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Abstract: Machine learning techniques have garnered significant attention in various engineering
disciplines due to their potential and benefits. Specifically, in reservoir numerical simulations, the
core process revolves around solving the partial differential equations delineating oil, gas, and water
flow dynamics in porous media. Discretizing these partial differential equations via numerical
methods is one cornerstone of this simulation process. The synergy between traditional numerical
methods and machine learning can enhance the precision of partial differential equation discretization.
Moreover, machine learning algorithms can be employed to solve partial differential equations
directly, yielding rapid convergence, heightened computational efficiency, and accuracies surpassing
95%. This manuscript offers an overview of the predominant numerical methods in reservoir
simulations, focusing on integrating machine learning methodologies. The innovations in fusing
deep learning techniques to solve reservoir partial differential equations are illuminated, coupled
with a concise discussion of their inherent advantages and constraints. As machine learning continues
to evolve, its conjunction with numerical methods is poised to be pivotal in addressing complex
reservoir engineering challenges.

Keywords: machine learning; reservoir numerical simulation; reservoir engineering; numerical
methods; partial differential equation solving

MSC: 86-02

1. Introduction

Amidst the surging global energy demand, petroleum-derived fossil fuels have so-
lidified their role as the principal energy source in the global matrix [1,2]. Within the
domain of petroleum extraction, reservoir simulations synergize principles from physics,
mathematics, reservoir engineering, and computational sciences to forecast the dynamics
of reservoir fluids under diverse production scenarios. This predictive tool is indispensable
for delineating reservoir attributes, optimizing reservoir management, and forecasting
reservoir evolution, thereby enabling rigorous risk evaluations of reservoir development
strategies to mitigate potential pitfalls [3–5].

The predominant method in this domain is the reservoir mathematical simulation [6].
This simulation elucidates reservoir physical transformation principles by resolving equa-
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tions depicting oil and gas flow mechanics in porous media. These equations, constituting
the mathematical representation of fluid flow in porous media, capture the intricacies of the
physical processes governing oil and gas movement within reservoir porous media [7,8].

Researchers have used the traditional mathematical analytical method to derive exact
or analytical solutions for mathematical models. Its inherent strength lies in its direct
engagement with the mathematical relationships among various physical parameters, fa-
cilitating a nuanced understanding of the underlying physics. However, this analytical
method’s scope is predominantly limited to more straightforward oil and gas flow dynam-
ics in porous media. When confronted with multifaceted challenges like heterogeneous
variations in oil formations or multi-dimensional, multi-phase, and multi-component flows
in porous media, the analytical approach often falls short in addressing these complex
scenarios [9].

With the advent of novel enhanced recovery techniques being progressively imple-
mented in oilfield developments—such as fire-flooding [10], steam injection [11], polymer
flooding [12], and other advanced oil drive processes—the feasibility of applying analytical
methods to ascertain precise solutions for these intricate procedures diminishes consider-
ably. Consequently, since the 1950s, paralleled by the evolution of electronic computing and
the ubiquity of numerical strategies, there has been a shift towards employing numerical
methods to decipher these complex differential equations governing oil and gas flow in
porous media. This transition gave rise to the paramount subset of reservoir mathematical
simulation: the reservoir numerical simulations [5,8,9].

Via numerical methods, numerical simulation resolves the partial differential equations
that elucidate the dynamics of oilfield evolution, thereby facilitating an understanding
of the physical processes and inherent principles governing oilfield development. This
approach is adept at addressing intricate dynamics of oil and gas flow within porous media,
as well as tackling complex engineering challenges that often pose analytical hurdles
in reservoir enhancement [4,13,14]. Figure 1 illustrates the procedural flow of reservoir
numerical simulation.
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Figure 1. Reservoir numerical simulation process.

Numerical methodologies are employed to discretize the model’s partial differential
equations, subsequently yielding a set of algebraic equations. Among the discretization
techniques, the difference and finite element methods remain predominant in reservoir
numerical simulation. The advent of this simulation approach has facilitated a transition in
reservoir research, shifting from a qualitative paradigm to a quantitative one [8]. Given
the intricate internal architecture of reservoirs and the inherent unrepeatability in reservoir
development, numerical simulation techniques in reservoir studies have witnessed an
expansive surge [9,15].

In recent years, artificial intelligence has catalyzed technological advancements across
numerous sectors, with its applications spanning computer vision, biomedicine, and oil
and gas engineering development, among others [16–18]. Machine learning techniques,
especially deep learning [19], hold significant theoretical and practical implications in
engineering technology, fluid dynamics, and computational mechanics [20,21]. Artificial
intelligence promises to deliver nuanced descriptions and precision-driven development of
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oil reservoirs, paving the way for an intelligent oilfield equipped for real-time optimization
and adaptability. Such advancements aim to revitalize the core technologies underpin-
ning oil exploration and development, further instigating a transformative shift in the oil
exploration and development industry at a technological echelon [3,15].

Artificial intelligence methodologies have garnered significant interest within the
oilfield sector, chiefly due to their exceptional proficiency in managing intricately complex
challenges [22]. Machine learning techniques, particularly deep learning algorithms, pos-
sess the capability to assimilate vast datasets and extract salient features, consequently
enhancing the precision of predictions and classifications. These machine learning strate-
gies have found successful implementations in various oil and gas engineering domains,
including production data forecasting, parameter inversion, digital core analysis, and
well-log interpretation. Within the gamut of machine learning, deep learning techniques
manifest superior efficacy in addressing these associated challenges.

The process of reservoir numerical simulation fundamentally entails solving a system
of partial differential equations that delineate the flow dynamics of oil and gas within
reservoir porous media. Traditional methods for addressing these equations necessitate
the deployment of numerical techniques for grid discretization, nonlinear equation so-
lutions, and, in composite models, the computation of phase equilibrium states. Such
complexities render reservoir numerical simulation calculations both resource-intensive
and time-consuming, posing challenges for technical advancements. Merging machine
learning techniques with conventional numerical methods holds the potential to augment
the computational efficiency of traditional simulation processes, thereby enhancing the con-
vergence rate of reservoir numerical simulations and diminishing computational expenses.
Concurrently, deep learning-centric approaches to solving partial differential equations
offer both forward and inverse solutions. These deep learning algorithms excel in navigat-
ing nonlinear challenges, facilitating expedited resolutions for even the most intricate and
high-dimensional partial differential equations.

This article concisely overviews the numerical techniques employed in solving partial
differential equations within reservoir numerical simulations. It encapsulates the prevailing
numerical strategies for such simulations, highlighting both their merits and limitations.
A succinct summary of current trends in integrating numerical methods with machine
learning techniques is presented, accompanied by a comprehensive review of both national
and international research endeavors utilizing deep learning methodologies for resolving
reservoir partial differential equations. The anticipated trajectories and research avenues in
merging machine learning with numerical methods are also contemplated. The manuscript
is organized as follows: Section 2 delineates the numerical strategies employed in reservoir
simulations. Section 3 elucidates the incorporation of machine learning within numer-
ical techniques, whereas Section 4 ventures into utilizing deep learning techniques for
addressing reservoir partial differential equations. Subsequently, Section 5 provides a
comprehensive summary and analysis of the entire paper. Conclusively, Section 6 offers a
forward-looking discourse on future advancements and potential horizons.

