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Abstract: The study of fuzzy geometry and its different components has grown in recent years,
establishing the formal foundations for its development. This paper is devoted to addressing some
metric relations in the fuzzy right triangle; in particular, a version of the Pythagorean theorem and
geometric mean theorem are provided in analytical fuzzy geometry. The main results show, under
certain conditions of the fuzzy vertices, a subset relation between the fuzzy distances associated with
the fuzzy right triangle, which is very similar to the classical statements of the Pythagorean theorem
and the geometric mean in Euclidean geometry.
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1. Introduction

The aim of this paper is to study some metric relations in a fuzzy right triangle
following the ideas from [1,2]. Particularly, we provide a version of the altitude and
Pythagorean theorems in analytical fuzzy plane geometry.

Set theory was born, as a separate mathematical discipline, with the work developed
by Georg Cantor in 1874 [3]. The elegance of this theory led current mathematics to consider
it an essential pillar of the foundations of this science. The idea of using sets to formalize
mathematics is to define all mathematical objects as sets: numbers, functions, algebras,
geometric figures, etc. However, the strict dichotomy of belonging or not belonging to a set
can make certain tasks or decisions complicated. In particular, determining what belongs
or does not belong to a set that uses unclear, fuzzy, or vague terms, such as determining the
objects in the set of beautiful colors, can be difficult. Sometimes, drastic decisions are made
based on these classifications, which are not always easy to make.

In the mid-1960s, Lotfi A. Zadeh introduced the notions of fuzzy sets in his famous
paper, entitled “Fuzzy sets” [4]. His aim was to represent, in a mathematical way, the
uncertainty generated by the vague definition of some sets, using values between 0 and 1 to
represent how much an object belongs to a set (with 1 meaning that it certainly belongs, 0
meaning that it certainly does not belong, and intermediate values meaning that it partially
belongs). Formally, a fuzzy set Ã consists of ordered pairs such that

Ã = {(x, µÃ(x)) : x ∈ X, µÃ(x) ∈ [0, 1]},

where µÃ is the membership function of the set and X ⊆ Rn (see [4,5]).
Fuzzy set theory has advanced in various ways and across many disciplines. Ap-

plications of this theory are found, for example, in artificial intelligence, computer sci-
ence, decision theory, control theory, logic, management science, and robotics. See, for
instance [6–11].

Ideas about fuzzy geometric notions have been proposed by many researchers, pro-
viding notions of point, line, angle, plane, area, perimeter, and shapes; see, for example, the
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references [12–19]. However, only Buckley and Eslami, in the papers [1,2], gave some ideas
on the construction and representation of basic fuzzy geometric entities in a mathematical
framework. Subsequently, Ghosh and Chakraborty, based on the works [1,2], provided
different contributions to analytical fuzzy plane geometry (see, for instance, [20,21]). More-
over, Ghosh et al. also contributed to analytical fuzzy space geometry (see [22,23]), as did
Qiu and Zhang in [24].

The aim of this paper is to study some metric relations in a fuzzy right triangle
following the ideas from [1,2]. Particularly, we use the definitions of fuzzy distance, fuzzy
point, and fuzzy triangle provided in the paper [1]. Since the fuzzy distance between
two fuzzy points is a fuzzy number (see Section 2.2), the metric relations that are stated
are naturally inclusion relations. Specifically, we provide a version of the altitude and
Pythagorean theorems considering fuzzy points that define cones with circular bases in
fuzzy geometry. It is worth noting that the sense of the inclusion relation changes, as it
depends on the radii associated with the circular bases (see Theorems 1 and 2), or there may
not even be a relation of inclusion (see Example 3). In the case where all radii are congruent,
inclusion is only possible in each statement; more accurately, we state that C̃2 ⊆ Ã2 + B̃2,
and H̃2 ⊆ P̃ · Q̃, where Ã, B̃, C̃, P̃, H̃, and Q̃ are the fuzzy distances associated to a fuzzy
right triangle (see Corollaries 1 and 2, respectively).

To achieve the aforementioned objective, we present a general characterization of the
α-cut set of fuzzy distance denoted by D̃ between two fuzzy points. Furthermore, we show
that if two fuzzy points, P̃1 and P̃2, define a cone with circular bases of radii r1 and r2,
respectively, then D̃

(
P̃1, P̃2

)
(α) = [a− (r1(α) + r2(α)), a + (r1(α) + r2(α))], where a is the

Euclidean distance between the points in R2 that have membership function equal to 1 (for
more details, see Section 3). We utilize some definitions and results of convex sets, since the
α-cut set of a fuzzy point is a compact and convex subset of R2 (Definition 7).

The paper is organized as follows: Section 2.1 contains generalities about fuzzy sets,
fuzzy numbers, and the α-cut set. Section 2.2 recalls the basic definitions of fuzzy geometry,
which are fuzzy point, fuzzy line segment, fuzzy distance, and fuzzy triangle.

Section 3 provides, in a general way, the α-cut set of fuzzy distance D̃. In Section 4,
we deal with two metric relations in the fuzzy right triangle. Specifically, a version of
the geometric mean and Pythagorean theorems is provided in fuzzy geometry. To state
the geometric mean theorem, it is necessary to introduce the altitude definition of a fuzzy
triangle. Section 5 is devoted to illustrating some examples from Section 4. Finally, in
Section 6, some comments and conclusions are presented.

