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Abstract: In this paper, the problem of formation control with regard to leader–follower mobile
robots in the presence of disturbances and model uncertainties, without needing to know the velocity
of the leader robot, is presented. For this purpose, at first, a first-order kinematic model of leader–
follower and leader–leader formations is obtained, and considering the absolute velocity of the leader
robots as an uncertainty, a robust adaptive controller is designed to keep the desired formation.
In this case, the upper bound of uncertainty is unknown and is obtained via stable adaptive laws.
Afterwards, in order to deal with the accelerated robots and obstacles, second-order leader–follower
and leader–leader formation models are obtained from the previous models. A robust adaptive
controller is then designed to stabilize the entire system in the presence of disturbances and modeling
uncertainties, without needing to know the parameters or matrices of the formation models. In
addition, by considering one of the leaders in the leader–leader model as a virtual obstacle, the
challenge of avoiding moving obstacles is also addressed in the presence of uncertainties. The
simulation results show the effect of the presented controllers in effectively keeping the desired
leader–follower formations.

Keywords: mobile robots; robust adaptive control; modeling uncertainties; leader–follower formation
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1. Introduction

In recent years, the formation control of several vehicles has received much attention in
the discussion of control science. Formation control applications include the coordination of
several robots, unmanned air/sea vehicles, satellites, airplanes, and spacecraft. Formation
control among multi-robot systems as one of the most widely used examples of multi-agent
systems has received special attention in recent years [1–4].

In fact, a group of small mobile robots (such as one-wheeled, two-wheeled, car-like
robots, or unmanned aerial robots) that are networked together can perform a variety
of tasks by maintaining a specific formation. Controlling the leader–follower formation
of mobile robots is one of the most important methods in the field of maintaining the
formation of robots and has been studied by many researchers [5–9]. In the leader–follower
method, one (or more) robots are considered as the leader and will be responsible for
directing the entire formation, and other robots, as followers, are controlled in such a way
to track the leader robots with predetermined distances.

One of the advantages of the leader–follower method is its simplicity, comprehen-
sibility, and easy implementation. In [10], a feedback linearization control method for
non-homonymic moving robots is presented using the leader–follower method, where
the absolute velocity of the leader robot in the local coordinates of the follower robot is
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considered as an external input. In [11], a formation controller, consisting of a feedback
linearization part and a sliding mode compensator, is designed to stabilize the overall sys-
tem. The proposed controller generates the commanded torques for the follower robot and
makes the formation control system robust to the effect of unknown bounded disturbances
in dynamic modeling. Furthermore, active obstacle avoidance is presented by considering
the obstacle as a virtual leader in the proposed model. In [12], the hybrid feedback approach
is presented to solve the navigation problem in the n-dimensional space, containing an
arbitrary number of ellipsoidal obstacles; one of the limitations of this method is that the
follower robot must have complete information about the acceleration of the leader and
obstacle robots. In [13], a distributed formation controller is designed to guide multiple
UAVs in order-less states to swiftly reach an intended formation. Inspired by biological
creatures, a distributed collision avoidance controller is proposed to avoid unknown and
mobile obstacles. Avoiding moving obstacles is one of the challenges in controlling the
formation of moving robots. In [3], the problem of non-collision with moving obstacles was
investigated, but the speed of the obstacle was considered constant, which does not seem
to be a reasonable assumption. Other articles such as [14–19] have studied the non-collision
with moving obstacles during formation.

In practice, many of the existing control methods that have been presented for dynamic
systems may not be applicable, because the considered model may not be accurate or the
system may be subject to limited disturbances or un-modeled dynamics. For example, a
robot model that is controlled to go in a desired direction may not accurately express its
dynamics and may have un-modeled dynamics. Apart from these cases, external distur-
bances always affect the behavior of a system. In [4], a distributed adaptive back-stepping
control approach is elucidated, addressing the challenge of managing the formation control
for multiple unmanned aerial vehicles in the presence of input saturation, actuator faults,
and external disturbances. By estimating the upper fault and disturbance bounds, the
introduced controller adeptly handles scenarios involving external disturbances, actuator
faults, and inherent model uncertainties. In [6], an adaptive controller is formulated to
uphold leader–follower formation under conditions of leader robot speed ambiguity. This
proposed formation control tactic ensures both the continuity of connectivity and the avoid-
ance of collisions between the leader and follower entities. In [15], a robust leader–obstacle
formation control scheme is devised, imparting the system with resilience against absolute
acceleration influences from both the leader and obstacle elements. Simultaneously, the
leader–obstacle formation proposal obviates angular velocity constraints associated with
the leader and obstacle components. Refs. [20–23] can be mentioned among other articles
in which robust or adaptive control rules are used in maintaining the formation of mobile
robots by considering parametric uncertainties. Regarding the new methods of dealing
with obstacle avoidance in mobile robots that have been proposed in the last two years,
we can refer to references [24–26]. In [24,25], the reinforcement learning (RL) method and
the nonlinear model predictive control (NMPC) method are, respectively, proposed for
obstacle avoidance among mobile robots during the motion planning of robots. In [26], an
artificial potential field algorithm is proposed to solve the problem of obstacle avoidance in
leader–follower formation control among mobile robots.

In addition, in most of the previous research, only the first-order formation model is
considered, yet in the first-order equation, only the linear and angular velocities of robots
with formation variables can be expressed, and the acceleration of the robots cannot be
studied. The second point is that, in the previous methods that are presented in the field
of leader–follower formation, the velocity of the leader robot is needed as a variable for
feedback, but it is very difficult to measure the absolute speed of the leader robot for the
follower robot, since both are moving along with each other.