2. Numerical Methods in the Reservoir Numerical Simulation

The crux of the reservoir numerical simulation process lies in resolving a system of
partial differential equations governing the flow of oil and gas within reservoir porous
media. Currently, the predominant numerical techniques employed to discretize these
partial differential equations into a set of higher-order algebraic equations include the finite
difference method, finite element method, finite volume method, meshless method, and
boundary element method, as illustrated in Figure 2.
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2.1. Finite Difference Method

The finite difference method is among the earliest numerical simulation techniques
employed. This method transforms the partial differential equation into a system of finite
difference equations and endeavors to approximate the solution of the partial differential
equation by numerically resolving this system of difference equations. It continues to find
widespread application in commercial reservoir numerical simulation software. Within this
methodology, the solution domain is partitioned into individual grid units, with each grid
represented by a single node, and collectively, these nodes depict the solution domain. The
finite difference method leverages techniques such as the Taylor series expansion, where
the derivative of each governing equation is substituted by the difference quotient’s value
at each respective node, effectuating the discretization of the equation and subsequently
yielding an algebraic system of finite difference equations [23]. This approach facilitates the
direct conversion of the differential challenge into an approximate numerical solution of an
algebraic task characterized by its straightforward expression. It stands as an established
and well-refined numerical computational method.

In reservoir engineering, finite difference methods are extensively employed to address
partial differential equations pertinent to phenomena like oil and gas flow within porous
media, heat transfer, and chemical reactions. These addresses are instrumental in forecasting
fluid dynamics and hydrocarbon extraction rates [24]. Notable among the finite difference
techniques are the block-centered finite difference method [25], depicted in Figure 3, the
node-centered finite difference method [26], and other associated methodologies.
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Taking the block-centered finite difference method as an example, its main idea is to
calculate the different terms on discrete grid nodes and form a linear system of equations
from the additional terms to obtain a numerical solution by solving the system of equations.
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The method discretizes space into small blocks, with the node at the center of each block
acting as the unknown quantity in the difference equation, and then builds the difference
equation by using a central difference algorithm to calculate the difference term around the
node. The method can deal with anisotropy, complex boundary conditions, and irregular
meshes and is one of the most widely used numerical simulation methods [27].

The advantages of the finite difference method are that it is easy to use, fast to com-
pute, easy to implement, and can be adapted to various physical problems and boundary
conditions. However, the finite difference method has drawbacks, such as discrete errors
and numerical stability problems. The discretization error is caused by the discretization
process, which discretizes the actual continuous solution into a finite number of grid points
and may lead to an error between the numerical and actual solutions. The numerical stabil-
ity problem is due to the limitations of numerical methods, which can lead to instability of
numerical solutions, such as divergence or oscillation [23].

In real-world scenarios, enhancing computational precision and stability often necessi-
tates the amalgamation of the finite difference method with other numerical simulation
techniques and optimization algorithms. This includes integration with methods such
as the finite element, finite volume, conjugate gradient, Newton–Raphson, and related
approaches. Furthermore, the employment of efficient strategies like parallel processing
and multi-level grid techniques can substantially elevate computational efficiency.

While the finite difference method is susceptible to issues like discretization errors and
numerical stability challenges, the computational precision of these numerical methods can
be bolstered via judicious discretization, differentiation, meticulous setting of boundary
conditions, and adept numerical solutions. By integrating this method with other numerical
simulation techniques and optimization algorithms, computational accuracy can be further
elevated. When this refined approach is aligned with real-world engineering challenges for
both simulation and optimization, it can fully harness its strengths, yielding high-fidelity
numerical solutions that become indispensable for the meticulous design and optimization
endeavors within reservoir engineering.

2.2. Finite Element Method

In addressing intricate boundary conditions, finite difference methods typically em-
ploy a regular grid structure, which often struggles to adapt effectively to elaborate ge-
ometries. In juxtaposition, the finite element method is notably adept at managing such
complex configurations. Within the finite element method framework, the physical domain
is divided into a finite assembly of geometric cells, which can manifest in diverse shapes
and dimensions. Consequently, this method possesses the flexibility to effortlessly accom-
modate intricate physical domains, and it can deploy varied mesh granularities across
different regions to reflect distinct physical phenomena [28].

Spatially, the finite element method discretizes the solution domain using a series
of interconnected, non-overlapping diminutive cells. Within each cell, specific nodes
are chosen, interpolated, and subsequently leveraged to derive an approximate function.
Typically, the approximate function within a cell is represented either by the value of the
unknown field variable function at each node or via interpolation. This technique morphs a
continuous domain with infinite degrees of freedom into a discrete assembly of cells, which
can then be cohesively resolved via amalgamation [29].

The finite element method is a numerical computational method for solving partial
differential equations in physical problems. This method decomposes a complex problem
into many small, simple parts and then solves each part numerically, often called “finite
elements”. The finite element method is based on the variational principle and the weighted
margin method, and its solution idea is to divide the solution area into a finite number
of cells, but each cell has a different shape. In each cell, a suitable node is selected as
the interpolation point of the solution function. The differential equation is rewritten as
a linear expression of the interpolation function, and the differential equation is solved
discretely with the help of the variational principle or the weighted margin method. The
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finite element method can be divided into three main steps: discretization, linear system
solving, and post-processing [30].

The finite element method has the same basic idea as the general finite element
method, but there are some differences in practice. The finite element method aims to solve
complex fluid flow and mass transfer problems. It requires consideration of many factors,
such as formation permeability, pressure and saturation variations, and the movement of
multi-phase fluids.

The first step in the finite element method is to discretize the reservoir. The reservoir
is usually divided into several small areas or “grid cells”, each of which is generally a
quadrilateral or triangular shape that contains a small part of the reservoir. Then, the
flow within each grid cell is described as a set of fundamental equations, including a
mass conservation equation, a momentum conservation equation, an energy conservation
equation, and others. Combining several fundamental equations into an extensive nonlinear
system is usually necessary for finite element methods. This nonlinear system includes
many unknown quantities, such as pressure, saturation, temperature, and other quantities.
The process of solving this nonlinear system requires the use of iterative methods such as
the conjugate gradient method or GMRES. Since finite element methods usually involve
large nonlinear systems, they need high-performance computers to solve these problems. In
finite element methods, post-processing is an essential step. Post-processing aims to extract
useful information from the solution, such as maximum and minimum pressure, flow rate,
saturation, and other information. This information is crucial for petroleum engineers
because it can be used to predict the development and output of the reservoir [31].

The finite element method has high computational accuracy in dealing with partial
differential equations, and it is easy to deal with complex boundaries. The finite element
method discretizes the continuous simulated reservoir space into an assembly of finitely
many cells. Which can simulate the reservoir with complex geometry due to the variation
in the cell shape itself and the interconnection method. Then, the finite element method
represents the unknown field function on the entire domain by the approximate interpola-
tion function within each cell using the piecewise partitioning idea and finally assembles
the solution by the overall superposition idea [32].

The finite element method serves as a robust instrument for refining flow equations
and accommodating intricate boundaries in numerical analyses. Its merits are manifold,
such as adeptly segmenting reservoir zones with complex boundaries, circumventing the
need for a holistic domain approximation function, and delivering heightened precision
when contending with partial differential equations. Via the adoption of the finite ele-
ment method, practitioners can adeptly traverse intricate computations and garner more
precise outcomes.

However, the finite element method does come with its set of challenges. It demands
premium quality input data encompassing geological models, physical parameters, and
meticulously defined boundary conditions. Due to the voluminous computational demands
and extended computational durations, it mandates using high-caliber computing systems
and employing massively parallel computing strategies. Consequently, it becomes impera-
tive to judiciously select numerical simulation techniques and allocate computational assets
tailored to the specific task at hand and the prevailing conditions.

2.3. Finite Volume Method

The finite volume method is also known as the control volume method. Using ideas
from computational fluid dynamics, the computational region is divided into a single
control volume around each grid. A set of discrete equations is derived by integrating
over each control volume, where the values of the dependent variables at the grid points
are unknown. To find the integral of the control volume one, it must assume the law of
variation in the values between the grid points and thus solve the equation [33].