2. Preliminaries

In this section, some definitions and results that come from [1,2,4,5] are reviewed.

2.1. Fuzzy Set and Fuzzy Number

The following are definitions of fuzzy sets and fuzzy numbers.

Definition 1 (Fuzzy set [4]). Let X be a classical set. Then, the set of order pairs

Ã = {(x, µÃ(x)) : x ∈ X, µÃ(x) ∈ [0, 1]}

is called a fuzzy set on X. The evaluation function µÃ(x) is called membership function or grade of
membership of x in Ã.

Definition 2 (α-Cut set [25]). For a fuzzy set Ã, its α-cut is denoted by Ã(α) and is defined by

Ã(α) =

{
{x ∈ X : µÃ(x) ≥ α} if 0 < α ≤ 1
closure{x ∈ X : µÃ(x) > α} if α = 0

Notice that the α-cut set is not a fuzzy set.
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To represent the construction of the membership function of a fuzzy set Ã, we adopt
the notation

∨{
x : x ∈ Ã(0)

}
, which means µÃ(x) = sup

{
α : x ∈ Ã(α)

}
.

Proposition 1. For all α ∈ [0, 1], the following apply:

1. Ã ⊆ B̃ if and only if Ã(α) ⊆ B̃(α).
2. Ã = B̃ if and only if Ã(α) = B̃(α).

The proof of the above proposition can be found in [21].

Definition 3. The support of a fuzzy set Ã, denoted by supp(Ã), is defined as supp(Ã) ={
x ∈ X : µÃ(x) > 0

}
.

Definition 4 (Core [5]). The core of a fuzzy set Ã, denoted by core(Ã), is defined as core(Ã) =
{x ∈ X : µÃ(x) = 1}. When the core has at least one element, we have a normal fuzzy set.

Definition 5 (Convex fuzzy set [5]). A fuzzy set Ã is convex if all its α-cuts are convex.

Definition 6 (Fuzzy number [5]). A fuzzy set Ã is a fuzzy number if and only if Ã is convex, is
normalized, and has bounded support, and its α-cuts are closed intervals for α > 0.

Since the α-cuts of fuzzy numbers are always closed and bounded intervals, the
arithmetic of fuzzy numbers is defined in terms of their α-cuts (for more details, see [5]).

Let us consider intervals A = [a1, a3] and B = [b1, b3], subsets of R. Then, the following
apply:

1. Addition
[a1, a2](+)[b1, b2] = [a1 + b1, a2 + b2].

2. Multiplication

[a1, a2] · [b1, b2] = [a1 · b1 ∧ a1 · b2 ∧ a2 · b1 ∧ a2 · b2, a1 · b1 ∨ a1 · b2 ∨ a2 · b1 ∨ a2 · b2],

where a ∧ b = min{a, b} and a ∨ b = max{a, b}.

2.2. Fuzzy Geometry

The following are definitions of fuzzy geometry and come from [1,2].

Definition 7 (Fuzzy point [1]). A fuzzy point at (a, b) ∈ R2, denoted by P̃(a, b), is defined by
its membership function, which satisfies the following conditions:

1. P̃(a, b) is upper semi-continuous;
2. µP̃(x, y) = 1⇔ (x, y) = (a, b);
3. ∀α ∈ [0, 1], P̃(α) is a compact and convex subset of R2.

If there is no confusion, fuzzy point P̃(a, b) is simply denoted by P̃.

From the above definition, we can see that P̃(a, b) can be considered a surface on R3,
which is the graph of z = µP̃(x, y) (see Example 1).

Example 1. A fuzzy point P̃ at (1, 1) can be taken with the membership function defined by

µP̃(x, y) =

{
1−

√
(x− 1)2 + (y− 1)2 if (x− 1)2 + (y− 1)2 ≤ 1

0 elsewhere.

See Figure 1.
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Figure 1. Fuzzy point P̃ at (1, 1).

We denote by dist(·, ·) the usual Euclidean distance metric on R2.

Definition 8 (Fuzzy distance [1]). Fuzzy distance D̃ between two fuzzy points P̃1(a1, b1) and
P̃2(a2, b2) is defined by its membership function

µD̃(d) = sup
{

α : d = dist(u, v), u ∈ P̃1(0), v ∈ P̃2(0), and µP̃1
(u) = µP̃2

(v) = α
}

.

The authors in [1] show that D̃ is a fuzzy number in R.

Remark 1. The previous definition of fuzzy distance is different from the one in [20]. The support
of the fuzzy distance proposed in [20] must always be a subset of the fuzzy distance introduced by
Bluckley and Eslami in [1]. However, their cores are identical.

In order to define a fuzzy line segment, we denote by XY the line segment defined by
points X and Y belonging to R2.

Definition 9 (Fuzzy line segment [1]). Fuzzy line segment L̃P̃Q̃ between two fuzzy points P̃ and

Q̃ is defined by its membership function

µL̃P̃Q̃
(x, y) = sup

{
α : (x, y) ∈ XY, X ∈ P̃(α) and Y ∈ Q̃(α)

}
.

If there is no confusion, fuzzy line segment L̃P̃Q̃ is simply denoted by L̃.

