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Abstract: In the realm of advanced mobile networks, such as the fifth generation (5G) and beyond,
the increasing complexity and proliferation of devices and unique applications present a substantial
challenge for User Association (UA) in wireless systems. The problem of UA in wireless networks is
multifaceted and requires comprehensive exploration. This paper presents a pioneering approach to
the issue, integrating a Deep Q-Network (DQN) with a Graph Neural Network (GNN) to enhance
user-base station association in wireless networks. This novel approach surpasses recent methodolo-
gies, including Q-learning and max average techniques, in terms of average rewards, returns, and
success rate. This superiority is attributed to its capacity to encapsulate intricate relationships and
spatial dependencies among users and base stations in wireless systems. The proposed methodology
achieves a success rate of 95.2%, outperforming other methodologies by a margin of up to 5.9%.

Keywords: Graph Neural Networks; Deep Q-Network; User Association; 5G; Machine Learning;
Reinforcement Learning

MSC: 90B18; 94C15; 68T05; 68T20

1. Introduction

The Internet of Things (IoT) represents a vast network of interconnected devices,
objects, or “things” that communicate and exchange data with each other. These devices
can connect and interact with the external environment [1]. The increase in wireless
connectivity in recent years has resulted in extensive research in Resource Allocation (RA)
for wireless networks. With Next Generation Wireless (NGW) networks needing to support
more connected devices and resource-intensive applications, there is a renewed focus on
developing more efficient User Association policies [2,3].

Figure 1 displays a network with multiple Base Stations (BSs) and a collection of IoT
devices and cell phones that represent users. These devices need to be associated with the
most suitable BS to optimize the system’s utility function. The User Association problem
involves formulating strategies for this association process, which becomes complex and
challenging in high-traffic or congested environments. The figure illustrates the complexity
of these associations, highlighting the need for advanced methods to achieve efficient
and effective User Association. The primary objective is to optimize the system’s utility
function, commonly associated with throughput. In scenarios of low traffic, basic heuristic
methods can yield satisfactory results. However, these simplistic methods fail to deliver
optimal solutions in high-traffic or congested environments. Therefore, identifying the
ultimate association policy represents a complex and challenging problem. Allocating
and managing resources in wireless networks is a difficult and complex task that requires
significant effort to achieve the desired outcomes [4]. This issue can be tackled by treating
the UA problem as a sequence of decisions and applying Deep Reinforcement Learning
(DRL) strategies to create more effective policies [5].
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Wireless Network

IoT deviceCell phone

Figure 1. The cell selection issue in NGN.

Mathematics plays a fundamental role in machine learning by providing the theoretical
foundations, algorithms, and tools necessary for understanding and analyzing complex
data patterns [6]. Concepts from probability theory, optimization, and linear algebra are
applied to formulate and solve the mathematical models underlying machine learning
algorithms. Furthermore, mathematical analysis allows researchers to prove convergence
properties, stability, and optimality guarantees for ML methods. Reinforcement Learning
(RL) is a form of machine learning. It involves an agent that learns to make optimal
decisions by interacting with its environment and getting feedback as rewards or penalties.
The agent aims to master a policy, which is a set of rules directing states to actions for
the maximal cumulative reward over time. This learning technique is iterative, with the
agent continually refining its actions based on past experiences to better future outcomes.
It is a versatile tool for solving complex issues [7]. In recent years, RL research has been
focusing on applying its concepts to real-world problems. To emulate human learning, RL
uses designs based on trial and error [8,9]. Deep Reinforcement Learning is an advanced
variant of Reinforcement Learning that employs a Deep Q-Network to compute the Q
value-action function [10]. By leveraging neural networks, it approximates the Q-function
in Q-learning, which allows it to proficiently manage high-dimensional state spaces [11].
This approach has found applications in wireless networks, where it has been used to
significantly boost their performance [12]. DRL has demonstrated its potential in dealing
with complex problems by navigating large state spaces and improving decision-making
processes.

A Graph Neural Network is a neural network variant that is specifically engineered
to handle graph data structures, making it capable of understanding and inferring intri-
cate relationships among various entities [13]. Within a GNN, each graph node is linked
with a feature vector that encapsulates the node’s characteristics. These vectors are pro-
cessed through multiple layers of the neural network, each layer modifying the vectors
according to the attributes of the neighboring nodes in the graph [14]. This mechanism
empowers GNNs to gather and disseminate information across the graph, thereby facil-
itating reasoning about inter-entity relationships. The ultimate output of the GNN can
serve various purposes, such as node categorization, link forecasting, and graph-oriented
classification [15].

Combining DRL and GNN can enable the development of more advanced intelligent
systems that can reason and act in complex environments with graph-structured data [16].
By using GNNs to encode and process graph-structured data, DRL agents can better
understand the relationships between entities in their environment, allowing them to make
more informed decisions and take actions that lead to better performance [17]. Furthermore,
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the combination of DRL and GNN can enhance the ability of these intelligent systems
to make generalizations, enabling them to perform well in unseen or partially observed
environments with similar graph structures [18].

The main contribution of our work is to develop a deep reinforcement learning frame-
work for the user association problem using graph representations. It is a DQN-GNN-based
approach designed for wireless networks to effectively associate wireless users with the
network.

In this paper, we present the following key contributions:

1. A novel DQN with a GNN-based approach is proposed for efficient user-to-base
station association in wireless networks.

2. A comprehensive evaluation of our proposed method is conducted in terms of (a)
average rewards, (b) average returns, and (c) success rate.

3. The DQN-GNN approach outperforms current recent work, such as Q-learning and
max average approaches, achieving a success rate of 95.2%, which is higher than other
methods by up to 5.9%.

4. The combination of DQN and GNN enhances performance by capturing complex
relationships and spatial dependencies in wireless networks, leading to more accurate
and efficient associations.