In reservoir numerical simulation, the finite volume method divides the reservoir
space into several discrete control volumes. Physical processes are then numerically calcu-
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lated within each control volume to obtain the reservoir’s material and energy transport
patterns [34]. The core idea of the finite volume method is the principle of conservation of
mass and conservation of momentum, which means that the input and output of matter
and energy should be equal in the control volume. Ultimately, this approach yields a
numerical solution that accurately predicts how material and energy will be transported
within the reservoir [35].

The finite volume method boasts several advantages over the conventional finite
difference method. Notably, it is adept at accommodating irregular mesh structures, exhibits
minimal numerical dissipation, ensures adherence to physical conservation laws, and is
inherently versatile. While the finite difference method abides by the local conservation
principle, its application becomes challenging in the context of complex boundary reservoir
scenarios due to its reduced adaptability. In contrast, the finite element method offers
superior flexibility in spatial discretization, primarily due to its reliance on an unstructured
grid. Nevertheless, it only adheres to the principle of matter conservation on a macroscopic
grid level and fails to ensure local fluid conservation, which can instigate oscillations within
the numerical solution. A distinguishing feature of the finite volume method, setting it
apart from the finite element method, is its lack of dependence on the continuity and
differentiability of the solution function [36]. This characteristic positions it advantageously
for tackling problems with discontinuous solutions or those exhibiting non-smoothness
at certain junctures. Moreover, when juxtaposed against the finite difference method, the
finite volume method demonstrates superior proficiency in managing intricate geometrical
configurations, such as unstructured meshes, given that its numerical computations are
executed within each individual finite volume cell. In essence, the finite volume method
amalgamates the strengths of both the finite difference and finite element techniques,
ensuring localized fluid flow conservation while adeptly navigating complex boundary
reservoir challenges [37].

Despite the wide application of finite volume methods in the numerical simulation of
reservoirs, there are some shortcomings, such as the inevitable discretization errors associ-
ated with discretizing a continuous physical system into a discrete control volume. The
finite volume method treats the physical quantities at the interface as constants. In reality,
they vary, leading to a specific numerical error in the finite volume method when calculat-
ing the flux and interface pressure at the interface, affecting the simulation results’ accuracy.
The results of the finite volume method are related to the density of meshing. If the meshing
is unreasonable or too sparse, it will lead to inaccurate and unstable numerical solutions.
The finite volume method has some limitations in dealing with non-homogeneous and non-
linear problems. It is difficult to accurately characterize non-homogeneous and nonlinear
reservoir features, such as permeability variation with depth and space.

2.4. Meshless Method

Traditional numerical simulation predominantly employs a mesh-based approach.
This methodology entails segmenting the oil and gas reservoir into a finite set of grid cells
and subsequently addressing differential equations via discretization. While effective for
simpler systems, traditional meshing methods can present challenges and limitations when
dealing with complex oil and gas reservoirs, multi-phase flow, and nonlinear behavior.
These can include mesh complexity, distortion and degradation, and difficulty ensuring
computational accuracy. Therefore, in recent years, the meshless method, as an emerging
numerical simulation technique, has been widely used in the numerical simulation of oil
reservoirs, with good development prospects and application values [38].

The meshless method is highly efficient and relies on point-based approximation, elim-
inating the need for an initial division and reconstruction of the mesh. This methodology
makes it easy to characterize the geometric features of the computational domain, including
reservoir boundaries, faults, compartments, and fractures for reservoir models. Not only
does it ensure accurate calculations, but it also simplifies the process while avoiding the
constraints of grid-like methods [38,39].
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The meshless method simulates oil and gas flow more accurately than traditional
mesh-based methods. It can handle complex multi-phase fluid flow problems such as the
medium’s oil and gas and water flow, interactions, and nonlinear behavior. The meshless
method adapts to irregular reservoirs and geological formations without meshing and
mesh refinement. This flexibility allows for better accuracy and reliability in numerical
simulations and the ability to adjust the computational domain to fit specific solution
requirements. Compared to the finite element method, commonly used in solid mechanics,
the meshless method solves the limitations of the finite element method in terms of tricky
mesh generation for complex shapes, low accuracy of stress calculation, and difficulty of
adaptive analysis [40–42].

When simulating oil and gas flow in porous media, the meshless method has certain
limitations that should be considered. Firstly, obtaining accurate and stable solutions for
complex systems that contain intermittent features can be challenging. Secondly, achieving
high-precision solutions requires a large number of matching points, which significantly
increases computational cost. Additionally, the computational accuracy of the meshless
method can be significantly affected by the weight function type and nodal influence
domain range. Notably, the corresponding nodal shape function derived from the weight
function lacks convective meaning and does not accurately reflect the flow interaction
between the nodes. Lastly, derivative-like boundary conditions can present a challenge
when working with the meshless method.

Therefore, it is difficult to form an effective new method for the numerical simulation
of reservoirs capable of solving multi-phase oil and gas flow in porous media by the
meshless method alone.

2.5. Boundary Element Method

The boundary element method, also known as the boundary integral equation method,
offers a distinct approach to addressing partial differential equation challenges. Unlike
the finite element and finite difference methods, which necessitate the discretization of the
entire domain, the boundary element method uniquely requires discretization solely of
the boundaries. The boundary element method in the reservoir numerical simulation uses
integral boundary equations to represent boundary conditions. It solves the problem by
discretizing the boundary and solving a linear system of equations [43,44].

The boundary element method is based on the boundary integral format of the oil
and gas flow control equation in porous media. It only requires dividing the grid on the
boundary of the computational domain, which significantly reduces the number of grids.
Moreover, it utilizes the point source solutions of differential equations with analytical ac-
curacy, which improves computational accuracy to some extent. Since the coefficient matrix
of its algebraic equations is dense and nonsymmetric, domain integration is performed
in the nonlinear control domain. Boundary element methods apply only to single-phase
flow equations, linear problems, and homogeneous reservoirs. Therefore, it has not been
applied to large-scale reservoir numerical simulations [45,46].

Numerical reservoir simulation methods present challenges, particularly those reliant
on a grid system and meshless numerical methods. The grid system struggles to adapt to
complex geological conditions, such as fractures, faults, cavities, and intricate reservoir
boundaries, often requiring sophisticated grid generation techniques. Actual reservoir
applications using grids can result in high computational costs, complex history matching,
and complicated production optimization. While the meshless method has the potential
to overcome grid system limitations, accurately and stably solving the complex set of
equations governing oil and gas flow in porous media with strong convection characteristics
poses a challenge. Achieving high-accuracy solutions necessitates many matching points,
increasing computational costs. Both grid-like and meshless methods face difficulties
determining flow interaction between well points and effectively analyzing actual mine
site problems, such as dominant channel analysis between wells and water runoff control.
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Table 1 presents the application contexts and a comprehensive evaluation of the merits
and limitations of the aforementioned numerical methods.

Table 1. The application contexts and a comprehensive evaluation of the merits and limitations.

The Numerical Methods Merits Limitations

Finite Difference Method

The method exhibits strong intuitiveness,
facilitates straightforward operation, ensures

rapid computation, is easily implemented, and
is adaptable to various physical problems and

boundary conditions.

The method may encounter discretization
errors, issues related to numerical stability, and

challenges in addressing intricate geological
structures, irregular meshes, and

pronounced nonlinearities.

Finite Element Method

The approach demonstrates significant
flexibility when addressing intricate geometric

configurations and diverse
boundary conditions.

Specialized pre-processing and post-processing
techniques are requisite. The method has

computational complexity.

Finite Volume Method
The approach ensures the conservation of

physical quantities and accommodates
irregular meshes.

Particular discretization strategies may be
necessary, and discretization errors can arise.

Accuracy depends on appropriate mesh
density, and accurately describing

heterogeneous and nonlinear reservoir
characteristics can be challenging.

Meshless Method They are effectively handling highly
dynamic problems.

Requires highly complex search algorithms
and interpolation techniques.

Boundary Element Method They are effectively addressing infinite or
semi-infinite problems.