Let v1, v2, v3 be three distinct points in R2 that define a triangle, and let P̃i be a fuzzy
point at vi, with i = 1, 2, 3.

Definition 10 (Fuzzy triangle [1]). Let L̃1, L̃2, L̃3 be fuzzy segments between P̃1 and P̃2, P̃2 and
P̃3, P̃3 and P̃1, respectively. Then, the fuzzy set

T̃ =
3⋃

i=1

L̃i,
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is a fuzzy triangle, and it is defined by its membership function

µT̃ (x, y) = max
1≤i≤n

{
µL̃i

(x, y)
}

.

Moreover, we say that the fuzzy triangle is strongly non-degenerate if P̃i(0), 1 ≤ i ≤ 3, are pairwise
disjoint. Finally, we say that T̃ is a fuzzy right triangle at P̃i if and only if core

(
T̃
)

is a right

triangle at P̃i(1).

Throughout this paper, the phrase fuzzy right triangle always means “strongly non-
degenerate fuzzy right triangle”.

Example 2. Let P̃1(2, 2), P̃2(5, 2), and P̃3(5, 11) be three fuzzy points defined by their membership
functions

µP̃1
(x, y) =

{
1−

√
(x− 2)2 + (y− 2)2 if (x− 2)2 + (y− 2)2 ≤ 1

0 elsewhere.
,

µP̃2
(x, y) =

1−
√
(x− 5)2 + (y− 2)2

2
if (x− 5)2 + (y− 2)2 ≤ 4

0 elsewhere.
, and

µP̃3
(x, y) =

1−
√
(x− 5)2 + (y− 11)2

3
if (x− 5)2 + (y− 11)2 ≤ 9

0 elsewhere.

respectively. Then, fuzzy triangle T̃ = L̃P̃1 P̃2

⋃
L̃P̃2 P̃3

⋃
L̃P̃3 P̃1

is a fuzzy right triangle at P̃2. We

can see the graph of T̃ in Figure 2.

Figure 2. On the left and at the center, two views of the fuzzy triangle. On the right side, a level set of T̃ .

3. α-Cut Set of Fuzzy Distance D̃

In this section, we will define the α-cut set of fuzzy distance D̃ between two fuzzy
points. For the latter, we will set some notations, and since each α-cut set of a fuzzy point
is a compact and convex subset of R2 (Definition 7), we will recall a few elements about
convex sets. The description of D̃ will be helpful in Section 4, where the main results are
presented.

We consider R2 endowed with the classical Euclidean distance, denoted by dist(·, ·).
The distance, denoted by d, between a point y and a set X ⊂ R2 is defined as d(y, X) =

infa∈X dist(y, a). Furthermore, the distance between two sets X and Y, denoted by d̂(X, Y),
is defined as d̂(X, Y) = inf{dist(x, y) : x ∈ X and y ∈ Y}. Finally, the boundary of a subset
X ⊆ R2 is denoted by ∂X.
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Remark 2. In general, d̂ does not satisfy the positiveness property, and it does not satisfy the
triangle inequality property either; hence, d̂ is not really a distance function; however, it is usually
called distance. For more details, see [26].

The following propositions can be found in [27] or [28].

Proposition 2. Let X be a closed non-empty and convex subset of R2. For each y ∈ R2, there
exists a unique point x ∈ X that minimizes the distance from y, i.e., dist(y, x) = d(y, X).

Proposition 3. Let X be a closed non-empty and convex subset of R2. If y ∈ R2 \ X, then x ∈ ∂X.

From the previous propositions, d̂(X, Y) = inf{dist(x, y) : x ∈ ∂X and y ∈ ∂Y}.
Let v1, v2 be two distinct points in R2, and let P̃1 and P̃2 be two fuzzy points at v1 and

v2, respectively, such that P̃1(0) and P̃2(0) are pairwise disjoint and a = dist(v1, v2).
Let us remember that Definition 8 determines the fuzzy distance between fuzzy points

P̃1 and P̃2 as ∨
α∈[0,1]

[δα
m, δα

M],

where

δα
m = min

x1∈∂P̃1(α), x2∈∂P̃2(α)
dist(x1, x2) and

δα
M = max

x1∈∂P̃1(α), x2∈∂P̃2(α)
dist(x1, x2).

where ∂P̃i(α) denotes the boundary of P̃i(α), with i = 1, 2.
In what follows, we will show that δα

m and δα
M can be expressed in terms of a =

dist(v1, v2).
We denote by x1

a and x2
a the points belonging to ∂P̃1(α) and ∂P̃2(α), respectively, such

that dist
(

x1
a , x2

a
)
= d̂

(
P̃1(α), P̃2(α)

)
, and by F1

a and F2
a the points of intersection between

line segment v1v2 and the boundaries of P̃1(α) and P̃2(α), respectively, that is,

∂P̃1(α) ∩ v1v2 =
{

F1
a

}
and ∂P̃2(α) ∩ v1v2 =

{
F2

a

}
.

Finally, we set

r1
a = dist

(
v1, F1

a

)
, r2

a = dist
(

v2, F2
a

)
, and â = dist

(
F1

a , F2
a

)
.

For all of the above, see Figure 3.

Figure 3. Minimum distance between the α-cut sets of fuzzy points P̃1 and P̃2.