The remainder of this paper is structured as follows: Section 2 provides a mathematical
perspective of the DQN-GNN approach. A comprehensive examination of related studies is
offered in Section 3. A detailed explanation of the proposed method and the system model
can be found in Section 4. The mathematical formulation and optimization of our proposed
DQN-GNN approach are discussed in Section 5. The effectiveness of the proposed user
association strategy is assessed in Section 6. The qualitative analysis and comparison are
given in Section 7. Finally, the paper wraps up in Section 8, with conclusions and potential
future work.

2. DQN and GNN: A Mathematical Perspective

In this section, we provide a mathematical perspective of the Deep Q-Network al-
gorithm and explore its connection to Graph Neural Networks. DQN is a reinforcement
learning algorithm that combines deep neural networks with the Q-learning algorithm to
solve complex decision-making problems [19]. The core idea behind DQN is to approxi-
mate the Q-value function using a deep neural network and iteratively update the network
parameters to improve the Q-value estimates [20].

Let us define the Q-value function for a given state-action pair as represented in
Equation (1).

Q(s, a) = E
[

rt + γ max
a′

Q(s′, a′) | s, a
]

, (1)

where s represents the current state, a represents the action taken in that state, rt denotes
the immediate reward received after taking action a in state s at time t, s′ represents the
next state, and γ is the discount factor that determines the importance of future rewards.

The goal of DQN is to learn an optimal Q-value function Q∗(s, a) that maximizes
the expected cumulative reward. To achieve this, DQN utilizes a deep neural network
parameterized by θ to approximate the Q-value function. Let Q(s, a; θ) represent the output
of the neural network when the state-action pair (s, a) is passed through the network with
parameters θ [21].

The DQN algorithm uses a loss function to measure the discrepancy between the
predicted Q-values and the target Q-values. The target Q-value for a state-action pair (s, a)
is given by Equation (2).

Q̂(s, a) = r + γ max
a′

Q(s′, a′; θ−), (2)
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where r is the immediate reward obtained after taking action a in state s,s′ is the next
state, and θ− represents the parameters of a separate target network that are updated
less frequently than the online network. The loss function used in DQN is the mean
squared error (MSE) between the predicted Q-values and the target Q-values [22], given in
Equation (3).

L(θ) = E
[
(Q̂(s, a)−Q(s, a; θ))2

]
. (3)

To update the parameters of the neural network, DQN employs gradient descent to
minimize the loss function. The weights θ are updated according to Equation (4), where α
is the learning rate.

θ ← θ − α∇θ L(θ), (4)

By iteratively applying the Q-learning updates and optimizing the neural network
parameters, DQN learns an optimal policy that maximizes the expected cumulative reward.
GNNs are a class of neural networks designed specifically to operate on graph-structured
data. They have gained significant attention due to their ability to capture complex rela-
tionships and dependencies within graphs.

Let us consider a graph G = (V, E), where V represents the set of nodes and E
represents the set of edges connecting the nodes. Each node vi in the graph is associated
with a feature vector xi ∈ Rd, which represents the input features of the node. Additionally,
each edge (vi, vj) can have an associated edge attribute eij ∈ Rp, which represents the
characteristics of the edge.

The goal of GNNs is to learn a node-level or graph-level representation that captures
the structural information and the interactions between nodes and edges in the graph.
GNNs achieve this by iteratively aggregating information from neighboring nodes and
updating the node representations. The propagation rule of a GNN can be expressed using
Equation (5).

h(l+1)
i = σ

(
∑j∈N (i)

1
cij

W(l)h(l)j + U(l)h(l)i

)
, (5)

where h(l)i represents the hidden representation of node vi at layer l, N (i) represents the
set of neighbors of node vi, W(l) and U(l) are learnable weight matrices at layer l, and cij
is a normalization factor that depends on the degree of node vi and vj. The function σ(·)
represents a non-linear activation function, such as rectified linear unit (ReLU) or sigmoid.

By stacking multiple layers of GNNs, the model can capture increasingly complex
graph patterns and dependencies. The final node representations can be used for various
downstream tasks, such as node classification, link prediction, or graph classification.

3. Related Work

In this section, related studies that used reinforcement learning to solve the user
association problem in wireless networks are discussed, along with their limitations.

In [23], Li, Z. et al. presented a distributed user association algorithm known as Online
Reinforcement Learning Approach (ORLA). This innovative approach utilizes online RL to
optimize load balancing within vehicular networks. ORLA leverages historical association
experiences to adapt to dynamic vehicular environments and achieve superior association
solutions. It also effectively handles network dynamics through real-time feedback and
consistent traffic association patterns. When tested with the QiangSheng taxi movement
dataset, comprising genuine taxi movement data from Beijing, ORLA outperformed other
prevalent association methodologies in terms of load-balancing quality.

In their study, Li, Q. et al. built an intelligent user association algorithm, named
reinforcement learning handoff (RLH), intended to minimize unnecessary handoffs in UAV
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networks [24]. Furthermore, they devised two distinct UAV mobility control strategies
to work in tandem with the RLH algorithm to improve system throughput. The RLH
algorithm motivates user handoffs through rewards obtained from the reinforcement
learning process. The two suggested UAV mobility control strategies are based on the
estimation of the SNR and the K-Means method. As demonstrated by simulation results,
the RLH algorithm can effectively lower handoffs by as much as 75%, thus proving its
efficacy in diminishing unneeded handoffs.

In their research, Zhao et al. [2] introduced a reinforcement learning strategy to
maximize network utility and maintain quality of service in diverse cellular networks.
This method employs a dueling double deep Q-network (D3QN) strategy within a multi-
agent reinforcement learning framework to tackle the issue of expansive action spaces.
The distributed user equipment (UEs) gains access to the global state space via message
passing, enabling the D3QN approach to quickly reach a subgame perfect Nash equilibrium.
Simulations reveal that the D3QN surpasses other reinforcement learning methods in
addressing large-scale learning challenges.