They are challenging to apply for
non-steady-state or nonlinear problems.

In traditional numerical simulations of reservoirs, models necessitate discretization.
However, with escalating problem dimensionality, meshing costs surge exponentially.
This poses significant challenges in executing numerical solutions for problems of high
dimensionality, especially in scenarios demanding the modeling of multiple parameters
where meshing expenses can be prohibitive. Moreover, the precision and stability of
numerical approaches are deeply contingent upon the grid’s accuracy and granularity.
Ill-suited meshing can culminate in unstable, imprecise, or divergent solutions. More
refined meshing is essential to achieve greater solution accuracy, subsequently amplifying
computational demands.

For identical problems, varying meshing can yield disparate numerical outcomes.
This disadvantage is because the form of the approximation of the numerical method is
different on different grids. The grid ambiguity makes the results of numerical methods
unreliable enough and must be verified by other methods. Meshing is usually ineffective for
unconventional geometries, such as odd shapes or non-connected domains. This limitation
is because many small meshes must be used to accurately represent the geometry, which
can significantly increase computational cost. The mesh density needs to be dynamically
adjusted for problems like adaptive meshing methods, which usually require more complex
algorithms and may increase computational costs. Integrating machine learning technology
is augmenting traditional numerical methods to address their limitations. This approach
offers a potential solution to the challenges presented by conventional methods.

3. Application of Machine Learning in Numerical Methods

The fusion of machine learning techniques with numerical simulation is emerging as
a pivotal strategy to surmount the inherent constraints of traditional numerical methods.
This prominence stems from machine learning’s superior efficiency, rapidity, and cost-
effectiveness relative to conventional methodologies. Employing machine learning for
function updates and associated computations paves the way for a significantly expedited
reservoir numerical simulation process.
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3.1. Machine Learning to Update the Basic Functions of Multi-Scale Methods and Perform Coarse
Grid Calculations

The multi-scale method can realize the fine characterization of the oil and gas flow
process in porous media by reducing the computational volume while considering the
computational accuracy. This approach involves the dissection of the reservoir model on
a grid at the macroscopic scale to create multi-scale basis functions. The local differential
equations are then solved on the divided cells, and the original problem is finally solved
on a coarse grid. Utilizing this approach allows for the resolution of flow equations on a
coarser grid while simultaneously leveraging multi-scale basis functions to encapsulate
fine-scale characteristics [47]. By discretizing the overarching flow equations with these
multi-scale basis functions, a condensed equation set is derived. This process not only di-
minishes computational exertion but also adeptly represents the medium’s inhomogeneity,
ensuring elevated simulation precision. The multi-scale approach reduces the problem of
high computational costs caused by conventional numerical methods. It combines small-
scale flow characteristics to reduce computational volume while ensuring computational
accuracy [48].

The multi-scale approach requires solving many localized problems with the same
boundary conditions to obtain the desired basis functions. Machine learning algorithms
can be utilized to swiftly update the basic functions of multi-scale methods, leveraging their
approximation capability and fast computational power. Chan et al. [49] used a neural net-
work model for machine learning with a highly nonlinear mapping capability to construct
an agent model for calculating basic functions in the multi-scale finite volume method.
They established a predictive model to map permeability to basic functions, replacing the
numerical solution of complex local problems with matrix-vector multiplication. They
combined this method with numerical simulation to create a fast-multi-scale solution based
on machine learning techniques.

Concurrently, owing to the variability of parameters in the oil and gas flow dynamics
within porous media, recurrent numerical simulations demand substantial computational
resources. To remedy this, a confluence of multi-scale finite element and machine learning
methodologies is employed. The machine learning approach enables the depiction of the
oil and gas flow dynamics on a coarser grid, while the multi-scale basis functions adeptly
represent minute-scale oil and gas flows within porous structures. Such an amalgamation
culminates in a swift multi-scale finite element resolution. Wang et al. [50] used a fully
connected neural network and a deep multi-scale model reduction learning (DMML) model
to solve the reservoir oil and gas flow process in porous media on a group grid. This work
replaced the coarse grid solution method in the multi-scale approach, accelerating the
computational speed and reducing the computational cost of the multi-scale approach.

3.2. Machine Learning Replaces Phase Equilibrium Calculations during Numerical
Reservoir Simulation

During the numerical reservoir simulation calculation, the black oil model divides
the oil phase into black oil with non-volatile components and crude oil dissolved gas
with volatile components. Still, it cannot finely describe the specific components in these
two parts but instead describes a collection of chemical components with similar phase
behavior. To describe the oil and gas flow process in porous media of reservoir compo-
nents more finely, the component model is constructed by describing the flow and phase
equilibrium system of reservoir fluids in the subsurface based on the natural components
of the hydrocarbon system. Although component models can describe reservoir fluid
flow more accurately than black oil models, they require more expensive computational
costs to describe the phase equilibrium state due to the multi-component composition
and inter-component transitions. This progress is usually divided into phase stability
calculations [51,52] and phase separation calculations [52,53]. The flow state of a reservoir
fluid is generally described using the PR equation of state [54] or the SRK cubic equation
of state [55]. The process of phase equilibrium calculation is essentially the solution of a
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nonlinear system of equations. Phase equilibrium calculations need to be performed at
least once in each simulation unit at each time step, occupying more than half of the total
simulation time under certain conditions, and the computational cost rises accordingly as
the reservoir is described more finely.

For fast computation, machine learning methods can finely model complex relation-
ships between inputs and outputs. For the complex nonlinear correspondence of the
phase equilibrium calculation process, the machine learning method accurately describes
the nonlinear relationship and realizes the fast calculation of the phase equilibrium state.
Gaganis et al. [56] used machine learning methods to accelerate the component model’s
numerical simulation process to compute the component model’s phase equilibrium state
for a time-consuming and expensive problem. Specifically, the phase equilibrium state
calculation process is divided into phase separation and phase stabilization, which are
calculated using different machine learning algorithms. Considering the phase stability
problem as a data classification problem, the machine learning algorithm Support Vector
Classifiers is used to classify the component models’ phase stability states. This strategy
avoids using traditional optimization algorithms such as Newton–Raphson or iterative
algorithms to reduce the computational cost. Suppose the phase stability calculation deter-
mines that the fluid state is unstable. In that case, a phase separation calculation is required
to obtain the molar fraction of each component at that condition and, thus, calculate the
components at phase equilibrium. The process is considered a functional learning process.
The mapping relationship between component coefficients, pressure, temperature, and
equilibrium coefficients is established via a fully connected artificial neural network model
to realize the fast calculation of the phase separation process.

Kashinath et al. [57] expanded on related work on machine learning for phase equilib-
rium calculations. For processes such as CO2 repulsion, the phase equilibrium calculation
process is carefully divided into three parts: supercritical phase determination, subcritical
phase stability analysis, and phase separation problems. Relevance vector machines (RVMs)
were chosen to train two classifiers for critical state determination using component model
pressure and composition data. The first classifier is used to identify whether the input
conditions correspond to a supercritical region. By quickly identifying the supercritical
phases, the properties of the supercritical fluids, such as density and viscosity in simula-
tions involving CO2 oil drive, can be accurately estimated. In addition to the supercritical
classifier, a second classifier is used to identify the number of stable phases in the subcritical
region. RVMs are used to determine the posterior probabilities for each class, which are
used to construct criteria for predicting phase states. An ANN is trained to anticipate the
equilibrium K value for a given pressure and combination, which is used to compute the
phase splitting problem to eliminate expensive iterations in the flash evaporation problem.