Remark 3. It is clear that x1
a , x2

a , F1
a , F2

a , r1
a , and r2

a depend on α. However, to simplify the notation,
we simply denote them without the α reference.
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Since x1
a and x2

a are the points that define the distance between P̃1(α) and P̃2(α),
dist

(
x1

a , x2
a
)
≤ â; hence, we can identify two points, denoted by p1

a and p2
a, between F1

a and
F2

a onto v1v2, such that dist
(

p1
a, p2

a
)
= dist

(
x1

a , x2
a
)

(see Figure 4). We set h1
a = dist

(
p1

a, F1
a
)

and h2
a = dist

(
p2

a, F2
a
)
. Then, we have

â = dist
(

x1
a , x2

a

)
+ h1

a + h2
a and a = â + r1

a + r2
a ,

hence, we obtain

δα
m = dist

(
x1

a , x2
a

)
= a−

(
r1

a + r2
a

)
−
(

h1
a + h2

a

)
. (1)

Figure 4. Projection of x1
a and x2

a onto v1v2.

On the other hand, we denote by m1
a and m2

a the points that define the maximum
distance between P̃1(α) and P̃2(α). Since dist

(
m1

a, m2
a
)
≥ a, we can identify two points, de-

noted by q1
a and q2

a, between m1
a and m2

a such that dist
(
q1

a, q2
a
)
= a. We set H1

a = dist
(
m1

a, q1
a
)

and H2
a = dist

(
m2

a, q2
a
)

(see Figure 5). Then,

δα
M = dist

(
m1

a, m2
a

)
= a + H1

a + H2
a . (2)

Therefore, by Equations (1) and (2), we have

D̃
(

P̃1, P̃2

)
(α) =

[
a−

(
r1

a + r2
a

)
−
(

h1
a + h2

a

)
, a + H1

a + H2
a

]
. (3)

Figure 5. Projection of v1 and v2 onto the segment defined by m1
a and m2

a .

Remark 4. In general, identifying x1
a , x2

a or m1
a, m2

a is a very interesting subject, but it is outside
the scope of this paper. However, when the fuzzy points define cones of circular bases, these elements
are easy to identify, as we will show in the next section.

4. Some Metric Relations

In this section, we address two metric relations in the fuzzy right triangle, which
are the Pythagorean theorem and the geometric mean theorem (also known as Euclidean
theorem).
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From the above section, it is clear that many different and complicated cases can
occur with respect to the form of a 0-cut set of a fuzzy point, so it is necessary to limit
ourselves to a few cases. Hereinafter, we consider the following statements: Let v1, v2, v3 be
three distinct points in R2 such that dist(v1, v2) = a, dist(v2, v3) = b, and dist(v1, v3) = c.
Without losing generality, we assume that 0 < a ≤ b < c.

Let P̃i be a fuzzy point at vi, with i = 1, 2, 3, such that they define a fuzzy right triangle
T̃ at P̃2. Moreover, let Ã = D̃

(
P̃1, P̃2

)
, B̃ = D̃

(
P̃2, P̃3

)
, and C̃ = D̃

(
P̃1, P̃3

)
, i.e., the fuzzy

distances associated to each pair of fuzzy points.
We also assume that P̃i defines a cone of circular base of radius ri, with i = 1, 2, 3. The

membership function for each i = 1, 2, 3 is given by

µP̃i
(x, y) =

1−

√
(x− v1

i )
2 + (y− v2

i )
2

ri
if
(
x− v1

i
)2

+
(
y− v2

i
)2 ≤ r2

i

0 elsewhere.

,

with vi = (v1
i , v2

i ). Moreover,

∂P̃i(α) =
{
(x, y) ∈ R2 : (x− v1

i )
2 + (y− v2

i )
2 = (ri(1− α))2

}
,

that is, the boundary of the α-cut for P̃i is a circle around the core with radius ri(1− α).

Remark 5.

1. Since T̃ is a fuzzy right triangle, P̃i(0), 1 ≤ i ≤ 3 are pairwise disjoint; this implies that
r1 + r2 < a, r2 + r3 < b, and r1 + r3 < c.

2. Note that for P̃i and P̃j, with i 6= j, Equation (3) is

D̃
(

P̃i, P̃j

)
(α) = [dist(vi, vj)− (ri + rj)α

′), dist(vi, vj) + (ri + rj)α
′)], (4)

where α′ = 1− α.

4.1. Fuzzy Pythagorean Theorem

The famous Pythagorean theorem remembered by the majority of students has been
extended in different ways and in different geometries. In a very simple way, the law of
cosines is one of them. Other versions on different spaces and geometries can be found, for
example, in [29–32].

The above shows that this mathematical result has attracted and still attracts the atten-
tion of many researchers who try to generalize or extend the ideas to different geometries
or spaces. In this section, we study a version of the Pythagorean theorem in fuzzy geometry
considering the conditions of the previous section; that is, we consider fuzzy points defining
cones of circular base.