After reviewing the issues raised and the results of previous papers related to this
topic, the contributions of this paper in formulating a new practical problem in the field
of the formation control of mobile robots, as well as the innovations used to solve this
problem, become clear in the following:
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(1) In the first-order model of leader–follower formation in mobile robots, the linear and
angular velocities of the follower robot are the control inputs that should be obtained
by the designer. However, if we want to also study accelerated mobile robots (which
is more applicable in real situations), we have to find the second-order formation
model, in which the control inputs are the linear and angular accelerations of the
follower robot.

(2) The absolute linear and angular velocities of the leader robot (in the first-order model)
and the absolute linear and angular acceleration of the leader robot (in the second-
order model) will be used by the follower robot as feedback in a closed-loop control
system. However, measuring these absolute values is very difficult (and in some
situations impossible) for the follower robot due to the constraints of the sensors
located on the follower robot. The reason is that both the follower and the leader are
moving in respect of each other, and the follower robot can only measure the relative
velocity/acceleration of the leader in respect of himself and not the leader’s absolute
velocity or acceleration.

(3) In reality, all of the leader–follower formation systems are subject to undesirable exter-
nal disturbances or modeling uncertainties. Any external signal or force that affects
the velocity or acceleration of the follower robot can be considered as a disturbance.
So, the designed formation controller must be robust against these disturbances.

(4) It is essential to solve the problem of obstacle avoidance while maintaining the leader–
follower and leader–leader formation. Considering the second-order formation model,
obstacle avoidance can be solved for accelerating active obstacles.

Taking into account the aforementioned four factors, the problems and primary contri-
butions presented in this paper are discussed below.

This paper discusses the design and stability of comprehensive leader–follower and
leader–leader control systems that are robust against uncertainties and disturbances and
address the aforementioned problems collectively. The proposed formation controller aims
to achieve the desired leader-follower formation in the presence of uncertainties, such as
the velocity and acceleration of the leader, as well as unknown external disturbances. This
robust adaptive formation controller is applicable to both first-order and second-order
models, and it ensures convergence of the follower robot without requiring knowledge
of the leader’s velocity and acceleration. Additionally, it can handle disturbances with an
unknown upper bound.

In addition, the designed robust adaptive controller for the second-order leader–
follower formation model can achieve formation without any knowledge or information
about the formation’s dynamic parameters; this is a significant advancement in this field.

In this paper, unlike in previous papers, both first-order and second-order formation
models are investigated. Also, the velocity of the leader robot in the first-order model and
its acceleration in the second-order model are both considered to be completely unknown
for the follower robot. For this purpose, after stating some preliminaries and first assuming
the presence of uncertainties and unknown dynamics in the formation model, a robust
adaptive controller (which is independent of the model matrices) will be designed that will
maintain the leader–follower formation, despite the modeling uncertainties and unknown
dynamics in both the first- and second-order models. Therefore, the innovations of the
present paper, compared to previous research, can be highlighted as follows:

(1) Obtaining both first-order and second-order kinematic models for leader–follower
and leader–leader formations in order to deal with the velocities and accelerations of
both robots;

(2) Designing new robust adaptive controllers for achieving leader–follower and leader–
leader formation in mobile robots, assuming that all of the dynamic parameters and
formation model matrices are unknown for the designer due to the large amount of
uncertainty in the formation model;
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(3) Considering the absolute velocity and acceleration of the leader robot, respectively, the
in first-order and second-order kinematic formation models, as model uncertainties
that are completely unknown for the follower robot;

(4) Presenting a solution for avoiding accelerating active obstacles by considering one of
the robots in the leader–leader formation to be an unidentified moving obstacle.

The remainder of the paper is organized as follows:
In the second section, the kinematic modeling of mobile robots and the models of

leader–follower and leader–leader formation are discussed. In the third section, the design
of robust adaptive controllers is discussed in order to maintain formation among the robots.
The simulation results in the fourth section show the correctness of the obtained control
laws; finally, the conclusion is presented in the fifth section of the paper.

2. Mathematical Modeling of Formation Control

In this section, the first-order and second-order kinematic models of formation for
both the leader–follower and leader–leader scenarios, along with the problem formulations,
are presented.

2.1. First-Order Kinematic Model of Formation
2.1.1. Kinematic Model for Leader–Follower Formation

Illustrated in Figure 1 are two robotic entities configured within a leader–follower
formation. The follower robot, denoted as R2, demonstrates adherence to the leader robot,
designated as R1, maintaining a separation denoted as l12 along with a relative orientation
marked as ϕ12. Notably, a relative motion sensor is strategically positioned at point C atop
robot R2.
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Expressed concisely, the kinematic equation for each individual robot takes the subse-
quent form (i = 1, 2) [9]:( .

xci.
yci

)
=

(
cosθi −dsinθi
sinθi dcosθi

)(
vi
ωi

)
,

.
θi = ωi (1)

where (xciyci) symbolizes the coordinates of point C within the broader global coordinate
framework, and θi signifies the directional angle of the respective robot. As visually
depicted in Figure 1,

→
vi and

→
ωi denote the linear and angular velocities (respectively, with
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units m/s and rad/s) associated with robot Ri, with their scalar representations manifesting
as vi and ωi, correspondingly.P0 represents the juncture at which the axis of symmetry
intersects with the mobile wheel axis, while d quantifies the distance extending from the
center of mass to the reference point C.