The effect of capillary pressure on the phase equilibrium of complex reservoir fluids is
not usually considered in related machine learning work for phase equilibrium calculations.
Zhang et al. [58] optimized the architecture of the neural network model, and the optimized
deep, fully connected neural network was able to accurately describe the phase separation
state process with and without capillary pressure. The model performance was tested by
deepening the number of network layers considering the capillary pressure. Although the
network models with different hidden layers performed slightly differently, the optimized
network model with seven hidden layers was tested to describe the phase separation
process accurately. The machine learning method is applied to the phase equilibrium
method, and the two parts of the phase equilibrium process are calculated using the
machine learning method. This way reduces the computational cost of reservoir numerical
simulation, improves the computational efficiency, forms a phase equilibrium calculation
method combined with a machine learning algorithm, and is successfully applied to the
reservoir numerical simulation process [59–61]. With the development of machine learning
methods, more and more ensemble methods will be proposed.
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4. Deep Learning Methods for Solving Partial Differential Equations

Integrating machine learning techniques with conventional numerical approaches
in reservoir numerical simulation serves as a supplementary numerical strategy. This
amalgamation, particularly in calculating the phase equilibrium state and other composite
methods, hastens the reservoir numerical simulation procedure, enhancing its efficiency.
Within the realm of petroleum engineering, the partial differential equations associated
with oil and gas flow dynamics in porous reservoir media exhibit pronounced nonlinearity.
This intrinsic characteristic inevitably results in substantial computational expenses when
resolving the nonlinear equation systems inherent to the reservoir numerical simulation, a
challenge that remains inherently persistent.

As deep learning evolves, methods based on it for solving partial differential equations
leverage deep neural network models to approximate arbitrary functions and their deriva-
tives. This is particularly efficacious for approximating highly nonlinear partial differential
equations, leading to substantial reductions in computational expenses. Therefore, several
breakthroughs have been made in solving partial differential equations based on deep
learning in recent years, and new theories and methods have been proposed.

Psychologist McCulloch and mathematical logician Pitts proposed the first mathemat-
ical model of neurons, the MP model [62] (named after both), in 1943. The model roughly
simulates human neurons’ operation but requires manual weight setting. The MP model is
groundbreaking and has provided the basis for subsequent research. It has opened a new
era of artificial neural network research. Many pioneering researches have been based on
this model [63–65]. Minsky and Papert in 1969 [66] proved the fatal weakness of perceptual
machines: they can only learn linear equations, e.g., perceptual machines cannot learn
the difference-or-exception operation (XOR). This finding sent the development of neural
networks into a cold winter.

In 1986, Rumelhart et al. [67] developed a multilayer feedforward network, a back
propagation network (BP network), trained by the error backpropagation algorithm, which
solved some problems that the original single-layer perceptron could not solve. The
proposal of the BP algorithm not only strongly countered the view of Minsky et al. [66] but
it also led to the second climax of neural network research. Subsequently, neural network
structural models such as convolutional neural networks [68–70] and recurrent neural
networks [71–73] were well developed.

Meanwhile, the proposed automatic differentiation method [74,75] enables the neural
network model to accurately calculate the derivatives using the chain rule and differentiate
the whole neural network model based on the input coordinates of the neural network
and the network parameters. The automatic differentiation replacing the complex gradient
calculation in partial differential equations lays the foundation for solving partial differen-
tial equations based on artificial neural networks. During this period, Cybenko et al. [76]
discovered that neural networks containing hidden layers can learn any equation and
approximate arbitrary functions and their derivatives, laying the theoretical foundation
for neural network solutions of differential equations. This discovery also means that
the system of partial differential equations can be approximated with the help of neural
network models using less computational cost and data cost to solve the system of partial
differential equations. Based on these works, using neural network models to solve partial
differential equations was carried out [77,78]. However, the early methods could only solve
simple partial differential equations due to the performance of neural network models
and the computer arithmetic power. With the advent of machine learning methods such
as Support Vector Machine (SVM) [79], neural network models [70] did not perform as
well as SVM in problems in related fields, and the development of neural networks was
again stalled.

In 2006, Hinton et al. [80] published a groundbreaking paper on the concept of neural
networks, which first introduced the concept of deep learning and showed that the training
challenges of deep neural networks could be solved by layer-by-layer initialization. The
establishment of foundational theory paved the way for the evolution of deep learning
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methodologies. Marking 2006 as the inaugural year of deep learning’s ascent, subsequent
advancements in computational capabilities, coupled with the progression of hardware
such as CPUs and GPUs, catalyzed its growth. Further bolstered by the rise and inte-
gration of big data, deep learning reached its zenith. This burgeoning of deep learning
techniques and deep neural network models has profoundly influenced the emergence of
deep learning-centric strategies for resolving partial differential equations.

The essence of the deep learning-based approach to solving partial differential equa-
tions of oil reservoirs is to characterize the oil reservoir partial differential equations of
oil and gas flow in porous media using deep learning models. Deep neural networks can
approximate reservoir partial differential equations for oil and gas flow in porous media.
The output of the deep neural network is used to approximate the solution of the partial
differential equation, and a loss function is defined based on how well this approximate
solution matches the original equation. The neural network parameters are derived using
training and loss function optimization. After finalizing these parameters, an approximate
solution to the initial equation is attained.

In this sense, deep learning-based partial differential equation solving is the same
as deep learning-based agent modeling. Both aim to optimize the neural network model
with the help of labeled data or physical laws to obtain a neural network model with
fixed parameters that can characterize the partial differential equations and thus obtain an
approximate solution to the partial differential equations. Deep learning techniques applied
to reservoir partial differential equations enable the approximation of solutions at any
time step. Conversely, deep learning-based reservoir proxy modeling offers approximate
solutions to the differential equation system at designated times. The proxy modeling can
be understood as the solution of the partial differential equations of the reservoir at the
specified moment based on the deep learning approach, and the two methods are unified
in this respect.

However, the deep learning-based partial differential equation-solving methods fo-
cus more on the interpretability of neural networks and the partial differential equation
constraints of neural networks. Deep learning techniques for solving partial differential
equations leverage a holistic integration of their mathematical characteristics, physical in-
terpretations, and engineering contexts. This integration fosters enhancements in network
architecture and loss functions, optimizing them for PDE solutions. Deep learning-based
partial differential equation solving methods can directly solve reservoir partial differential
equations. Deep learning-based reservoir partial differential equation-solving methods can
predict reservoir states and properties at any time. However, reservoir proxy modeling
methods are constrained by the time-step range of the dataset, predominantly forecasting
the observed reservoir states and attributes at previously documented instances.

The basic structure of the deep learning model is a feedforward, fully connected deep
neural network, and this is an example to introduce the neural network solution method
for the reservoir partial differential equations [81].

The input parameters of the neural network are the static parameters of the reservoir
m, the production regime s, the relative permeability parameters k, and other parameters,
which are transformed into the network input in the form of d dimensional row vectors
x ∈ Rd by normalization. The neural network’s output is also the transformed pressure,
saturation, and well production data. A single hidden layer neural network structure is
used as an example. The k dimensional output of a single hidden layer neural network
takes the following form:

y = σ(xW1 + b1)W2 + b2 (1)

where x is the input data of the neural network, including static parameters m, production
regime s, phase percolation parameters k, and other parameters; y is the output data of the
neural network, including pressure, saturation, and well production data; W1 and W2 are
the weight matrices of d× q and q× k, respectively; b1 and b2 are the bias vectors of 1× q
and 1× k, respectively; and σ(·) is a nonlinear model, called the activation function.
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For multilayer neural networks, the model parameters can be expressed as

(W∗, b∗) = argmin
(W,b)

J(θ; X, Y) (2)

where θ denotes the set of network parameters {W, b}. The parameters are optimized by
stochastic gradient descent (SGD) or its variants.

Take SGD as an example, and the ith generation selection process is as follows:

θ(i+1) = θ(i) − η∇θ J
(
θ(i); X, Y

)
(3)

where η is the step size of the ith selected generation. The gradient ∇θ J of the loss function
concerning the model parameters is usually calculated using backpropagation.