Proposition 4 (Necessary condition). With the previous notation, we have the following:

1. If C̃2 ⊆ Ã2 + B̃2, then a(r1 + r2) + b(r2 + r3)− c(r1 + r3) > 0.

2. If Ã2 + B̃2 ⊆ C̃2, then a(r1 + r2) + b(r2 + r3)− c(r1 + r3) < 0.

Proof. From Equation (4), we have

Ã(α) = D̃
(

P̃1, P̃2

)
(α) = [a− (r1 + r2)α

′, a + (r1 + r2)α
′],

B̃(α) = D̃
(

P̃2, P̃3

)
(α) = [b− (r2 + r3)α

′, b + (r2 + r3)α
′],

C̃(α) = D̃
(

P̃1, P̃3

)
(α) = [c− (r1 + r3)α

′, c + (r1 + r3)α
′],
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where α′ = 1− α. Then,

Ã2(α) = [
(
a− (r1 + r2)α

′)2,
(
a + (r1 + r2)α

′)2
],

B̃2(α) = [
(
b− (r2 + r3)α

′)2,
(
b + (r2 + r3)α

′)2
], and

C̃2(α) = [
(
c− (r1 + r3)α

′)2,
(
c + (r1 + r2)α

′)2
].

Hence,

Ã2(α) + B̃2(α) = [
(
a− (r1 + r2)α

′)2
+
(
b− (r2 + r3)α

′)2,
(
a + (r1 + r2)α

′)2
+
(
b + (r2 + r3)α

′)2
].

By Proposition 1 item 2, C̃2 ⊆ Ã2 + B̃2 if and only if(
a + (r1 + r2)α

′)2
+
(
b + (r2 + r3)α

′)2 ≥
(
c + (r1 + r3)α

′)2 (5)

and (
a− (r1 + r2)α

′)2
+
(
b− (r2 + r3)α

′)2 ≤
(
c− (r1 + r3)α

′)2. (6)

From inequalities (5) and (6), we obtain

a(r1 + r2) + b(r2 + r3)− c(r1 + r3) + α′(r2(r1 + r2 + r3)− r1r3) ≥ 0 (7)

and
−a(r1 + r2)− b(r2 + r3) + c(r1 + r3) + α′(r2(r1 + r2 + r3)− r1r3) ≤ 0 (8)

respectively. Finally, from inequalities (8) and (7), we obtain a(r1 + r2) + b(r2 + r3)− c(r1 +
r3) > 0. This proves item 1. To prove item 2, we proceed in an analogous way considering
Ã2 + B̃2 ⊆ C̃2.

From Proposition 4, we have two necessary conditions for two possible inclusions.
Then, we can state the following result.

Theorem 1. With the previous notation, we have the following:

1. C̃2 ⊆ Ã2 + B̃2 if and only if

|r2(r1 + r2 + r3)− r1r3| < a(r1 + r2) + b(r2 + r3)− c(r1 + r3).

2. Ã2 + B̃2 ⊆ C̃2 if and only if

|r2(r1 + r2 + r3)− r1r3| < c(r1 + r3)− a(r1 + r2)− b(r2 + r3).

Proof.

1. (Necessary condition). By Proposition 1 item 2, C̃2 ⊆ Ã2 + B̃2 if and only if

a(r1 + r2) + b(r2 + r3)− c(r1 + r3) + α′(r2(r1 + r2 + r3)− r1r3) ≥ 0 (9)

and

−a(r1 + r2)− b(r2 + r3) + c(r1 + r3) + α′(r2(r1 + r2 + r3)− r1r3) ≤ 0, (10)

where α′ = 1− α. Moreover, by Proposition 4, a(r1 + r2) + b(r2 + r3)− c(r1 + r3) > 0;
hence, inequalities (9) and (10) are equivalent to α′|r2(r1 + r2 + r3)− r1r3| < a(r1 +
r2) + b(r2 + r3)− c(r1 + r3). The first step of this proof is finished, because the above
inequality is true for all α ∈ [0, 1]. The sufficient condition is direct.

2. We can prove item 2 in the same way.
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Notice that if r1 = r2 = r3 = r, then it can only be stated that C̃2 ⊆ Ã2 + B̃2, since
r1 = r2 = r3 = r implies a + b− c > 0, and this is always true in any triangle.

In the case where r1 = r2 = r3 = r, we obtain the following result.

Corollary 1. Let P̃1, P̃2, and P̃3 be three fuzzy points defining a fuzzy right triangle at P̃2 such
that Ã = D̃

(
P̃1, P̃2

)
, B̃ = D̃

(
P̃2, P̃3

)
, and C̃ = D̃

(
P̃1, P̃3

)
. If each P̃i is a cone of circular base of

radius r > 0, then
C̃2 ⊆ Ã2 + B̃2.

Proof. If each P̃i is a cone of circular base of radius r > 0 and they define a fuzzy right

triangle, then P̃i(0) are pairwise disjoint; this implies that r <
a
2

(see Remark 5). On the

other hand, by Theorem 1 item 1, C̃2 ⊆ Ã2 + B̃2 if and only if r < a + b− c. The latter
inequality is always true. The following Lemma is useful to prove it.

Lemma 1. Let4ABC be a right triangle in C, and let a, b, and c be the lengths of the legs and the
hypotenuse, respectively, with a ≤ b < c. If k = a + b− c, then k >

a
2

.

Proof of Lemma 1. We assume that k ≤ a
2 . Since k = a + b− c, we obtain that

(
b +

a
2

)2
≤

c2. Considering c2 = a2 + b2, we obtain b ≤ 3a
4 . But b ≥ a. In consequence, k > a

2 .