The distance between two robots can be obtained from the following relationship:

l12 =

√
(x1 − x2)

2 + (y1 − y2)
2 (2)

And the relative direction between two robots is as follows:

ϕ12 = π − θv2 − θ1 + θ2 (3)

where the units of l12 and ϕ12 and other distance and angles are, respectively, m and rad
throughout this paper. By taking derivatives from these two relationships and using the
kinematic equations stated in (1), we have [20,21]

M

( .
l12.
ϕ12

)
− N

(
v1
ω1

)
=

(
v2
ω2

)
(4)

where matrices M and N are defined as follows:

M =

(
−cosθv2 −l12sinθv2

(sinθv2)/d −(l12cosθv2)/d

)

N =

(
−cosθ12 l12sinθv2
−(sinθ12)/d (l12cosθv2)/d

)
In this relation, θ12 = θ1 − θ2 and, as shown in Figure 1, θv2 = π − ϕ12 − θ12 show the

relative direction between the speed, v2, and the line, l12.

By defining the state variables as q = (l12 ϕ12)
T and

.
q =

( .
l12

.
ϕ12

)T
and the input

of the formation system as u = (v2 ω2)
T , we can write Equation (4) in a simplified form

as follows:
.
q = G× (u + δ) + η (5)

where η stands for the external disturbances and the G and δ, matrices which are defined
as follows:

G = M−1 =

(
−cosθv2 dsinθv2
−sinθv2/l12 −dcosθv2/l12

)

δ = N(l12, θ12, θv2)

(
v1
ω1

)
Note 1. The final component, denoted as δ in Equation (5), encapsulates the influence stemming
from the absolute velocity of the leader robot. This variable proves challenging to precisely gauge
and approximate, owing to the constraints that are inherent to motion sensors, thus representing an
inherent uncertainty within the system’s model.

2.1.2. Leader–Leader Formation Kinematic Model

Depicted in Figure 2 is a triad of non-holonomic mobile robots, each with their unique
attributes. Within the context of leader–leader formation control (abbreviated as l-l), the
objective entails the third robot effectively preserving optimal distances, denoted as ld

13 and
ld
23, in relation to its two designated leaders. It is obvious that, for this purpose, the two

leader robots should never be placed at a distance of more than ld
13 + ld

23 from each other.
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By taking derivatives from Equation (2) for the distance between the two robots R1 and
R3 (l13) and the distance between the two robots R2 and R3 (l23), and using the kinematic
equations stated in (1), the following equation as a first-order model for leader–follower
formation will be achieved:

M

[ .
l13.
l23

]
− N

[
v1
v2

]
=

[
v3
ω3

]
(6)

where the matrices M and N are defined as follows:

M =
1

dsin(γ2 − γ1)

[
dsin(γ2) −dsin(γ1)
−cos(γ2) cos(γ1)

]

N =
1

dsin(γ2 − γ1)

×
[
−dcos(ϕ13)sin(γ2) dsin(γ1)cos(ϕ23)

cos(γ2)cos(ϕ13) −cos(γ1)cos(ϕ23)

]
And we have γi = θi + ϕi3 − θ3(i = 1, 2). By defining the state variables as q =

(l13 l23)
T and

.
q =

( .
l13

.
l23

)T
, and the input of the formation system as u = (v3 ω3)

T ,
Equation (6) is rewritten as follows:

.
q = G× (u + δ) + η (7)

Such that η stands for the disturbance vector and the G and δ matrices are defined
as follows:

G = M−1 =

[
cosγ1 dsinγ1
cosγ2 dsinγ2

]

δ = N
[

v1
v2

]
The ultimate term δ within Equation (7) illustrates the impact stemming from the

linear velocity of the leader robots, serving as a representation of the inherent uncertainty
that is intrinsic to the system.
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2.2. Second-Order Kinematic Model of Formation
2.2.1. Leader–Follower Formation Kinematic Model

In Equation (4), the movement states of the formation in the local frame of the follower
robot R2 are depicted. The follower robot has no knowledge of the absolute speed of the
leader robot and, as a result, can only estimate the relative speed of the leader robot in
respect of itself using motion sensors installed at its front. Equation (4) can be written as

N−1

[
M

( .
l12.
ϕ12

)
−
(

v2
ω2

)]
=

(
v1
ω1

)
(8)

Deriving from (4) and combining with (8), we have
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Equation (10) establishes the interconnection between inputs and outputs within the 
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where matrix C and vector δ are defined as follows:

C =

( .
θv2sinθv2 −

.
θv2l12cosθv2 −

.
l12sinθv2( .

θv2cosθv2

)
/d

( .
θv2l12sinθv2 −

.
l12cosθv2

)
/d

)

δ =

(
δ1
δ2

)
= M

(
− .

v1cosϕ12.
v1sinϕ12

l12
− .

ω1

)
+

(
η1
η2

)
where

.
θ12 = ω1 − ω2 and

.
θv2 = − .

ϕ12 −
.
θ12 are used in (9), and (η1 η2)

T stands for the
bounded external disturbance vector. Note that the state variables with q = (l12 ϕ12)

T

and
.
q =

( .
l12

.
ϕ12

)T
and the input of the robot formation system with u =

( .
v2

.
ω2
)T are

specified. Equation (9) can be rewritten as follows:
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where the function G
(

q,
.
q, θ12,

.
θ12, v2, w2

)
is defined as follows:

G = −
.
θ12

(
hω2
−v2/d

)
+ M

(
−l12

.
ϕ12.

l12/l12

)
ω2 (11)

Equation (10) establishes the interconnection between inputs and outputs within the
leader–follower robot formation framework. The outputs encompass relative metrics such
as the distance, direction, and velocities between the robots, while the inputs correspond to
the follower robot’s absolute accelerations within local coordinates. The relative motion
states q,

.
q, and

.
θ12, delineated in Equation (10), can be conveniently assessed using the

relative motion sensors that are embedded in the follower robot.