For a given reservoir partial differential equation, the reservoir partial differential
equation is constrained by combining the initial conditions I(·)(IC) of the reservoir and
the boundary conditions B(·)(BC). The set of partial differential equations under the
constraints can be expressed as follows:

N (t, x; u(t, x;θ)) = 0, t ∈ [0, T], x ∈ D
I(x; u(0, x;θ)) = 0, x ∈ D
B(t, x; u(t, x;θ)) = 0, t ∈ [0, T], x ∈ ∂D

 (4)

where u(t, x;θ) is the approximate solution of the equation; θ is the parameter correspond-
ing to the approximate solution in the equation; N (·) is a differential operator, contains
linear or nonlinear terms consisting of time differentiation, spatial differentiation, and
other differentiation; x is a position vector defined in a bounded continuous space domain
D ∈ RD; and ∂D is the boundary.

Numerical reservoir simulation enables mapping the known reservoir parameters,
including static parameters and production regimes, to reservoir pressure, saturation, and
well production data. The reservoir numerical simulation process can be understood as
a differential operator with time and space differentiation components. The process of
solving partial differential equations based on deep learning methods can be understood
as follows: under the constraint of the oil and gas flow law in porous media, the reservoir
parameters and field data are used to approximate the differential operator of the reservoir
numerical simulation solution process via the learning of a deep learning model to obtain
a deep learning model that can characterize the computational process of the reservoir
numerical simulation.

In reservoir numerical simulation, deep learning methods for solving partial differen-
tial equations are classified into the following three categories based on the dependence
on labeled data and the dependence on the physical laws of reservoir oil and gas flow in
porous media [81]: data-driven is a method that uses only label data constraints; physics-
driven is a method that does not contain any label data constraints; and physical constraints
is a method between the two with labeled data constraint, and partial differential equation
constraint coexist.

4.1. Data-Driven Deep Learning Approach for Solving Reservoirs Partial Differential Equations

The core problem of a data-driven solution of partial differential equations is to
investigate the characterization of the equation and each differential operator in it to
obtain the equation solution. The labeled data required for the data-driven approach are
shaped as u(t, x) follows. The difference between the training data u(t, x) and the neural
network predictions û∗(t, x; W, b) is locally minimized by finding an optimal set of network
parameters (W, b). That is, the data-driven optimization problem can be expressed as

lossdata(W, b) = ‖u(t, x)− û∗(t, x; W, b)‖
W∗, b∗ = argmin

W,b
losssdata(W, b)

 (5)
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where W∗ and b∗ are the optimization objectives of the neural network.
At its core, data-driven deep learning for resolving reservoir partial differential equa-

tions involves utilizing labeled data to train a deep learning model. This trained model sub-
sequently establishes a correspondence between reservoir parameters and its pressure field,
saturation field, and production. Presently, this approach is the predominant deep learn-
ing technique for addressing partial differential equations within petroleum engineering,
finding applications in domains like production forecasting and history matching [82]. The
data-driven procedure for solving these equations is depicted in the subsequent Figure 4.
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Data-driven deep learning models are classified into three categories based on the
degree of reliance on temporal and spatial characteristics of data: temporal models, spatial
models, and spatial–temporal models.

Temporal models are models with time-dependent structural features or time-depe-
ndent output results. Generally, the data transfer within the model structure is carried out
according to time steps, and the model has no strict spatial feature extraction process. The
predicted before and after time step results affect each other and have time dependence.

The spatial model has a strict spatial feature extraction and learning process for the
model structure, and the model prediction results are not time-dependent. The prediction
results of multiple time steps are output via multiple model output channels, which are
pseudo-time-dependent, and the prediction results of before and after time steps do not
have a mutual influence.

The spatial–temporal model has the features of the above two models and can extract
spatial distribution features of the input data. In contrast, the model output results are
time-dependent, and the output results of the preceding and following time steps affect
each other.

The spatial model mainly extracts the spatial distribution features of the input pa-
rameters and learns the extracted spatial features to establish the mapping relationship
between the input and output parameters. The model itself and the output do not have a
time correlation. Most spatial models are mappings of spatial images (permeability field
and porosity field distribution) to spatial images (pressure field distribution and saturation
field distribution). Some spatial models are mappings of spatial images (permeability field
and porosity field distribution) to time series (production data), but their model outputs do
not have a time correlation. Zhu et al. [83] introduced deep learning methods to residual oil
prediction by considering the static parameter distribution of the reservoir with reservoir
pressure field and flow rate field as an image-to-image regression problem. Via the de-
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signed DenseED deep neural network model, the feature extraction of the input parameters
is realized via the encoder, and the extracted features are learned via the decoder module.
The pressure field and flow rate field distributions at different time steps are output via
multiple neural network output channels to realize the solution of the partial differential
equation of the reservoir. However, the model cannot predict the pressure field and flow
velocity field distributions at the same time. By training the same network model with
different datasets, the prediction of pressure field and flow velocity field distributions
can be achieved separately. Mo et al. [84] extended this network structure model for CO2
saturation and pressure field prediction to the carbon storage field.

Zhang et al. [85] developed a DenseED-based network structure model with multiple
input features, drawing on image-to-image regression. The proposed model can capture
complex nonlinear relationships from multiple spatial features such as permeability, ir-
regular boundary grids, well distribution locations, and injection and production rates to
water content saturation. Water content saturation prediction over multiple time steps was
achieved via multiple output channels, as shown in Figure 5.
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Shahkarami et al. [86] used a fully connected neural network model for spatial feature
extraction of reservoir permeability field distribution. The proposed model developed a
mapping model from spatial image (permeability field and porosity field distribution) to
spatial image (pressure field distribution and saturation field distribution) and a mapping
model from spatial image (permeability field and porosity field distribution) to time series
(production data), respectively. The models used different training datasets with multiple
output channels for separate prediction of production data, pressure field distribution, and
saturation field distribution for multiple time steps.

Based on the above work, to avoid the drawback of using different datasets to retrain
the model for predicting different field distributions, Zhang et al. [87] designed a multiple
input–output DenseED model. The proposed model achieved simultaneous prediction for
the saturation and pressure fields by extracting multiple input reservoir features, including
permeability field distributions and phase permeability parameters, and using independent
feature learning modules to predict different field distributions via a multi-head output
design. The model structure is shown in Figure 6.

Zhong et al. [88] extended the model to the residual oil prediction, building on previ-
ous work [89] that used cDC-GAN to predict CO2 saturation field distributions in carbon
storage. The mapping relationship between reservoir permeability field and water satura-
tion is established using the cDC-GAN network structure model to realize the regression
from image (permeability field distribution) to image (water content saturation distribu-
tion). The cDC-GAN network contains a pair of generative discriminative models. The
generative model learns the relationship between input and output so that the generated
output is as close to the training data as possible. The discriminative model distinguishes
the trained output from the real data, enabling the cDC-GAN to learn the real data distri-
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bution features. This network structure model used multiple output channels to achieve
water content saturation output for multiple time steps. Based on the above work, Zhong
et al. [90] modified the cDC-GAN model to build a Co-GAN model with multiple outputs,
as shown in Figure 7. The model consists of two parts: the generative model and the dis-
criminative model. The same spatial feature extraction model is used to predict saturation
and pressure fields in the generative model part. Separate spatial feature learning models
are used to achieve simultaneous prediction of the pressure and saturation fields. The
model also uses multiple heads and output channels to output the prediction results at
different time steps.
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The time model can extract the input time series’ backward and forward dependence
features and predict the current time step output by the previous time step output with the
present time step input. The variables of each time step of the output are time-dependent,
and the prediction results of the preceding time steps and following time steps influence
each other and do not require a strict spatial feature extraction learning approach. The
temporal model is a mapping model from time series (production data) to time series
(production data), and the model itself and the output results are time-dependent.