Then, by Lemma 1, a + b− c >
a
2

, and since r <
a
2

, we conclude that r < a + b− c.

4.2. Altitude Theorem or Geometric Mean Theorem

The following metric relation we address is the altitude theorem or geometric mean
theorem, also known as Euclidean theorem. For that, it is necessary to define the altitude of
a fuzzy triangle. This secondary element of the fuzzy triangle must be a fuzzy segment
with one end at one vertex and the other on one side of the triangle. In particular, the ends
are vertex P̃2 and a point on the fuzzy hypotenuse, that is, fuzzy line segment L̃P̃1 P̃3

. The
following definition is about the containment of a fuzzy point on a fuzzy line segment.

Definition 11 (Containment of a fuzzy point on a fuzzy line segment [1]). We will say that
a fuzzy point P̃ is contained on a fuzzy line segment L̃ if and only if µP̃(x, y) ≤ µL̃(x, y) for all
(x, y) ∈ R2.

In [20], a measurement of the degree to which P̃ belongs to L̃ only when core
(

P̃
)
∈

core
(

L̃
)

was proposed. Of course, Definition 11 implies the above condition. In Section 6,
we provide some comments about the proposal given in [20].

Let Ẽ be a fuzzy point contained in L̃P̃1 P̃3
such that Ẽ(0) and P̃i(0) are disjoint, with

i = 1, 3. We denote by H̃P̃2
the fuzzy line segment defined by fuzzy points P̃2 and Ẽ.

Definition 12. We will say that H̃P̃2
is the altitude of fuzzy right triangle T̃ from P̃2 if and only if

core
(

H̃P̃2

)
is perpendicular to core

(
L̃P̃1 P̃3

)
.

Other ways of defining altitude can be obtained by following the ideas proposed
in [33].

Let v4 be points in R2 such that dist(v1, v4) = p, dist(v3, v4) = q, and dist(v2, v4) = h.
Let Ẽ be a fuzzy point at v4 contained in L̃P̃1 P̃3

such that Ẽ defines a cone of circular base of

radius r4; Ẽ(0) and P̃i(0) are disjoint, with i = 1, 3. Let H̃P̃2
be the altitude of fuzzy right

triangle T̃ from P̃2, that is, the fuzzy line segment defined by fuzzy points P̃2 and Ẽ. Finally,
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we denote by H̃, P̃, and Q̃ the fuzzy distances between fuzzy points P̃2 and Ẽ, P̃1 and Ẽ,
and P̃3 and Ẽ, respectively.

Proposition 5 (Necessary condition). With the previous notation, we have the following:

1. If H̃2 ⊆ P̃ · Q̃, then p(r3 + r4) + q(r1 + r4)− 2h(r2 + r4) > 0.

2. If P̃ · Q̃ ⊆ H̃2, then p(r3 + r4) + q(r1 + r4)− 2h(r2 + r4) < 0.

Proof. In the same way as in the proof of Proposition 4.

Another metric relation that relates to the altitude theorem is that the squared measure
of a leg is the product between the measure of the leg projection and the hypotenuse
measure, i.e., a2 = pc and b2 = qc. We also provide a necessary condition about these
relations.

Proposition 6 (Necessary condition). With the previous notation, we have the following:

1. If Ã2 ⊆ P̃ · C̃, then c(r1 + r4) + p(r1 + r3)− 2a(r1 + r2) > 0.

2. If P̃ · C̃ ⊆ Ã2, then c(r1 + r4) + p(r1 + r3)− 2a(r1 + r2) < 0.

3. If B̃2 ⊆ Q̃ · C̃, then c(r3 + r4) + q(r1 + r3)− 2b(r2 + r3) > 0.

4. If Q̃ · C̃ ⊆ B̃2, then c(r3 + r4) + q(r1 + r3)− 2b(r2 + r3) < 0.

Proof. In the same way as in the proof of Proposition 4.

As in the previous subsection, the subset relation may vary, giving rise to two cases in
each statement. The following result summarizes this fact.

Theorem 2. With the previous notation, we have the following:

1. H̃2 ⊆ P̃ · Q̃ if and only if∣∣∣r4(r1 + r3 − 2r2) + r1r3 − r2
2

∣∣∣ < p(r3 + r4) + q(r1 + r4)− 2h(r2 + r4).

2. P̃ · Q̃ ⊆ H̃2 if and only if∣∣∣r4(r1 + r3 − 2r2) + r1r3 − r2
2

∣∣∣ < 2h(r2 + r4)− p(r3 + r4)− q(r1 + r4).

3. Ã2 ⊆ P̃ · C̃ if and only if∣∣∣r1(r3 + r4 − 2r2) + r3r4 − r2
2

∣∣∣ < c(r1 + r4) + p(r1 + r3)− 2a(r1 + r2).

4. P̃ · C̃ ⊆ Ã2 if and only if∣∣∣r1(r3 + r4 − 2r2) + r3r4 − r2
2

∣∣∣ < 2a(r1 + r2)− c(r1 + r4)− p(r1 + r3).

5. B̃2 ⊆ Q̃ · C̃ if and only if∣∣∣r3(r1 + r4 − 2r2) + r1r4 − r2
2

∣∣∣ < c(r3 + r4) + q(r1 + r3)− 2b(r2 + r3).
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6. Q̃ · C̃ ⊆ B̃2 if and only if∣∣∣r3(r1 + r4 − 2r2) + r1r4 − r2
2

∣∣∣ < 2b(r2 + r3)− c(r3 + r4)− q(r1 + r3).

