n = 200, 500, 800.

To expand the comparison, the jackknife method is used, the steps of which are
as follows.

Step 1. Use the regression of Xt on the intercept to calculate the ordinary least squares
(OLS) residual êj, and then calculate the OLS residual η̂j from the regression of êj on êj−1.

Step 2. Compute the centered residuals

η0
t = η̂t+1 − (n− 1)−1

n

∑
j=2

η̂j,

η1
t = η̂t+1 − (k− 1)−1

k

∑
j=2

η̂j,
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and

η2
t = η̂t+1 − (n− k− 1)−1

n

∑
j=k+2

η̂j.

Step 3. We extract jackknife samples η̇2, · · · , η̇n−1 from η0
2 , · · · , η0

n, η̈2, · · · , η̈k−1 from
η1

2 , · · · , η1
k , and

...
η k+2, · · · ,

...
η n−1 from η2

k+2, η2
k+3, · · · , η2

n.
Step 4. Constructing the jackknife statistic:

Ξ̃2 = max
nv1≤k≤nv2

R2,

R2 =

∣∣∣∑k
j=2(η̇j − ¯̇ηn−1)

∣∣∣
n−1/2

{
∑k

i=2

[
∑i

j=2(η̈j − ¯̈ηk)
]2

+ ∑n−1
i=k+2

[
∑i

j=k+2(
...
η j −

.̄..
η k)
]2
}1/2 ,

where ¯̇ηn−1 = (n− 2)−1 ∑n−1
j=2 η̇j, ¯̈ηk = (k− 2)−1 ∑k

j=2 η̈j, and
.̄..
η k = (n− k− 2)−1 ∑n−1

j=k+2
...
η j.

Step 5. Repeat steps 3 and 4 1000 times, then we obtain a set of statistics {Ξ̃1
2, · · · , Ξ̃1000

2 }.
Step 6. Calculate the α-quantile Ξ̃2(α) of {Ξ̃1

2, · · · , Ξ̃1000
2 }. If Ξ1 > Ξ̃2(α), then reject

the null hypothesis.
Similarly, the power of the jackknife statistic can be obtained as shown in Figure 6.

Figure 6. Empirical power of Ξ̃2 with ∆1 = 2, k∗ = 0.7n, and n = 200, 500, 800.

As a classical sampling method, the limiting distribution of a statistic under the
null hypothesis can also be approximated using the subsampling method to obtain more
accurate critical values and power, as follows:

Step 1. Use the regression of Xt on the intercept to calculate the ordinary least squares
(OLS) residual êj, and then calculate the OLS residual η̂j from the regression of êj on êj−1.

Step 2. Compute the centered residuals η0
t = η̂t+1 − (n− 1)−1 ∑n

j=2 η̂j.
Step 3. For a fixed number b < n, we extract n− 1− b processes with length b, and

satisfy the null hypothesis. For l = 1, 2, · · · , n− 1− b, the l-th process is determined by
η0

l , η0
l+1, · · · , η0

l+b−1.
Step 4. We extract Ξb,l based on η0

l , η0
l+1, · · · , η0

l+b−1:

Ξb,l = max
0≤v≤1

R3,

R3 =

b1/2
∣∣∣∑l+(b−1)v

j=l (η0
j − η̄0

l,l+b−1)
∣∣∣{

∑
l+(b−1)v
i=l

[
∑i

j=l(η
0
j − η̄0

l,l+(b−1)v)
]2

+ ∑l+b−1
i=l+(b−1)v+1

[
∑i

j=l+(b−1)v+1(η
0
j − η̄l+(b−1)v,l+b−1)

]2
}1/2 ,

where η̄0
m,n = (n−m− 1)−1 ∑n

j=m η0
j .
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Step 5. Ξb(α) is the α-quantile of the empirical distributions of the n− b− 1 value
Ξb,l . When Ξ1 > Ξb(α), we reject the null hypothesis.