Ding et al. in [25] presented a multi-agent deep Q-learning network methodology to
simultaneously enhance user association and power regulation in uplink heterogeneous
networks (HetNets) utilizing orthogonal frequency division multiple access (OFDMA).
They successfully tackled the non-convex and non-linear issue using this multi-agent DQN
approach, which demands less environmental communication information compared to
conventional methods such as game theory, fractional programming, and convex optimiza-
tion. This proposed technique ensures maximum long-term overall network utility through
a novel reward function while also maintaining the quality of service (QoS) for users.
Simulations have shown the multi-agent DQN approach to surpass traditional Q-learning
in terms of energy efficiency and convergence.

Chou et al. introduced an algorithm rooted in the Deep Deterministic Policy Gradient
(DDPG) in [26] as a solution to the user association issue in wireless networks. They
redefined the problem as a Markov Decision Process (MDP) and employed their proposed
algorithm to take advantage of the supply-demand understanding of the Lagrange dual
problem. The simulated outcomes reveal that their approach notably enhances the quality
of experience (QoE), especially in situations with limited wireless resources and a high user
count, in comparison to other baseline methods.

Guan et al. introduced a solution for dynamically optimizing user association and
power allocation in each time slot in [27] to minimize the long-term average transmission
power consumed by users. Such a joint problem can be formulated as a Markov decision
process, which suffers from the curse of dimensionality when there are many users. The
authors proposed a distributed relative value iteration (RVI) algorithm that reduces the
dimensions of the MDP problem, enabling it to be broken down into multiple solvable small-
scale MDP problems. Simulation results indicate that the proposed algorithm performs
better than both the conventional RVI algorithm and a baseline algorithm with myopic
policies in terms of long-term average transmission power consumption.

In [28], Zhang et al. developed two deep reinforcement learning algorithms for Internet
of Things device association in wireless networks. The centralized DRL algorithm makes
decisions for all devices simultaneously, using global information, while the distributed
DRL algorithm makes decisions for one device at a time, using local information. Both
algorithms use historical information to infer current information and achieve performance
comparable to optimal user association policies that require real-time information. The
distributed DRL algorithm is shown to have the advantage of scalability in simulations.

Sana et al. proposed a multi-agent reinforcement learning approach in [29] to address
the issue of user association in wireless networks. Users act as independent agents and learn
to coordinate their actions based on their local observations to optimize the network sum-
rate. The proposed approach limits signaling overhead since there is no direct information
exchange among the agents. Simulation results show that the algorithm is scalable, flexible,
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and able to adapt to rapid changes in the radio environment, resulting in a large sum-rate
gain compared to state-of-the-art solutions.

Dinh et al. in [30] investigated the problem of optimizing joint user-to-access points
(AP) association and beamforming in an integrated sub-6GHz/mmWave system to max-
imize the system’s long-term throughput while meeting various user quality-of-service
requirements. The proposed method is based on Deep Q-Networks, where each user
optimizes its AP association and interface requests and can be served by multiple APs
simultaneously to support multiple applications. Each AP selects its associated users and
applications served on each interface while optimizing its millimeter wave (mmWave)
beamforming parameters. Simulation results demonstrate that the proposed method out-
performs baseline DQN schemes, achieving high global throughput and reducing user
outage probabilities.

In [31], Hsieh et al. propose a novel approach for user association in heterogeneous
networks that directly operates in the hybrid space, using a parameterized deep Q-network
(P-DQN) to maximize the average cumulative reward while considering constraints on
wireless backhaul capacity and quality-of-service for each user device. The proposed
P-DQN outperforms traditional approaches such as DQN and distance-based association
in terms of energy efficiency while satisfying the QoS and backhaul capacity constraints.
Simulation results show that in a HetNet with three small base stations (SBS) and five UEs,
the proposed P-DQN improves energy efficiency by up to 77.6% and 140.6% compared to
DQN and distance-based association, respectively.

In [32], Chen et al. proposed a decentralized method to adjust the flight paths of
multiple Unmanned Aerial Vehicles (UAVs) over diverse Ground Users (GUs). Their aim
was to maximize total data transfer and energy efficiency while maintaining fairness. They
redefined the problem as a Decentralized Partially Observed Markov Decision Process
(DEC-POMDP) and tackled it using a Coalition Formation Game (CFG) and Multi-Agent
Deep Reinforcement Learning (MADRL). The CFG algorithm was employed to acquire a
decentralized solution that converges to the Nash equilibrium. Subsequently, a MADRL-
based procedure was utilized to perpetually optimize the UAVs’ trajectories and energy
usage in a centralized-training yet decentralized-execution manner. Simulations showed
that their proposed method surpassed current methods in terms of fairness in data transfer
and energy usage in a distributed way.

Joda et al. proposed strategies for placing network functions in cloud nodes and asso-
ciating users with radio units (RUs) in [33] to minimize end-to-end delay and deployment
cost in Open Radio Access Networks (O-RANs). The problem is formulated as a multi-
objective optimization problem with a large number of constraints and variables. To solve
the problem, a Markov Decision Problem was developed, and a DQN-based algorithm was
proposed. The simulation results show that the proposed scheme reduces the average user
delay by up to 40% and the deployment cost by up to 20% compared to the baselines.

Alizadeh and Vu in [34] developed a central load balancer designed to maintain
equal distribution across all base stations at every stage of learning. Their proposed
methodology introduces two different association vectors, allowing users to participate in
background learning while simultaneously engaging in optimal data transmission. They
also presented a measurement model designed to swiftly account for channel fluctuations
and user mobility within dynamic networks. To minimize the rate of handover, they
distinguish between the costs of transmission handover and learning handover, introducing
a learning handover cost that decreases with the duration of stay. Simulation results
reveal that the proposed algorithms not only converge quickly but also surpass the Third
Generation Partnership Project (3GPP) handover, approaching near-optimal benchmarks
for worst connection swapping.