Note 2. The incorporation of the second-order kinematic model (10) results in a multi-variable,
non-linear system configuration. This facet facilitates a more comprehensive scrutiny of the con-
trol system’s effectiveness, enabling the formulation of non-linear control strategies that ensure
holistic stability. Moreover, this model opens avenues for pursuing intricate trajectory tracking,
transcending the capabilities of the first-order kinematic model.

Note 3. Exploiting Equation (10), the centripetal accelerations and Coriolis effect, denoted as
C

.
q + Gwithin (10), can be directly computed utilizing the outcomes furnished with both the relative

motion sensors and the local motion sensor mounted on the follower robot. Furthermore, these
relative accelerations serve to linearize the intricate nonlinear dynamics that are inherent to the
leader–follower formation setup.
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Note 4. The ultimate term δ presented within Equation (10) encapsulates the influence originating
from the leader robot’s absolute acceleration. This parameter proves to be intricate to precisely
measure and gauge, owing to the inherent limitations of motion sensors, and consequently represents
a quintessential component of the system’s model uncertainty.

2.2.2. Leader–Leader Formation Kinematic Model

Through the resolution of Equation (6), the absolute linear velocity of the leader robots,
a quantity beyond the capacity of measurement by the obstacle robot, is formulated in
terms of the formation’s motion states and the absolute velocity of the follower robot, as
delineated below: [

v1
v2

]
= N−1

[
M

[ .
l13.
l23

]
−
[

v3
ω3

]]
(12)

By taking the derivative from (6) and combining with (12), we have:[ .
v3.
ω3

]
= M

[..
l13..
l23

]
+ C

[ .
l13.
l23

]
− C’

[
v1
v2

]
+

[
δ1
δ2

]
(13)

where the matrices C and C′ have not been calculated due to the large amount of calculations
and the vector δ is defined as follows:

δ =

[
δ1
δ2

]
= −N

[ .
v1.
v2

]
+

(
η1
η2

)
where (η1 η2)

T stands for the bounded external disturbance vector. We now define the
state variables as follows:

q = [l13 l23]
T

.
q =

[ .
l13

.
l23

]T

and the input of the robot formation system is specified as u =
[ .
v3

.
ω3
]T . Equation (13) can

be rewritten as follows:
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and the input of the robot formation system is specified as 𝑢 = [𝑣ሶଷ 𝜔ሶ ଷ]். Equation (13) can 
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where the function 𝐺(𝛾ଵ, 𝛾ଶ, 𝑞ሶ , 𝑣ଷ, 𝜔ଷ) is defined as follows: 𝐺 = −𝐶ᇱ ቂ𝑣ଵ𝑣ଶቃ where the function G
(
γ1, γ2,

.
q, v3, ω3

)
is defined as follows:

G = −C′
[

v1
v2

]
Equation (14) establishes the interplay between inputs and outputs within the leader–

leader formation system under the l − l mode. The outputs encompass the relative metrics,
specifically the distances and velocities between the robots. In this context, the inputs
comprise the absolute accelerations originating from the follower robot’s local coordination.
The relative motion states q and

.
q, featured in Equation (12), are determined through the

utilization of the relative motion sensors positioned on the follower robot.

Note 5. Analogous to the leader–follower formation setup, the ultimate term δ presented within
Equation (14) signifies the impact arising from the linear acceleration of the leader robots. This pa-
rameter proves to be intricate to precisely measure and gauge due to the limitations that are inherent
in motion sensors, thereby representing a core element of uncertainty within the system’s model.

Note 6. Equations (10) and (14) both have the same structure and, as we will see in next section,
the stabilizing controller is same for both models. The designed controller should provide the linear
acceleration

( .
v 3

)
and angular acceleration

( .
ω3
)

of the follower robot in such a way that, despite
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keeping the formation, the system stays robust against the disturbances and uncertainties of the
model and input constraints, and in addition, model matrices are not used in the controller structure.

3. Design of Robust Adaptive Controller

In this section, at first, a controller will be designed, taking into account the uncertain-
ties and unknown dynamics of modeling in the first-order formation and assuming that
there is no knowledge about the upper band of uncertainty, so that the follower robot will
be placed at the optimal distance and angle to the leader. In the following, according to
the second-order formation models, a robust adaptive controller will be designed to deal
with uncertainties and unknown dynamics in the model. In this controller, the unknown
parameters of the arrangement model are estimated in the form of an adaptation law.

3.1. Robust Adaptive Controller for First-Order Model of Formation

In this section, the design of the controller is performed based on the leader–follower
first-order formation model, which is given in Equation (5). The controller design for the
leader–leader formation in Equation (7) is quite similar.

First, we rewrite Equation (5) as follows:

.
q = G× u + d (15)

where d = G× δ + η is considered as the uncertainty and disturbance of the system.
Assume that the uncertainty is limited as ‖d‖ ≤ γ and we have no information about the

upper band of γ. After estimating it, we use it as γ in the design of the controller. In this case,
consider ‖.‖ as the absolute value of the vector entries, meaning that ‖d‖ = (|d1|, |d2|)T. Also,
γ = (γ1, γ2)

T and ‖d‖ ≤ γ means |d1| ≤ γ1 and |d2| ≤ γ2.