Combining Figures 5–7, it can be seen that there is a large increase in the power by
reconstructing the bootstrap statistic, the jackknife statistic, and the subsampling statistic
from the original. Combining the comparisons it is easy to see that the bootstrap method
has the most significant effect on the increase in power and the jackknife method has the
least effect. The reason for this may be because bootstrap sampling is a nonparametric
statistical method, the basic idea of which is to obtain more reliable estimates of the
statistical properties of the original sample by drawing a large number of subsamples from
the original sample and then making statistical inferences on these subsamples. Since the
original series may contain extreme values, these extreme values may have an impact on
the statistical inference. The bootstrap sampling method is effective in reducing the impact
of extreme values, which may occur less frequently when subsamples are drawn.

Figure 7. Empirical power of Ξb,l with ∆1 = 2, k∗ = 0.7n, and n = 200, 500, 800.

Since jackknife sampling excludes only one observation per iteration, it may not be
effective in reducing the impact of extreme values or “heavy tails” for data with these
points. In contrast, bootstrap sampling can better simulate the distribution of the original
data by generating a number of random subsets of the original data size (via put-back
sampling), especially for non-normally distributed data. The bootstrap method can be
applied to any form of statistic, giving it greater flexibility in dealing with more complex
statistical problems.

5. Application

We consider the closing price data of British Petroleum (BP) between February 2019
and July 2021 (783 observations). Upon observation, it is easy to see that there seems to
be a point of mean change in this sequence of observations, but it is unscientific to rely on
visual perception alone. Therefore, the test statistic needs to be utilized to verify that it has
a change point.

According to the description in the previous section, the bootstrap method has the
best performance, so we consider using the bootstrap method for this problem.

Based on John [24], Jin, et al. [13] believe that the data can be fitted as a heavy-tailed
sequence with a tailed index κ = 1.732. Under the premise that the process has infinite
variance, we use the ARMA model to fit a causal AR model, and using the Bayesian
information criterion, the sample partial autocorrelation function of the AR(1) model is
almost zero after a first-order lag, and its autoregressive coefficient is 0.5788. Jin, et al. [25]
proposed a mean change point estimator based on a heavy-tailed sequence and proved
the consistency of the estimator. Based on this, we obtain the change position k∗ = 444
(see Figure 8). Then, the entire sequence is divided into two parts (1,444) and (445,783),
with mean values µ̂1 = 41.23 and µ̂2 = 23.34, respectively. A mean-corrected sequence is
based on µt, where µt = Xt − µ̂1, t = 1, · · · , 444, µt = Xt − µ̂2, t = 445, · · · , 783. It is not
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difficult to find that the heavy-tailed character of the original data has not changed in the
corrected sequence.

Figure 8. Closing price of BP.

For the statistic Ξ1, we obtain a critical value of 5.9551 (see Table 1), and the critical
value 3.0627 based on bootstrap testing. By replacing with the original data, Ξ1 = 5.4446
can be obtained. As we guessed, Ξ1 is greater than the critical value obtained based on the
bootstrap method, we reject the null hypothesis and believe that there is a change point. But
Ξ1 < 5.9951, that is, in the case of the original statistic, we cannot consider the sequence to
have a change point, so this also reflects the superiority of the bootstrap method. Therefore,
this is sufficient to demonstrate the good performance of our proposed method.

Table 1. A series of values related to the BP closing price.

κ k∗ Critical value of Ξ1 Ξ1 Critical value of Ξ̃∗1
1.732 444 5.9551 5.4446 3.0627

6. Conclusions

This paper proposes a modified ratio test based on a heavy-tailed AR(p) model, we
obtain that the asymptotic distributions of these modified statistics are functionals of Lévy
processes and that there are consistencies under the alternative hypothesis. These sampling
methods provide more asymptotically accurate critical values, making the final simulation
results show that the ratio test based on these sampling methods have good empirical
power. Meanwhile, we consider the closing price of BP, further highlighting the rationality
and superiority of our proposed methods.

The disadvantages of the statistic are obvious. For example, the performance of our
statistics when the position of the change point is behind is actually not satisfactory enough.
Moreover, if there are multiple change points in the sequence, our statistics may not be
applicable. Future research work should not only focus on the issues of mean changes, but
also consider more possible situations.
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