In [35], Khoshkbari et al. proposed a novel deep Q-learning approach in which a
satellite serves as an operative agent. This agent is responsible for scheduling each user
to a terrestrial base station (TBS) or a high-altitude platform station (HAPS) within each
time slot, utilizing channel state information (CSI) obtained from the preceding time slot.
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This proposed approach yields results that almost mirror those achieved via the exhaustive
search action selection method. Moreover, it outperforms a convex optimization-based user
association scheme in scenarios where the CSI is noisy. The researchers further delve into
the implications of imperfect CSI and highlight the superior performance of their proposed
method under such circumstances.

Moon et al. proposed a decentralized user association technique based on a multi-agent
actor-critic (AC) method in [36] to maximize the energy efficiency of an ultra-dense network
(UDN). This technique aims to enhance the energy efficiency of ultra-dense networks. The
actor network of the proposed technique decides the user association of the small base
station, guided by local observations. Simultaneously, the critic network communicates
the energy-efficient user association decision to the actor network. This mechanism allows
each small base station’s deep reinforcement learning agent to identify the user association
decision, which optimizes network energy efficiency. According to the simulation results,
the proposed method provides an average improvement in energy efficiency of more than
50% compared to traditional user association techniques.

In [37], Kim et al. proposed a curriculum learning technique to improve the accuracy
of a reinforcement learning agent in solving the challenging problem of resource allocation
in wireless networks, particularly in scenarios with high user mobility, such as the Internet
of Vehicles (IoV). The proposed technique involves gradually increasing the mobility of
each user during learning to enhance the model’s accuracy. Simulation results demonstrate
that the proposed method achieves faster convergence and better performance compared
to traditional reinforcement learning techniques.

Table 1 displays a comparison among recent related works in terms of the used RL
methods and main goals.

Table 1. Comparison among recent related works.

Cite Authors Year RL Method Main Goal

[23] Li, Z. et al. 2017 Online historical-based RL Balancing load in vehicular networks.

[24] Li, Q. et al. 2018 Multi-agent RL Reducing redundant handoffs in UAV networks.

[38] Zhao et al. 2019 Multi-agent RL with D3QN Optimizing network utility in heterogeneous cellular
networks.

[25] Ding et al. 2020 Multi-agent DQN Jointly optimizing user association and power control
in HetNets.

[26] Chou et al. 2020 DDPG Reformulating user association as MDP for QoE
improvement.

[27] Guan et al. 2020 Distributed RVI Jointly optimizing user association and power
allocation with reduced dimensionality.

[28] Zhang et al. 2020 DRL Associating IoT devices in wireless networks
intelligently.

[29] Sana et al. 2020 Multi-agent RL Coordinating independent agents to optimize network
sum-rate.

[30] Dinh et al. 2021 DQN
Jointly optimizing user-AP association and

beamforming in integrated sub-6GHz/mmWave
system.

[31] Hsieh et al. 2021 Parameterized DQN Associating users in heterogeneous networks with
wireless backhaul constraints.

[32] Chen et al. 2022 MADRL Decentralizing optimization of UAV trajectories over
heterogeneous GUs.

[33] Joda et al. 2022 DQN Placing network functions and associating users in
O-RAN networks.
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Table 1. Cont.

Cite Authors Year RL Method Main Goal

[34] Alizadeh and
Vu 2022 MAB Learning handover costs for reducing handover rate in

dynamic networks networks.

[35] Khoshkbari et
al. 2023 DQN Scheduling users in satellite networks with noisy CSI.

[36] Moon et al. 2023 Multi-agent AC Maximizing energy efficiency in user association for
UDNs.

[37] Kim et al. 2023 Curriculum learning Allocating resources in wireless networks with high
user mobility.

The limitations of the recent related reinforcement learning-based user association
schemes are:

• Limited scalability: Some of the related works face scalability issues when applied to
large-scale wireless networks due to the high computational complexity and commu-
nication overhead of the proposed algorithms.

• Limited generalization: Many of the related works are not generalized well to different
wireless network scenarios, as the performance relies heavily on the quality and
quantity of training data or may only address specific problems, such as load balancing
or power allocation.

• Limited flexibility: Some of the related works lack flexibility in adapting to rapid
changes in the radio environment or may require high signaling overhead due to the
direct information exchange among agents or nodes.

• Limited efficiency: Some of the related works suffer from inefficient resource allocation
or may not fully utilize available resources, leading to suboptimal performance in
terms of energy efficiency or network throughput.

4. The Proposed Approach
4.1. Building the Proposed DQN-GNN Approach

In this section, we describe the details of building our proposed DQN-GNN approach
for user association in wireless networks. The design of the GNN and DQN models, the
training process, and the integration of the two models for user association are discussed.

The proposed model building phase goes through five phases, as shown in Figure 2.

Represent the UA problem as a graph

Encode the graph using GNN

Train a DQN agent

Combine GNN and DQN

Test and evaluate the GNN-DQN approach

Figure 2. The building phases of the proposed approach.
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1. Represent the UA problem as a graph: The user association problem is represented
as a graph, where each node corresponds to a user or a base station, and the edges
represent the wireless connections between them.

2. Encode the graph using GNN: A GNN is used to encode the graph structure of
the network and learn a representation for each node that captures its importance
and connectivity within the network. This allows the system to reason about the
relationships between users and BSs and make more informed decisions about user
association. In this work, we use a GNN model called LocalGNN for both the policy
network and the target network, which was proposed by Shaddad et al. in [39]. A
notable feature of the LocalGNN is its ability to locally aggregate information for each
node, and this aggregation is also extended to include neighboring nodes within K
hops. This means that the feature extraction and computation for each node can be
performed locally, which greatly supports the scalability of the proposed algorithm.