Remark. The units of some variables in the first-order model in Equation (15) and in the second-
order model in Equation (21) can be surmised in the following table (Table 1). Note that the units of
these variables according to the leader–leader (denoted as l − l) and leader–follower models (denoted
as l − ϕ) are different.

Table 1. Units of variables in this study.

Variable Unit Variable Unit

q = (l12 ϕ12)
T (m, rad)T u =

( .
v3

.
ω3
)T (

m/s2rad/s2)T

q = (l13 l23)
T (m, m)T d = (d1, d2)

T in (15) for l − l model (m/s, m/s)T

.
q =

( .
l12

.
ϕ12

)T
(m/s, rad/s)T d = (d1, d2)

T in (15) for l − ϕ model (m/s, rad/s)T

.
q =

( .
l12

.
l23

)T
(m/s, m/s)T δi in (21) for l − l model

(
m/s2m/s2)T

u = (v2 ω2)
T (m/srad/s)T δi in (21) for l − ϕ model

(
m/s2rad/s2)T

Note 7. It should be noted in the leader–follower model that the term δ includes v1 and ω1, and in
the leader–leader model δ includes v1 and v2. Now, given that measuring the absolute velocities of
leaders is very difficult for the follower robot due to the constraints of the motion sensors (the follower
robot can only measure its relative velocity with leaders and not the absolute velocity of leaders),
then the term δ is considered as the modeling uncertainty in (15). In the equation d = G× δ + η,
δ stands for uncertainties and η stands for disturbances, and therefore the term d can be called
system perturbation, which can be defined as a summation of the undertrained terms (G× δ) and
disturbances (η) of the system.

We write Equation (15) with the definition
∼
q = q− qd as follows:

.
∼
q = Gu + d− .

qd (16)
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where qd =
[
ld
12, ϕd

12

]
shows the optimal values of the distance and angle of the follower

robot relative to the leader robot.

Theorem 1. Consider Equation (5). In this case, the control input is

u = G−1
{
−Λ

∼
q +

.
qd

}
− γ (17)

where γ is estimated using the following adaptive law,

.
γ = GT∼q − ∼q (18)

and Λ is a positive definite matrix; it will cause the states q = [l12, ϕ12] to converge to the desired
values qd =

[
ld
12, ϕd

12

]
in the closed-loop system.

Proof: Consider the Lyapunov function, as below:

V =
1
2
∼
q

T∼
q +

1
2
∼
γ

T∼
γ (19)

in which
∼
γ = γ− γ, and V is a positive definite value. By taking the time derivative from

(19) and using Equations (16) and (17), we have
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(20)

Considering the equality of 𝑞෤்𝐺𝛾̅ and 𝛾்̅𝐺்𝑞෤ (because both are scalars), and also 𝑞෤்𝛾̅ and 𝛾்̅𝑞෤ using Equation (18), we have: 𝑉ሶ ≤ −𝑞෤்Λ𝑞෤ 
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□ 

Note 8. The robust adaptive control method which is mentioned in this section can be proven in 
the case of the leader–leader formation, which will not be repeated again in order to avoid repetition. 
The formation control law in (17) and (18) can easily be applied for the leader–leader formation 
model in (7) without the loss of generality, and the only difference is that,  for the leader–leader case, 
we should consider G and δ as in model (7) and 𝑞 and 𝑞ௗ as 𝑞 = (𝑙ଵଷ 𝑙ଶଷ)் and 𝑞ௗ = (𝑙ଵଷௗ  𝑙ଶଷௗ )் 
to achieve leader–leader formation. 

Considering the equality of
∼
q

T
Gγ and γTGT∼q (because both are scalars), and also

∼
q

T
γ

and γT∼q using Equation (18), we have:

.
V ≤ −∼q

T
Λ
∼
q

Which, according to the positive definiteness of Λ, we have:

∼
q → 0⇒ q→ qd

�

Note 8. The robust adaptive control method which is mentioned in this section can be proven in the
case of the leader–leader formation, which will not be repeated again in order to avoid repetition. The
formation control law in (17) and (18) can easily be applied for the leader–leader formation model in
(7) without the loss of generality, and the only difference is that, for the leader–leader case, we should

consider G and δ as in model (7) and q and qd as q = (l13 l23)
T and qd =

(
ld
13 ld

23

)T
to achieve

leader–leader formation.

3.2. Robust Adaptive Controller for the Second-Order Model

In this section, the design of the controller is carried out based on the second-order
kinematic models in (10) and (14). In the second-order models, the accelerations of the
leader robots are also included in the equations. The goal is to design the controller in
such a way that, in the presence of uncertainty and disturbance and without using model
matrices, the follower robot can be made to maintain the formation.

In Equations (10) and (14), the goal is to design the controller u in such a way that
qi → qdesi , where i = 1, 2. For the leader–follower model in (10), we have i = 1 and qdes1 =(

ld
12 ϕd

12

)T
, and for the leader–leader model in (14), we have i = 2 and qdes2 =

(
ld
13 ld

23

)T
.
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In order to design the controller, we use the following model, which corresponds to both the
leader–follower and leader–leader formation models:

Mi(qi)
..
qi + Ci

(
qi,

.
qi
) .
qi + Gi + δi = ui (21)

Note 9. In the leader–follower model, the uncertain term δ is the summation of the leader’s linear

and angular accelerations
( .

v1.
ω1

)
(which are not easy for the follower robot to measure) and the

external disturbances
(

η1
η2

)
. Also, in the leader–leader formation model, δ is the summation of

the terms of the leader 1 and leader 2 linear accelerations
[ .

v1.
v2

]
(which are also very difficult for

the followers to measure) and the external disturbances
(

η1
η2

)
. The unknown term δ, which is a

sumation of uncertainties and disturbances, can be defined as system perturbation.