The temporal model predicts the reservoir production curve by extracting autocorrela-
tion, trend, or cyclical variation characteristics from the input existing dynamic production
data. Strictly considered, the temporal model does not map from static reservoir parameters
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to reservoir pressure field and saturation field distributions as traditional deep learning
methods solve the system of partial differential equations for oil reservoirs, but instead
maps from dynamic production data of existing time series to time series of future time
steps. The overall process is equivalent to the reservoir model used to obtain the dynamic
production data of the reservoir via the reservoir numerical simulation method, from which
the training dataset is constructed. The temporal model is trained via the dataset to extract
the autocorrelation, trend, or periodic variation features of the dynamic production data of
the reservoir, which contain the solution operations of the reservoir numerical simulation
process, to characterize the computational process of the reservoir partial differential equa-
tion operator contained in the dynamic production data features, and then to predict the
production data.

One of the most widely used deep learning models is the Long Short-Term Memory
neural network. Sun et al. [91] used the LSTM neural network model for well production
curve prediction. The LSTM model consists of a recurrent unit and three gates (input gate,
forgetting gate, and output gate) that can adaptively select memory and forgetting data, as
shown in Figure 8.
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The dynamic production data of the wells were used as input, and the wellhead pres-
sure curves were used as features for predicting the future production curves of the wells.
The results showed that the LSTM model could predict the trend of the production curves
better. Shah et al. [92] applied the LSTM model for predicting well production curves to
the parameter optimization process of CO2 replacement development for shale oil and
were able to predict production curves quickly and improve the model computation speed.
Sagheer et al. [93] used a genetic algorithm to optimize the LSTM network architecture for
the problem that the LSTM network structure model needs to be set manually. The best net-
work structure model was selected to predict the reservoir well production, and the model
was applied to the realized reservoir. Song et al. [94] used the particle swarm optimization
(PSO) algorithm to optimize the LSTM network model. Fan et al. [95] proposed a hybrid
ARIMA-LSTM model by combining the advantages of the LSTM for high accuracy in
forecasting production curves with nonlinear variations and the autoregressive integrated
moving average model (ARIMA) for forecasting linear trends. The model can filter the
nonlinear production curve trends and transfer them to the LSTM model for prediction.
The results show that the hybrid model performs better than the separate models, and
the combined algorithm of different models will significantly improve the accuracy and
computational efficiency of the model.

The spatial–temporal model has the advantages of both models and can extract spatial
features from the spatial distribution features of the input data and predict the current time
step output from the previous time step output with the present time step input. The model
itself has a time module, and the model output results are time-dependent, meaning that
the output results of the preceding and following time steps affect each other. The spatial–
temporal model can usually be divided into the spatial feature extraction and the temporal
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module, where feature learning is performed. Spatial–temporal models are mostly mapping
models from spatial images (permeability field, porosity field distribution, and other spatial
information) to spatial images (pressure field, saturation field distribution, and other spatial
images) or time series (production data). Tang et al. [96] constructed a recursive R-U-Net
based on residual U-Net (R-U-Net) with a convolutional long short-term memory recurrent
network (LSTM) for predicting water content saturation and pressure field distribution.
The model input parameters are the permeability field distribution, and the model output
parameters are the water content saturation and pressure field distribution. Recursive
R-U-Net is divided into the spatial feature extraction part (Encoding part based on residual
U-Net) and the feature learning part (LSTM and Decoding part based on residual U-Net),
as shown in Figures 9 and 10.
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Figure 9. Network architecture of R-U-Net [96].

The spatial feature extraction part performs multi-scale spatial feature extraction
on the input permeability field, and the feature learning part learns the features and
then maps them onto the reservoir state field with time dependence to finally output
the predicted saturation field and pressure field distribution. The output saturation and
pressure field distributions are time-dependent and are no longer predicted with the help of
the model’s multiple output channels outputting pseudo-time-dependent results, as shown
in Figures 9 and 10. However, the model cannot simultaneously predict the pressure field
and saturation distribution and can only be trained separately with different datasets.
On this foundation, Tang et al. [97] extended the model to a 3D reservoir model and
combined it with a dimensionality reduction method to predict the 3D reservoir pressure
field and saturation field, respectively. Furthermore, this deep learning-based reservoir
partial differential equation-solving method was used for the automatic history matching
process based on the 3D model [98].
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In reservoir engineering, the reservoir pressure field distribution and saturation field
distribution obtained after solving the reservoir partial differential equation by deep learn-
ing can be directly used in relevant scenarios, such as residual oil prediction [85]. Some
scenarios need to go through the Peaceman equation [99] to obtain the reservoir well pro-
duction data for application, such as the automatic reservoir history matching process [98].
To avoid the time cost and additional accuracy loss of calculations using the Peaceman
equation [99], Ma et al. [100] constructed a spatial–temporal convolutional recurrent neural
network model (DCML-NN) capable of directly predicting reservoir well production based
on deep convolutional neural networks and multilayer long short-term memory neural
networks, as shown in Figure 11.

Mathematics 2023, 9, x FOR PEER REVIEW 21 of 45 
 

 

The spatial feature extraction part performs multi-scale spatial feature extraction on 
the input permeability field, and the feature learning part learns the features and then 
maps them onto the reservoir state field with time dependence to finally output the pre-
dicted saturation field and pressure field distribution. The output saturation and pressure 
field distributions are time-dependent and are no longer predicted with the help of the 
model’s multiple output channels outputting pseudo-time-dependent results, as shown 
in Figures 9 and 10. However, the model cannot simultaneously predict the pressure field 
and saturation distribution and can only be trained separately with different datasets. On 
this foundation, Tang et al. [97] extended the model to a 3D reservoir model and combined 
it with a dimensionality reduction method to predict the 3D reservoir pressure field and 
saturation field, respectively. Furthermore, this deep learning-based reservoir partial dif-
ferential equation-solving method was used for the automatic history matching process 
based on the 3D model [98]. 

In reservoir engineering, the reservoir pressure field distribution and saturation field 
distribution obtained after solving the reservoir partial differential equation by deep 
learning can be directly used in relevant scenarios, such as residual oil prediction [85]. 
Some scenarios need to go through the Peaceman equation [99] to obtain the reservoir well 
production data for application, such as the automatic reservoir history matching process 
[98]. To avoid the time cost and additional accuracy loss of calculations using the Peace-
man equation [99], Ma et al. [100] constructed a spatial–temporal convolutional recurrent 
neural network model (DCML-NN) capable of directly predicting reservoir well produc-
tion based on deep convolutional neural networks and multilayer long short-term 
memory neural networks, as shown in Figure 11. 

 
Figure 11. Network architecture of DCML-NN [100]. 

The model maps spatial images (permeability field distributions and other spatial 
images) to time series (production data and other time series) and applies the model to an 
automatic history matching process. The model uses a deep convolutional neural network 
model for spatial feature extraction of the input permeability field parameters. The ex-
tracted spatial features are converted to vector data by the SPP method, and then time 
series regression is performed using a multilayer LSTM model for feature learning. The 
final mapping is applied to the production data of the wells, and the model is used for the 
automatic history matching process. Based on this work, the well-controlled parameters 
were embedded into the feature conversion process to enhance the prediction accuracy of 
the model [101]. 

As the scale of reservoir models increases, spatial feature extraction using convolu-
tional neural networks requires enormous computational costs and storage requirements. 
Ma et al. [102] reduced the dimensionality of reservoir models, extracted spatial features 
using the dimensionality reduction method, used the reduced spatial feature vectors as 
model input parameters, and used GRU network models for feature learning to predict 
production data, as shown in Figure 12. This method avoids the computational cost of 
convolutional neural networks’ spatial feature extraction process. It applies the approach 

Figure 11. Network architecture of DCML-NN [100].