3. Train a DQN agent: A DQN agent is trained to learn a policy that selects the best BS
for each user to connect to based on the current state of the network. The state can
be defined as the current set of user-BS associations, as well as additional network
parameters such as signal strength, traffic load, and interference levels. The DQN
agent can learn to optimize the network performance by selecting the best user-BS
associations.

4. Combine GNN and DQN: The GNN and DQN models are combined by using the
GNN to encode the graph structure of the network and provide input to the DQN
agent. The DQN agent can then use the learned representation of each node to make
more informed decisions about user association. This combination of models can
lead to more efficient and effective user-BS associations and better overall network
performance.

5. Test and evaluate the GNN-DQN approach: Once the models are trained, the system
can be tested and evaluated using wireless network data. To assess the effectiveness
of our proposed GNN-DQN approach for user association, we compared its results to
those obtained using other user association methods. This comparison allows us to
evaluate the performance of our approach relative to existing methods and determine
its efficacy in solving the user association problem in wireless networks.

Figure 3 shows the diagram of the proposed DQN-GNN-based approach. There are
two entities: intelligent DQN-GNN agent and 5G network environment. The DQN and
GNN work together to provide an adaptive and efficient approach to User Association in
5G networks, with the DQN making real-time allocation decisions based on the current
network state and the GNN providing predictions of future network states to improve the
DQN’s decision-making ability.

Intelligent DQN-GNN Agent

Wireless Network Environment

A
ct

io
n

 
(a

)

DQN GNN

R
ew

ar
d

(r
)

St
at

e
(s

)

Figure 3. The diagram of the proposed DQN-GNN-based approach.
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4.2. The System Model

Suppose we have N base stations in a 5G network environment, each of which pos-
sesses a finite number of frequency resources. According to the 5G framework, these
resources are called Resource Blocks (RB). During each time interval t, there is a chance
that a user may arrive, with the arrival probability following a certain distribution. If a
user does arrive, one of the k base stations with the highest signal-to-noise-and-interference
ratio (SNIR) and available resources is required to form an association with the new user.
In our proposed reinforcement learning model, a tuple is formed by (s, a, T, r, γ).

• The current state in the agent-environment system, denoted as s, is a fusion of the
condition of the base station and the user situation, according to [40]. The state of the
base station encapsulates the number of linked users and the average utility achieved
thus far, along with the existing state of the system and the features of the new user.
The user’s state, on the other hand, includes the Received Signal Strength Indicator
(RSSI) from the associated base stations and a specific demand that must be met.

• The action that the agent takes in a particular state, symbolized as a, involves choosing
a base station from the options available, according to [41]. However, an action is not
necessary at every time interval. To ensure a well-defined Markov process, decision-
making is incorporated into the state. If no user is present, the demand drops to zero,
and the only task required is to update the system state without any action needed.

• T denotes the succeeding state in which the environment transitions after the agent
executes a specific action, as described in [42]. The descriptors of the base station are
updated to reflect the effects of the action, which could be an increase in the number of
connected users and a new mean utility, as well as the impact of time, which could be
a decrease in the number of connected users if a user’s demand has been satisfied. The
characteristics of the new user are revised every time a new user joins. It is important
to note that while the transitions over the base station’s features are deterministic,
given the action a and the state s, they are stochastic for the new user’s features.

• The reward that the agent earns for executing a particular action in a specific state
is represented as r, as per [43]. In the context of our research, the reward is the
logarithm of the sum of the throughput between users, which supports equity in
resource allocation and is commonly used in related literature.

• The parameter γ signifies the discount factor utilized to prioritize future rewards
in the agent’s decision-making process, as per [44]. The agent aims to optimize
the expected discounted cumulative reward by updating a policy (π) using one of
Bellman’s equations. The action-value function for policy π is utilized, and the state-
action value function is refreshed using the optimality equation.

Table 2 displays the parameters of the proposed DQN-GNN model.
Algorithm 1 provides the complete pseudocode for the proposed DQN-GNN user

association approach for wireless networks, where θ and φ are the parameters of the Q-
network and GNN, respectively. The replay memory buffer is represented by D, which
contains the experiences of the agent. piε(a|s) is the epsilon-greedy policy used by the
agent to select actions in the current state. s′ is the next state, and done indicates whether
the episode has terminated. The learning rate used to update the Q-network and GNN
parameters is represented by α. The target Q-value (Qtarget) is used to update the Q-network
parameters. L is the loss function used to compute the difference between the predicted
and target Q-values. ∇θ L is the gradient of the loss function with respect to the Q-network
parameters. ∇φQGNN(si, ai; φ, θ) is the gradient of the GNN output with respect to the
GNN parameters, while ∇θQ(si, ai; θ) is the gradient of the Q-network output with respect
to the Q-network parameters. The algorithm iteratively updates the Q-network and GNN
parameters based on the observed transitions and their corresponding target Q-values,
with the goal of maximizing the cumulative reward over a sequence of time steps. By
learning the optimal user association policy, this approach can improve user experience
and network efficiency in wireless networks.
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Table 2. The parameters of the proposed DQN-GNN model.

Parameters Values

LEARNING_RATE 1× 10−3

BATCH_SIZE 30

GAMMA 0.5

EPS_START 0.95

EPS_END 0.05

EPS_DECAY 1× 104

TARGET_UPDATE 5000

UPDATE_FREQUENCY 10

DIMENSION_OF_NODE_SIGNALS [4,1]

NUMBER_OF_FILTER_TAPS 2

ACTIVATION_FUNCTION ReLU

OPTIMIZATION_ALGORITHM Adam

Algorithm 1: DQN-GNN User Association Approach
Initialize θ, φ, D
for each episode do