Now, with the definition of ei = qdi − qi, where qdi shows the desired formation for
each of the follower robots in both models, and with the definition of ri = ei +

.
ei, the robust

adaptive controller for the i-th model will be in the following form [22]:

ui = Kivri + ViR (22)

In this relation, Kiv is a positive definite diagonal and square matrix, and we have

ViR =
ri ρ̂2

i
ρ̂i ‖ri‖+ εi

(23)

where the scalar, εi, is obtained from the following relation:

.
εi = −Kε εi, εi(0) = 1, Kε ∈ R+ (24)

and the scalar function, ρ̂i, is obtained from the following equation:

ρ̂i = si θ̂i (25)

si =
(

1 ‖ei‖ ‖ei‖2
)

(26)

θ̂i =
(
δ̂0 δ̂1 δ̂2

)T (27)

Here, si is the regressor matrix and θ̂i is the parameter estimator vector. The adaptive
law that estimates the unknown parameters is in the following form:

.
θ̂i = γi sT

i ‖ri‖ (28)

In this law, γi is an arbitrary positive constant.

Theorem 2. By applying the control law (22), the formation error in both the leader–follower
and leader–leader models in (21) converges to zero, and the estimated parameters in (28) will also
remain limited.

Proof: The stability proof of applying the formation controller (22) into the formation model
in (21) is similar to the proof given in [22], which is presented for applying a controller with
a similar structure to that of (22), which was used for solving the desired path tracking
problem using a model of mechanical arms, similar to the model in (21).

We assume that the dynamics given below show uncertainty for the follower controller
in the i-th model [22].
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In order to achieve relation (29) again, by adding and subtracting other similar terms, 
we will reach the following relation: 𝑢௜ = −𝑀௜ 𝑟ሶ௜ − 𝐶௜ 𝑟௜ + 𝑤௜ (33)

where we have 𝑟ሶ௜ = 𝑒ሷ௜ + 𝑒ሶ௜. By applying the proposed controller in (22), Equation (33) will 
be as follows: 𝑀௜𝑟ሶ௜ = −𝐶௜ 𝑟௜ − 𝐾௜௩𝑟௜ − 𝑉௜ோ + 𝑤௜ (34)

Now we define the proposed Lyapunov function for the i-model as follows: 𝑉௜ = 12 𝑟௜் 𝑀௜ 𝑟௜ + 12 𝜃෨௜்  𝛾௜ି ଵ 𝜃෨௜ + 𝐾ఌି ଵ 𝜀௜ (35)
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Given the system parameters in the parameter vector, 𝜃௜ = (𝛿଴ 𝛿ଵ 𝛿ଶ)் in (25) and 
(26), meaning that 𝛿଴, 𝛿ଵ, and 𝛿ଶ are some scalar and constant values which are invari-
ant with time, so  𝜃ሶ௜ = 0. Therefore, deriving from the relation 𝜃෨௜ =  𝜃௜ − 𝜃෠௜ in (36), it can 
be concluded that 𝜃෨ሶ௜ = −𝜃෠ሶ௜ (37)
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by using Equations (25) and (30) and also the property of vector norms 𝑎்𝑏 ≤ ‖𝑎‖‖𝑏‖, 
we will have 

Suppose that a scalar function like ρi can be used to limit this uncertain dynamic.

ρi ≥ ‖wi‖ (30)

The unknown dynamics of wi can be limited as follows:

ρi = δ0 + δ1‖ei‖+ δ2‖ei‖2 ≥ ‖wi‖ (31)

In relation (31), parameters δ0, δ1, and δ2 are limited and positive constants. According
to the relations

.
ei =

.
qd −

.
qi and

..
ei =

..
qd −

..
qi, and increasing and decreasing the expressions

Mi
..
qd and Ci

.
qd in the formation model (21), we have

ui = −Mi
..
ei − Ci

.
ei + Mi

..
qd + Ci

.
qd + Gi + δi (32)

In order to achieve relation (29) again, by adding and subtracting other similar terms,
we will reach the following relation:

ui = −Mi
.
ri − Ci ri + wi (33)

where we have
.
ri =

..
ei +

.
ei. By applying the proposed controller in (22), Equation (33) will

be as follows:
Mi

.
ri = −Ci ri − Kivri −ViR + wi (34)

Now we define the proposed Lyapunov function for the i-model as follows:

Vi =
1
2

rT
i Mi ri +

1
2

∼
θ

T

i γ−1
i

∼
θ i + K−1

ε εi (35)

By taking the derivative from (35), we have
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Given the system parameters in the parameter vector, θi =
(
δ0 δ1 δ2

)T in (25) and
(26), meaning that δ0, δ1, and δ2 are some scalar and constant values which are invariant

with time, so
.
θi = 0. Therefore, deriving from the relation

∼
θ i = θi − θ̂i in (36), it can be

concluded that .
∼
θ i = −

.
θ̂i (37)

By substituting Equations (28), (37), and (34) in Equation (36) and simplifying, we
will have
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By using the property of antisymmetry, the term 1
2 rT

i

( .
Mi − 2Ci

)
ri becomes zero, and

by using Equations (25) and (30) and also the property of vector norms aTb ≤ ‖a‖‖b‖, we
will have