Proof. In the same way as in the proof of Theorem 1, but using Proposition 5 or Proposi-
tion 6.

Let us notice that if r1 = r2 = r3 = r4, then we only have a possibility of inclusion in
each classical statement. The following result summarizes this fact.

Corollary 2. Let P̃1, P̃2, and P̃3 be three fuzzy points defining a fuzzy right triangle T̃ at P̃2,
and let H̃P2E be the altitude of T̃ from P̃2 to L̃P̃1 P̃3

, such that Ã = D̃
(

P̃1, P̃2

)
, B̃ = D̃

(
P̃2, P̃3

)
,

C̃ = D̃
(

P̃1, P̃3

)
, H̃ = D̃

(
P̃2, Ẽ

)
, P̃ = D̃

(
Ẽ, P̃1

)
, and Q̃ = D̃

(
P̃3, Ẽ

)
.

If each P̃i is a cone of circular base of radius r > 0 and so is Ẽ, then the following apply:

1. H̃2 ⊆ P̃ · Q̃.

2. Ã2 ⊆ P̃ · C̃.

3. B̃2 ⊆ Q̃ · C̃.

Proof. By Theorem 2 item 1, H̃2 ⊆ P̃ · Q̃ if and only if∣∣∣r4(r1 + r3 − 2r2) + r1r3 − r2
2

∣∣∣ < p(r3 + r4) + q(r1 + r4)− 2h(r2 + r4). (11)

If r1 = r2 = r3 = r4, then inequality (11) is equivalent to 0 < p + q − 2h. The latter is
always true, because p + q− 2h =

(√
p−√q

)2 ≥ 0.

Items 2 and 3 are proved in the same way, considering that c + p− 2a =
(c− a)2

c
and

c + q− 2b =
(c− b)2

c
for each item, respectively.

5. Examples

In this section, we provide three examples. The first and second ones show the
necessary condition of Proposition 4 and Proposition 6, respectively. To finish, Example 5
shows a fuzzy right triangle satisfying Theorem 2.

Example 3. Let P̃1(2, 2), P̃2(5, 2), and P̃3(5, 6) be three fuzzy points defined by their membership
functions

µP̃1
(x, y) =

1−
√
(x− 2)2 + (y− 2)2

1.5
if (x− 2)2 + (y− 2)2 ≤ 1.52

0 elsewhere.
,

µP̃2
(x, y) =

1−
√
(x− 5)2 + (y− 2)2

0.9
if (x− 5)2 + (y− 2)2 ≤ 0.92

0 elsewhere.
, and

µP̃3
(x, y) =

1−
√
(x− 5)2 + (y− 6)2

2.9
if (x− 5)2 + (y− 6)2 ≤ 2.92

0 elsewhere.

respectively, and defining a fuzzy right triangle at P̃2, with a = 3, b = 4, c = 5, r1 = 1.5,
r2 = 0.9, and r3 = 2.9. Hence, a(r1 + r2) + b(r2 + r3)− c(r1 + r3) = 3 · 2.4+ 4 · 3.8− 5 · 4.4 =

0.4 > 0. However, C̃2 6⊆ Ã2 + B̃2, because C̃2(0) =
[
(5− 4.4)2, (5 + 4.4)2

]
= [0.36, 88.36]
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and
(

Ã2 + B̃2
)
(0) =

[
(3− 2.4)2 + (4− 3.8)2, (3 + 2.4)2 + (4 + 3.8)2

]
= [0.4, 90]. This illus-

trates that the condition a(r1 + r2) + b(r2 + r3)− c(r1 + r3) > 0 of Proposition 4 is not sufficient.
Furthermore, notice that |r2(r1 + r2 + r3)− r1r3| = 0.42; then, |r2(r1 + r2 + r3)− r1r3| >
a(r1 + r2) + b(r2 + r3)− c(r1 + r3); then, Theorem 1 is not satisfied.

Example 4. Let us consider fuzzy points P̃1(12, 3), P̃2(13, 3), and P̃3(3, 10) defining a fuzzy right
triangle, denoted by T̃ , at P̃2. The membership functions of each fuzzy point are defined by

µP̃1
(x, y) =

1−
√
(x− 12)2 + (y− 3)2 if (x− 3)2 + (y− 3)2 ≤ 1

0 elsewhere.
,

µP̃2
(x, y) =

1−
√
(x− 3)2 + (y− 3)2 if (x− 12)2 + (y− 3)2 ≤ 1

0 elsewhere.
, and

µP̃3
(x, y) =

1−
√
(x− 3)2 + (y− 10)2

3
if (x− 3)2 + (y− 10)2 ≤ 32

0 elsewhere.

respectively. Let Ẽ be the fuzzy point contained in L̃P̃1 P̃2
with membership function

µẼ(x, y) =

1−
√
(x− 8)2 + (y− 8)2

2
if (x− 8)2 + (y− 8)2 ≤ 22

0 elsewhere.
.