Initialize s;
for each t do

Select a based on piε(a|s) policy;
Execute a and observe s′, r, and done;
Store transition (s, a, r, s′, done) in D;
Sample mini-batch of transitions (si, ai, ri, s′i, donei) from D;
Compute Qtarget = ri + γ maxa′ QGNN(s′i, a′; φ; θ);
Compute L = (Qtarget −Q(si, ai; θ))2;
Update θ ← θ - α∇θ L;
Update φ← φ - α∇φQGNN(si, ai; φ, θ) · ∇θQ(si, ai; θ);
Update s← s′;

end
end

The data in the environment are generated dynamically based on the specified pa-
rameters and actions. To store the agent’s experiences, a replay memory buffer called D
is utilized. This buffer contains transitions in the form of (s, a, r, s′, done), representing the
state, action, reward, next state, and termination information at each time step during
an episode. During the training phase, the algorithm selects a mini-batch of transitions
(si, ai, ri, s′i, donei) from the replay memory buffer D. These transitions are then used to com-
pute the target Q-values and update the Q-network and GNN parameters. In the testing
phase, the algorithm does not rely on a specific dataset or replay memory buffer. Instead, it
assesses the performance of the trained policy by executing it within the environment and
evaluating the achieved outcomes based on predefined metrics.

5. Mathematical Formulation and Optimization

In this section, we delve into the mathematical aspects of our proposed DQN-GNN
approach for user association in wireless networks. The formulation provides the mathe-
matical groundwork for the DQN-GNN model, setting up the problem in a way that allows
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for the application of reinforcement learning techniques. Then, we discuss the optimization
process of the DQN-GNN model.

5.1. Problem Formulation

The User Association problem can be formulated as a Markov Decision Process with
the state space S, action space A, transition probability P, and reward function R. In our
problem context:

• The state st ∈ S at time t is defined by the current user-BS associations and network
conditions, such as the number of connected users and the average utility achieved up
to time t.

• The action at ∈ A at time t is the decision made by the DQN-GNN agent to associate a
user with a specific BS.

• The transition probability P(st+1|st, at) is determined by the dynamics of the wireless
network, such as the arrival and departure of users and changes in network conditions.

• The reward R(st, at) is the utility of the system after taking action at in state st, which
is defined as the logarithm of the sum of the throughput between users.

The goal of the DQN-GNN agent is to learn a policy π that maximizes the expected
cumulative discounted reward E[∑∞

t=0 γtR(st, at)], where γ ∈ [0, 1] is the discount factor.
Our DQN-GNN approach is particularly relevant in the context of wireless networks

and the Internet of Things. In wireless IoT networks, a large number of interconnected
devices are continuously interacting, leading to dynamic and complex network conditions.
The state space (S) in our approach, which represents the current user-BS associations and
network conditions, can effectively capture the complex dynamics of such networks. The
action space (A), which represents the decision to associate a user with a specific BS, allows
for efficient resource allocation in these networks, where resources are often scarce and
need to be judiciously allocated. The transition probability (P) and the reward function (R)
can model the impact of these decisions on the network’s performance, providing a way to
navigate the complex and dynamic IoT environment.

Moreover, the policy learned by the DQN-GNN agent, which aims to maximize the
expected cumulative discounted reward, can guide the decision-making process in these
networks. This policy essentially provides a strategy for efficient user association in the
face of dynamic network conditions and limited resources, which are typical characteristics
of wireless IoT networks. Therefore, our DQN-GNN approach provides a mathematical
framework for optimizing user association in wireless IoT networks and can significantly
enhance network performance in these environments.

5.2. Optimization Process

The optimization process is a crucial component of our proposed DQN-GNN approach.
It refers to the iterative method of adjusting the parameters of the DQN and GNN models
to minimize the difference between the predicted Q-values and the actual rewards. This
process is key to improving the model’s performance in the user association task over time.

This process can be visualized in the context of the Markov Decision Process, as shown
in Figure 4. The diagram illustrates the interaction between the DQN-GNN agent and
the wireless network environment over multiple time steps. Starting from an initial state
(s), the agent takes an action (a), which leads to a new state (s′) and a reward (r). This
cycle repeats as the agent continues to interact with the environment, with the agent taking
another action (a′) in state (s′), leading to another new state (s′′) and another reward (r′).
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Figure 4. Illustration of the Markov Decision Process in the DQN-GNN approach.

Formally, the optimization process of our DQN-GNN model can be mathematically
formulated as follows:

θ∗, ϕ∗ = arg min
θ,ϕ

E(s,a,r,s′)∼D[(Qθ(s, a)− (r + γ max
a′

Qϕ(s′, a′)))2] (6)

In this equation, θ, and ϕ are the parameters of the policy network (DQN) and the
target network (GNN), respectively. The policy network is responsible for making the
decisions (i.e., choosing the actions), while the target network is used to generate the target
Q-values for the update of the policy network. The replay memory buffer (D) stores the
agent’s experiences in the form of state-action-reward-next state tuples. These experiences
are sampled during the training process to update the model parameters. Qθ(s, a) and
Qϕ(s′, a′) are the estimated Q-values of the current and next state-action pairs, respectively.
These are the outputs of the DQN, which estimates the maximum expected future rewards
for taking action a in state s.

The objective of the optimization process is to find the optimal parameters θ∗ and ϕ∗

that minimize the expectation of the squared difference between the predicted Q-values
and the actual rewards (plus the discounted maximum Q-value of the next state). This dif-
ference represents the temporal difference error, which measures the discrepancy between
the current Q-value estimate and the more accurate estimate obtained after observing the
reward and the next state. Optimization is performed using an optimizer, which iteratively
adjusts the parameters in the direction that reduces the error. Through this optimiza-
tion process, the DQN-GNN model learns to make more accurate predictions and better
decisions, leading to improved performance in the user association task.

6. Performance Evaluation

In this section, we present the results of our experiments using the proposed DQN-
GNN model. We utilized Google Colab, a cloud-based Jupyter Notebook environment, to
implement and evaluate our proposed DQN-GNN-based user association approach for
wireless networks.

6.1. Performance Metrics

To evaluate the effectiveness of our proposed DQN-GNN model, we have used several
key performance indicators (KPIs); namely, average rewards, average returns, and the
success rate of agents.