.
Vi ≤ −rT

i Kiv ri − rT
i ViR − si

∼
θ i‖ri‖+ si θi ‖ri‖+ K−1

ε
.
εi (39)

By replacing θ̂i = θi −
∼
θ i, and substituting (23) and (24) into (39), we will have

.
Vi ≤ −rT

i Kiv ri − rT
i

ri ρ̂2
i

ρ̂i ‖ri‖+ εi
+ si θ̂i ‖ri‖ − K−1

ε Kε εi (40)
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After simplifying and taking the common denominator in the terms on the left, we have

.
Vi ≤ −rT

i Kiv ri − εi +
εi
(
si θ̂i

)
‖ri‖

si θ̂i‖ri‖+ εi
(41)

The summation −εi +
εi(si θ̂i)‖ri‖
si θ̂i‖ri‖+εi

is always smaller than zero, so the derivative of the
proposed Lyapunov function for the i-th model becomes negative.

.
Vi ≤ −rT

i Kivri (42)

Now we can consider a new upper band for
.

Vi, such that, using the following relation,

λmin(Kiv)‖ri‖2 ≤ rT
i Kiv ri ≤ λmax(Kiv)‖ri‖2 (43)

can write .
Vi ≤ −λmin(Kiv)‖ri‖2 (44)

Therefore,
.

Vi will always be negative definite, and ri will decrease in this region and
tends towards ε. In this part, the signals are limited and the signal r is a member of the
space ri ∈ Ln

2 . As it has been said, the value of the estimated parameters θ̂i and
.
ei are

also limited. �

Note 10. Note that the robust adaptive formation control designed for the first-order formation
kinematic model in (15) is robust to the presence of uncertainty, G× δ, and disturbance, η (which
we called the sum of uncertainty and disturbance as perturbation named d = G × δ + η). The
parameter γ in controller (17) is the estimation of the upper bound of perturbation, meaning that
γ in ‖d‖ ≤ γ and is obtained from the stable adaptive law in (18). The designed robust adaptive
control law in (17), according to the proof of stability made using Lyapunov’s theorem in (19) and
(20), guarantees the formation in the presence of perturbation, which, not only do we not know, but
we also do not know about its upper bound.

Note 11. Also, the robust adaptive control law designed for the second-order kinematic formation
model in (21) is also robust against perturbation, δi. Parameter ρ̂i , which is present in the
controllers of Equations (22) and (23), is the estimate of the upper band of perturbation in (30), like
ρi ≥ ‖wi‖, and is obtained from Equation (25) and, as a result, via adaptive law (28). This robust
adaptive control law, considering the proof of stability made using Lyapunov’s theorem in Theorem
1, establishes the formation not only in the presence of perturbation but also without any knowledge
of the system’s matrices.

3.3. Leader–Obstacle Formation Control

A significant challenge within the control of leader–follower mobile robot formation
revolves around safeguarding the follower robot against collisions with dynamic obstacles,
while simultaneously maintaining the designated formation alongside the leader robot.
In the context of the leader–leader formation model outlined in Equation (14), this chal-
lenge is addressed by conceptualizing the obstacle as a virtual leader, thus giving rise to
the leader–obstacle formation framework (depicted in Figure 3). In this paradigm, the
primary objective involves orchestrating the follower robot, denoted as R3, to track the
leader robot R1 while preserving the desired distance, ld

13, and concurrently maintaining a
predetermined separation from the accelerated moving obstacle, a span indicated as ld

23.
In order to have an applicable dynamic obstacle avoidance, there should be a prede-

fined scenario for the follower robot. In this scenario, the formation system, particularly
the follower robot, necessitates the integration of a switching mechanism. This mechanism
ensures that, as soon as the follower robot detects the presence of an obstacle, it seamlessly
transitions its formation strategy from leader–follower to leader–obstacle. To achieve this,
strategies like control graphs or the supervisory control of discrete event systems [23], or
time-varying switching topologies [27], can be employed. Upon the obstacle’s relocation,
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and once it exits the follower robot’s visual scope, the formation mode transitions back from
leader–obstacle to leader–follower, allowing the follower robot to reestablish alignment
with the leader robot.
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By implementing the control laws expressed in Equations (17) and (22), the leader–
obstacle formation structure can be effectively established, even when confronted with
model uncertainties and unfamiliar dynamics.

At the end of this section, in order to better understand the methodology presented in
this paper, the complete robust adaptive control systems that are proposed in this section
to achieve leader–follower and leader–leader formations are presented in the form of
block diagrams in Figures 4 and 5. The robust adaptive controller blocks in the first-order
formation model in Figure 4 and second-order formation model in Figure 5, respectively,
provide the linear and angular velocity (input of the first-order formation model) and linear
and angular acceleration (input of the second-order formation model) for the follower robot.
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As we can also see from the block diagrams, the adaptive law in Figure 4 estimates
the upper bound of disturbance and uncertainties, which is a parameter for control law.
In Figure 5, this adaptive law estimates the parameters of the repressor form of the upper
bound of the uncertain dynamics, as in (25), (27), and (30).

It is also worth mentioning that the input controller in Figure 4 uses some parts
of the formation model, meaning matrix G (which is defined after Equation (5) in the
leader–follower model and after Equation (7) in leader–leader model), which includes some
parameters of the formation model. However, the robust adaptive controller in Figure 5,
as it is clear, only uses variables qi and

.
qi, meaning that it does not use any part of the

formation model. Therefore, the robust adaptive formation controller in Figure 5 is also
said to be model-free to some extent.