Let H̃P̃2
be the altitude of T̃ from P̃2. In this case, we have a = 10, b = 10, c = 10

√
2, p = q =

h = 5
√

2, r1 = 1, r2 = 1, r3 = 3, and r4 = 2. From straightforward computations, we obtain that
H̃2(0) =

[
59− 30

√
2, 59 + 30

√
2
]

and
(

P̃ · Q̃
)
(0) =

[
65− 40

√
2, 65 + 40

√
2
]
, this implies

that H̃2 ⊆ P̃ · Q̃. According to Proposition 6, p(r3 + r4) + q(r1 + r4)− 2h(r2 + r4) > 0. Indeed,
p(r3 + r4) + q(r1 + r4)− 2h(r2 + r4) = 5

√
2 · 5 + 5

√
2 · 3− 2 · 5

√
2 · 3 = 10

√
2.

Example 5. Let us consider the fuzzy points of Example 4. We know from the previous example
that H̃2 ⊆ P̃ · Q̃. Notice that the necessary and sufficient condition of Theorem 2 item 1 is
satisfied, that is,

∣∣r4(r1 + r3 − 2r2) + r1r3 − r2
2

∣∣ < p(r3 + r4) + q(r1 + r4)− 2h(r2 + r4). Indeed,∣∣r4(r1 + r3 − 2r2) + r1r3 − r2
2

∣∣ = 6, and from Example 4, p(r3 + r4) + q(r1 + r4) − 2h(r2 +

r4) = 10
√

2. See Figure 6.
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Figure 6. Fuzzy points of Example 5.
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6. Conclusions and Comments

In this paper, two metric relations of the right triangle were extended from Euclidean
geometry to fuzzy geometry. More precisely, a version of the Pythagorean theorem and
a version of the altitude theorem were provided in analytical fuzzy geometry. For this,
the membership function for each fuzzy point was considered to be a right circular cone.
The stated metric relations are inclusion relations that depend on the cone radii, which
have a very similar form to the classical statements (or the crisp statements) in Euclidean
geometry.

This condition imposed on the fuzzy points is due to the complexity of establishing
a simple condition that implies some inclusion relation; for instance, in a general way,

C̃2 ⊆ Ã2 + B̃2 if and only if
(
δα

m,c
)2 ≥

(
δα

m,a
)2

+
(

δα
m,b

)2
and

(
δα

M,c

)2
≤
(

δα
M,a

)2
+
(

δα
M,b

)2
,

for all α ∈ [0, 1], where

δα
m,a = min

x1∈∂P̃1(α), x2∈∂P̃2(α)
dist(x1, x2), δα

m,b = min
x1∈∂P̃2(α), x2∈∂P̃3(α)

dist(x1, x2),

δα
m,c = min

x1∈∂P̃1(α), x2∈∂P̃3(α)
dist(x1, x2), δα

M,a = max
x1∈∂P̃1(α), x2∈∂P̃2(α)

dist(x1, x2),

δα
M,b = max

x1∈∂P̃2(α), x2∈∂P̃3(α)
dist(x1, x2), δα

M,c = max
x1∈∂P̃1(α), x2∈∂P̃3(α)

dist(x1, x2).

More accurately, from Section 3, Equation (3), C̃2 ⊆ Ã2 + B̃2 if and only if(
c−

(
r1

c (α) + r3
c (α)

)
−
(

h1
c + h3

c

))2
≥
(

a−
(

r1
a(α) + r2

a(α)
)
−
(

h1
a + h2

a

))2

+
(

b−
(

r1
b(α) + r2

b(α)
)
−
(

h1
b + h2

b

))2
,

and
(
c + H3

c + H1
c
)2 ≤

(
a + H1

a + H2
a
)2

+
(
b + H2

b + H3
b
)2. Then, imposing the condition

on the fuzzy points such that their membership functions are right circular cones helps us
to reduce some variables in the above inequalities.

As we mentioned in Section 4.2, Ghosh and Chakraborty proposed in [20] a measure
of the degree to which a fuzzy point P̃ belongs to a fuzzy line segment L̃ only when
core

(
P̃
)
∈ core

(
L̃
)

. Although this containment proposal is more accurate than the one
given by Buckley and Eslami in [1], we did not consider it, since assuming one or the
other definition to compute the fuzzy distance between two fuzzy points, where one of
them is contained in a fuzzy line segment and the other is a fuzzy point defining the
fuzzy line segment, is the same. For instance, we see Figure 7. Let L̃ be a fuzzy line
segment defined by fuzzy points P̃1 and P̃2. According to [20], fuzzy point Ẽ is fuzzily
contained in L̃ with the membership value of 0 < β < 1, because Ẽ(0) 6⊂ L̃(0). Then,
D̃
(

Ẽ, P̃2

)
(α) = [p− (r3 + r2)(1− α), p + (r3 + r2)(1− α)] for all α ∈ [0, 1]. The latter is the

same if Ẽ(0) ⊂ L̃(0).

Figure 7. Fuzzy point Ẽ is fuzzily contained in L̃.
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In future research, we want to compare our results with those obtained by considering
the definitions of fuzzy distance and fuzzy line segment that depend on the definitions
of inverse points and same points with respect to continuous fuzzy points given in [20].
Moreover, we plan to define other secondary elements of a fuzzy triangle and study their
properties or how to extend them from Euclidian geometry to analytical fuzzy geometry.
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