• Average Rewards: The average rewards metric measures the average amount of
reward that agents receive over a specific period of time. It is calculated as follows:

Average Rewards =
1
m

m

∑
i=1

ri, (7)

where m is the total number of episodes, and ri is the reward obtained by the agent in
the ith episode.
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• Average Returns: The average returns metric measures the average sum of discounted
rewards that agents receive over a specific period of time. It is calculated as follows:

Average Returns =
1
m

m

∑
i=1

S

∑
t=0

γtri,t, (8)

where S is the total number of time steps in each episode, ri,t is the reward obtained
by the agent at time step t in the ith episode and γ is the discount factor.

• Success Rate of Agents: The success rate of agents metric measures the percentage
of successful episodes in which the agents achieve the desired goal. Specifically, this
metric measures the percentage of episodes in which the agent achieved an average
return that meets or exceeds a success threshold. The success threshold is set to 3.5;
this value was chosen based on the difficulty of the task and the performance of the
baseline models. The success rate of agents is calculated using Equation (9).

ASR =
NumEpAR ≥ ST

TotalEp
× 100 (9)

where ASR represents the success rate of agents. In this context, it is the ratio of
the number of successful episodes to the total number of episodes, expressed as
a percentage. NumEpAR represents the number of episodes in which the average
return is greater than or equal to a success threshold (ST). The success threshold is a
predetermined value that the average return of episodes should meet or exceed for
the episode to be considered successful. The total count of episodes is represented by
TotalEp.

6.2. Performance Results

Figure 5 displays a line graph that compares the performance of three algorithms:
(a) Baseline Max Arg, (b) Q-learning, and (c) the proposed DQN-GNN approach. The x-axis
represents the averaged episodes, while the y-axis represents the average rewards. The term
’averaged episodes’ refers to a method of computing the average rewards obtained by an
agent in the simulation. This method involves computing a rolling average of the rewards
earned by the agent over a fixed number of iterations, where each iteration corresponds
to a predetermined number of episodes. The blue line represents the average rewards
achieved by the DQN-GNN algorithm for each episode on the x-axis, while the red and
green lines represent the average rewards achieved by the Q-learning algorithm and the
average maximum, respectively. As the figure shows, the mean of the average rewards
achieved by the proposed model is 2.357, which is approximately 48.34% higher than the
minimum reward of 2.104. In contrast, the average max approach attains a mean of average
rewards of 2.228, reflecting a percentage difference of 41.95% compared to its minimum
reward of 2.031. Similarly, the Q-learning approach obtains a mean of average rewards of
2.223, representing a percentage difference of 41.84% compared to its minimum reward
of 2.051. The DQN-GNN algorithm achieved the highest average rewards, followed by
the average max and then the Q-learning algorithm. The proposed algorithm leverages
the power of DQN and GNN to capture complex patterns and dependencies, leading
to improved decision-making and higher average rewards. The average max approach,
although not as effective as the DQN-GNN algorithm, still outperforms Q-learning. This
is because the average max approach considers the maximum reward obtained in each
episode, providing a more optimistic estimate of the agent’s performance. It benefits from
occasional high rewards, which can outweigh the impact of low rewards and result in a
higher average. In contrast, Q-learning relies on a tabular representation of the action-value
function and suffers from slow convergence in complex environments. It may struggle
to accurately estimate the optimal action-value function and make suboptimal decisions,
leading to lower average rewards compared to the average max approach. This suggests
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that the DQN-GNN algorithm is the most effective of the three algorithms in terms of user
association efficiency, while the Q-learning algorithm is the least effective.

Figure 5. Average rewards.

In Figure 6, the average return versus averaged episodes is plotted for the three agents.
The average return for the proposed DQN-GNN model is 4.637, which is approximately
45.96% higher than the minimum return of 3.192. In contrast, the average max approach
achieves an average return of 4.445, reflecting a percentage difference of 41.65% compared
to its minimum return of 3.138. Similarly, the Q-learning approach achieves an average
return of 4.420, representing a percentage difference of 46.20% compared to its minimum
return of 3.023. The returns for the proposed model are generally higher than those for
Q-learning and Average Max. The proposed DQN-GNN model achieves the highest return
values in most cases, indicating that it is more effective in solving the problem of resource
allocation in wireless networks. Furthermore, it exhibits a faster convergence rate compared
to the other two agents. The plot shows that the returns for the proposed DQN-GNN model
converge more quickly to a high steady-state value, while the returns for Q-learning and
Average Max take longer to converge and do not reach the same high steady-state values
as the proposed DQN-GNN model.

Table 3 shows a comparison of average rewards and returns for the three approaches.
From the table, we can infer that the Proposed Model consistently outperforms both
Average Max and Q-learning in terms of average rewards and returns, as indicated by its
higher minimum, maximum, and mean reward values.
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Figure 6. Average returns.

Table 3. Comparison of average rewards and returns for the three approaches.

Proposed Model Average Max Q-Learning

Average Rewards

Minimum 2.104 2.031 2.051

Maximum 2.623 2.518 2.487

Mean 2.357 2.228 2.223

Average Returns

Minimum 3.192 3.138 3.023

Maximum 5.773 5.474 5.725

Mean 4.637 4.445 4.420

Figure 7 represents the success rate of three agents: the proposed DQN-GNN model, Q
Learning, and Average Max. The success rate of the proposed DQN-GNN model was 0.952,
which is higher than that of the Q Learning model (0.893) and the Average Max model
(0.928). The proposed DQN-GNN model outperformed the other two models for several
reasons. One reason is that the DQN-GNN model combines the strengths of both the DQN
and GNN models, which enables it to learn more complex tasks and achieve higher success
rates. The DQN model uses deep reinforcement learning algorithms to learn and optimize
the policy of the agent, while the GNN model helps to capture the spatial relationships
between the different states in the environment. This combination of techniques allows the
DQN-GNN model to learn more efficiently and effectively. Additionally, the DQN-GNN
model uses a replay buffer to store and replay previous experiences, helping to reduce the
correlation between experiences and improve the stability of the training process. This
technique helps the DQN-GNN model to learn more effectively and achieve higher success
rates.
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Figure 7. Success rate.