4. Simulation Results

This section will showcase the outcomes derived from the implementation of robust
adaptive controllers, specifically tailored for the leader–follower formation configuration
within mobile robots. These results will be demonstrated through simulation within the
MATLAB environment.

4.1. First Simulation Example

In the first simulation, the robust adaptive control law (17) will be applied to a leader–
follower formation system. We define the desired state of the system as follows:

qdes =
[
ld
12, ϕd

12

]T
=

[
200,

2π

3

]T

We consider the controller parameter as follows:

Λ =

[
10 0
0 10

]
(45)

By applying controller (17), the distance and relative orientation errors are shown
in Figure 6. As we can see, the relative distance and relative orientation errors between
the leader and the follower robot converge to zero, and as a result, the follower robot will
follow the leader robot with the desired formation.
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Figure 6. Distance and relative orientation errors in the leader–follower formation in the first simulation.

In addition, the estimated uncertainty is also shown in Figure 7, and as we can see,
this parameter is converged.
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4.2. Second Simulation Example

In the second simulation, the robust adaptive control law (22) will be applied to a
leader–follower formation system. The simulation results show that the designed controller
works well for both the leader–follower and leader–obstacle formations. First, we consider
the leader–follower formation. We define the desired state of the system as follows:

qdes =
[
ld
12, ϕd

12

]T
=

[
400,

2π

3

]T
(46)

We consider the controller parameters as follows:

Kv1 =

[
1 0
0 2

]
, kε1 = 1, γ1 = 4

θ̂1(0) = [1, 2, 3]T , ε1(0) = 1
(47)

Upon the application of controller (22), the ensuing Figure 8 illustrates the evolution
of the distance and relative orientation errors. Notably, the controller’s implementation
precipitates the convergence of both the relative distance and relative orientation errors to
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zero. Consequently, the follower robot achieves a state of conformity, trailing the leader
robot, while adhering to the stipulated formation criteria.
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Figure 8. Distance and relative orientation errors within the leader–follower formation during the
second simulation.

Figure 9 provides a visualization of the trajectories pursued by both robots. Notably,
the leader robot’s trajectory is characterized by a sinusoidal pattern. Evidently, the follower
robot adeptly tracks the leader robot’s path, successfully achieving the intended formation,
as evident from the depicted trajectories in Figure 9.
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Figure 9. The path of the robots in the leader–follower formation in the second simulation.

By looking at Figures 6 and 7, it can be found that, despite being in the presence of
disturbance and uncertainty, the formation errors in Figure 6 become zero in less than 1 s,
and this convergence does not have any overshoot, but the convergence of the upper bound
of the uncertainties and disturbances to the constant bounded values in Figure 7 last about
20 s, and this convergence, of course, has no effect on maintaining the formation, which is
also shown in Figure 9 as an example for the sinusoidal path of the leader.
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4.3. Third Simulation Example

For the subsequent simulation, the focus shifts to the leader–obstacle formation
paradigm, with the designated formation outlined as follows:

qdes =
[
ld
13, ld

23

]T
= [400, 400]T

The control parameters are similar to the previous simulation. In this case, the forma-
tion errors are shown in Figure 10.
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Figure 10. Distance errors in the leader–obstacle formation in the third simulation.

The distance error concerning the follower robot and the leader robot (first diagram
in Figure 10) as well as the distance error involving the follower robot and the obstacle
(second diagram in Figure 10) both exhibit a trajectory that converges toward zero. This
convergence signifies that, as the obstacle draws near the leader–follower formation, the
follower robot adeptly navigates around it, meticulously preserving a predefined separation
from both the leader and the obstacle robots.

As we can see in this figure, the tracking error values between the follower robot and
the leader robot, as well as the follower robot and the accelerated moving obstacle, both
converge to zero in less than 4 s. The settling time is about 3.5 s and this convergence occurs
without any overshoot. In addition, note that, similar to the previous simulation, here, the
system is subject to additive uncertainties, and more importantly, the accelerations of both
the leader and the obstacle are assumed as uncertainties in the system formation model
and are unknown to the follower mobile robot.

In Figure 11, the moving obstacle avoidance challenge is simulated. Considering
the previous simulation parameters, in Figure 11a, the follower robot follows the leader
robot with the desired formation. However, when an obstacle approaches the formation in
Figure 11b, the follower robot changes his path to avoid it and to be at a safe distance from
it, while keeping the desired formation with the leader as much as possible.
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In Figure 12, the adaptive parameters of the control law (21–28), which are actually the
outputs of the adaptive rule (28), are shown. These are the elements of vector θ̂i, which is
one of the parameters of the control law. As expected, and as we expect from stability proof
of Theorem 1, the adaptive parameters in vector θ̂i all have limited values and converge to
constant values, which indicates the stability of the adaptive law.
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5. Conclusions

In this paper, the problem of maintaining the leader–follower formation among mobile
wheeled robots is dealt with. First, a robust adaptive control law is designed to deal with
modeling uncertainties and unknown dynamics in the leader–follower formation model
and according to the first-order kinematic model of formation. In this rule, the upper band
of uncertainty is estimated using an adaptive rule. Next, in order to introduce acceleration in
the formation model, a new robust adaptive control law was designed based on the second-
order kinematic model, which establishes a formation despite disturbances, uncertainties,
and unknown dynamics. In the designed controllers, the absolute velocity and acceleration
of the leader robot, which are unknown for the follower, are considered as uncertainties,
of which the upper bound is also unknown for the designer. In this paper, by considering
the moving obstacle as a virtual leader, the problem of not encountering accelerated
moving obstacles during formation, and considering uncertainty and disturbances, has
also been solved.
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