7. Qualitative Analysis and Comparison

The DQN-GNN approach offers a robust solution to user association in wireless
networks due to its inherent ability to adapt to dynamic network conditions. In comparison,
the Online Reinforcement Learning Approach presented by Li, Z. et al. [23] focuses on
load balancing in vehicular networks. Although ORLA is effective in its specific context, it
may not fully capture the complex network topologies and spatial dependencies that exist
between users and base stations. The incorporation of GNNs in the DQN-GNN approach
allows it to efficiently model these relationships, leading to improved user association and
overall network performance.

In comparison to the Reinforcement Learning Handoff (RLH) approach proposed by
Li, Q. et al. [24], the DQN-GNN approach provides a more comprehensive solution to
the user association problem. Although RLH is effective in reducing redundant handoffs
in UAV networks, it does not optimize the overall network utility, particularly in diverse
cellular networks. The DQN-GNN approach, on the other hand, aims to optimize network
performance through better user association, demonstrating its versatility in addressing
different aspects of the user association problem.

On the other hand, the Dueling Double Deep Q-Network approach by Zhao et al. [38]
applies multi-agent RL to optimize network utility in heterogeneous cellular networks.
Although D3QN is a novel approach, it may face scalability issues with increasing network
size due to its high computational complexity. Owing to the scalable nature of deep
learning models, the DQN-GNN approach can be extended more efficiently to large wireless
networks, thereby making it a more feasible solution for real-world applications.

Table 4 shows a qualitative analysis and comparison of the proposed DQN-GNN ap-
proach with three other approaches: ORLA, RLH, and D3QN. The comparison is conducted
based on several key factors, namely spatial dependencies, scalability, communication
overhead, and optimization objective.
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Table 4. Comparative Analysis of DQN-GNN Approach with Similar Approaches

Approach DQN-GNN ORLA RLH D3QN

Spatial Dependencies High Moderate Low Moderate

Scalability High Moderate Moderate Low

Communication Overhead Low High High High

Optimization Objective Network Performance Load
Balancing

Handoff
Reduction

Network
Utility

8. Conclusions and Future Work

In this paper, we propose a deep reinforcement learning approach that uses a Graph
Neural Network to estimate the q-value function for the user association problem in
wireless networks. Our approach is able to model the network topology and capture spatial
dependencies between users and base stations, resulting in more accurate and efficient
associations. It outperforms existing techniques, such as Q-learning and max-average
approaches, in terms of average rewards and returns. Furthermore, it achieves a success
rate of 95.2%, which is higher than other techniques by up to 5.9%. There are several
reasons for this superior performance. First, the incorporation of GNNs into our approach
allows for the accurate representation of the complex network topology and facilitates
the learning of dependencies between users and BSs. By considering these factors, our
approach can make more informed and context-aware decisions, which ultimately lead
to better rewards and returns. Second, the use of deep reinforcement learning allows our
approach to learn from past experiences and optimize the user association process over time.
The DQN framework, combined with GNNs, enables our approach to estimate the q-value
function more accurately, leading to more optimal and efficient associations. Additionally,
the ability of GNNs to propagate information across the network graph enhances the
understanding of the underlying structure and relationships, enabling our approach to
exploit this information for improved decision-making. Overall, the integration of GNNs
into the DQN framework empowers our approach to outperform traditional techniques by
leveraging the network topology, capturing spatial dependencies, and effectively learning
from past experiences, resulting in superior average rewards and returns.

In future work, we plan to extend our approach to address more complex scenarios,
such as larger network topologies and dynamic environments. This expansion will allow
us to explore the scalability and adaptability of our method in a broader context. We
are also interested in investigating the application of transfer learning, which has shown
promise in enabling knowledge transfer between tasks or domains. By leveraging pre-
existing knowledge and fine-tuning GNN models, we can potentially enhance the efficiency
and generalization capabilities of our approach across different network topologies. Fur-
thermore, we recognize the importance of evaluating the robustness of our approach to
uncertainties and noise sources inherent in wireless networks.
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Abbreviations
The following abbreviations are used in this manuscript:

3GPP Third Generation Partnership Project
AC Actor-Critic
AP Access Points
BS Base Station
CFG Coalition Formation Game
CSI Channel State Information
D3QN Dueling Double Deep Q-Network
DDPG Deep Deterministic Policy Gradient
DEC-POMDP Decentralized Partially Observed Markov Decision Process
DQN Deep Q-Network
DRL Deep Reinforcement Learning
GNN Graph Neural Network
GUs Ground Users
HAPS High-Altitude Platform Station
HetNets Heterogeneous Networks
IoT Internet of Things
IoV Internet of Vehicles
KPIs Key Performance Indicators
MADRL Multi-Agent Deep Reinforcement Learning
MDP Markov Decision Process
mmWave Millimeter Wave
NGW Next Generation Wireless
OFDMA Orthogonal Frequency Division Multiple Access
O-RANs Open Radio Access Networks
ORLA Online Reinforcement Learning Approach
P-DQN Parameterized Deep Q-Network
QoE Quality of Experience
QoS Quality of Service
RA Resource Allocation
RBs Resource Blocks
RL Reinforcement Learning
RLH Reinforcement Learning Handoff
RSSI Received Signal Strength Indicator
RUs Radio Units
RVI Relative Value Iteration
SBS Small Base Stations
SNIR Signal-to-Noise-and-Interference Ratio
TBS Terrestrial Base Station
UA User Association
UAVs Unmanned Aerial Vehicles
UDN Ultra-Dense Network
UE User Equipment
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