Mathematics 2023, 11, 4418 21 of 44

The model maps spatial images (permeability field distributions and other spatial
images) to time series (production data and other time series) and applies the model to
an automatic history matching process. The model uses a deep convolutional neural
network model for spatial feature extraction of the input permeability field parameters. The
extracted spatial features are converted to vector data by the SPP method, and then time
series regression is performed using a multilayer LSTM model for feature learning. The
final mapping is applied to the production data of the wells, and the model is used for the
automatic history matching process. Based on this work, the well-controlled parameters
were embedded into the feature conversion process to enhance the prediction accuracy of
the model [101].

As the scale of reservoir models increases, spatial feature extraction using convolu-
tional neural networks requires enormous computational costs and storage requirements.
Ma et al. [102] reduced the dimensionality of reservoir models, extracted spatial features
using the dimensionality reduction method, used the reduced spatial feature vectors as
model input parameters, and used GRU network models for feature learning to predict
production data, as shown in Figure 12. This method avoids the computational cost of con-
volutional neural networks’ spatial feature extraction process. It applies the approach to the
reduced-dimensional automatic history matching process, which improves the efficiency of
automatic history matching and reduces the computational cost.

Mathematics 2023, 9, x FOR PEER REVIEW 22 of 45 
 

 

to the reduced-dimensional automatic history matching process, which improves the effi-
ciency of automatic history matching and reduces the computational cost. 

 
Figure 12. MLGRU-based history matching method [102]. 

Data-driven deep learning techniques for solving oil reservoir partial differential 
equations hinge on training the deep learning model using labeled datasets. This training 
aims to fine-tune the network model parameters, enabling the deep learning model to 
emulate the differential operators inherent in the reservoir numerical simulation equa-
tions. This data-centric approach stands as the primary method for addressing partial dif-
ferential equations within petroleum engineering. 

The efficacy of the data-driven solution hinges on meticulous data management, ju-
dicious model selection, and adept feature extraction, ensuring model accuracy and ro-
bustness. Foremost among these considerations is data quality; the integrity, accuracy, 
and reliability of data are paramount. Inaccurate or incomplete data can lead the trained 
model astray, yielding potentially erroneous results. The spatial distribution of the dataset 
must be representative, spanning the entire gamut of reservoir attributes, including all 
conceivable variables and their potential ranges. 

With quality data ensured, model selection becomes tailored to the data’s peculiari-
ties and the problem’s requirements. For instance, convolutional neural networks (CNN) 
are commonly employed for residual oil prediction, while long short-term memory net-
works (LSTM) are favored for production forecasting. Furthermore, the chosen model 
must be adept at extracting salient features congruent with the problem’s specifics, 
thereby bolstering model accuracy and robustness. As an illustrative example, in residual 
oil prediction tasks, CNNs frequently extract features related to reservoir permeability 
fields, well control parameters, and the flow dynamics of oil and gas phases within porous 
media. 

 Data-driven deep learning methods for solving partial differential equations in oil 
reservoirs also have shortcomings and limitations. First, the scarcity of realistic scene data. 
Data-driven models require large amounts of data for model modeling, which is often 
costly and difficult to obtain, and there are also time and computational costs associated 
with the training process of models with large amounts of data. Second, the loss function 
evaluation index has limitations. The loss function is a measure of the error and does not 
distinguish the physical process of the error. In addition, metrics based on the average 
sense of the data tend to ignore the physical process itself and are merely numerically 
optimal for the data itself, which does not have physical meaning and physical rationality. 
Next, the model is less robust and vulnerable to anomalous data and noise. Then, data-
driven models have poor generalization capabilities, only apply to the problems targeted 

Figure 12. MLGRU-based history matching method [102].

Data-driven deep learning techniques for solving oil reservoir partial differential
equations hinge on training the deep learning model using labeled datasets. This training
aims to fine-tune the network model parameters, enabling the deep learning model to
emulate the differential operators inherent in the reservoir numerical simulation equations.
This data-centric approach stands as the primary method for addressing partial differential
equations within petroleum engineering.

The efficacy of the data-driven solution hinges on meticulous data management,
judicious model selection, and adept feature extraction, ensuring model accuracy and
robustness. Foremost among these considerations is data quality; the integrity, accuracy,
and reliability of data are paramount. Inaccurate or incomplete data can lead the trained
model astray, yielding potentially erroneous results. The spatial distribution of the dataset
must be representative, spanning the entire gamut of reservoir attributes, including all
conceivable variables and their potential ranges.

With quality data ensured, model selection becomes tailored to the data’s peculiarities
and the problem’s requirements. For instance, convolutional neural networks (CNN) are
commonly employed for residual oil prediction, while long short-term memory networks
(LSTM) are favored for production forecasting. Furthermore, the chosen model must
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be adept at extracting salient features congruent with the problem’s specifics, thereby
bolstering model accuracy and robustness. As an illustrative example, in residual oil
prediction tasks, CNNs frequently extract features related to reservoir permeability fields,
well control parameters, and the flow dynamics of oil and gas phases within porous media.

Data-driven deep learning methods for solving partial differential equations in oil
reservoirs also have shortcomings and limitations. First, the scarcity of realistic scene data.
Data-driven models require large amounts of data for model modeling, which is often
costly and difficult to obtain, and there are also time and computational costs associated
with the training process of models with large amounts of data. Second, the loss function
evaluation index has limitations. The loss function is a measure of the error and does not
distinguish the physical process of the error. In addition, metrics based on the average sense
of the data tend to ignore the physical process itself and are merely numerically optimal
for the data itself, which does not have physical meaning and physical rationality. Next,
the model is less robust and vulnerable to anomalous data and noise. Then, data-driven
models have poor generalization capabilities, only apply to the problems targeted by the
training process, and require strict requirements for consistent data formats. Finally, the
prediction results of data-driven models based on data lack physical rationality and do not
conform to physical mechanisms.

4.2. Physics-Driven Deep Learning Approach for Solving Oil Reservoir Partial
Differential Equations

Data-driven models are incredibly dependent on labeled data, and the quality of
labeled data determines the quality of model training. At the same time, the data-driven
model lacks physical rationality, and the prediction results sometimes do not conform to
physical mechanisms. In contrast, the physics-driven deep learning method solves the
reservoir partial differential equations with constraints on the model by physical equations,
which does not require labeled data and has a solid physical background, enhancing
the physical rationality of the model, and the prediction results are consistent with the
physical mechanism.

For physically driven methods, the residuals are usually constructed using the control
equations and IC, BC, and then added to the loss function to optimize the network parame-
ters. The network output is substituted into the control equation to construct the residuals,
and then the parameters are optimized by minimizing the residuals. The physically driven
optimization problem is shown below:

lospsy(W, b) = ‖N (t, x, û∗)‖+ ‖B(t, x, û∗)‖+
‖I(0, x, û∗)‖

W∗, b∗ = argmin
W,b

losspsy(W, b)

 (6)

The physics-driven process of solving partial differential equations can be represented
in the following Figure 13:

The physics-driven deep learning approach solves the reservoir partial differential
equations without labeled data. Its essence is to constrain the training process of the deep
learning model via the reservoir control equations and the fundamental physical laws of the
reservoir, such as reservoir initial conditions, boundary conditions, and mass conservation
laws. However, the application in reservoir partial differential equation solving is still
in the initial development stage. There are fewer examples of applications of physically
driven deep learning methods for solving partial differential equations in oil reservoirs
without labeled data. Still, in a few applications, the technique has shown great potential
and value for application.
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Physically driven models focus on the selection and constraint of driving conditions,
using selected physical laws or equations to constrain the training process of deep learning
models. Zhu et al. [103] built a physically driven deep learning model for solving oil
reservoirs partial differential equations without labeled data based on previous work
with image-to-image regression deep learning to predict pressure fields [83]. The model
incorporated the given boundary conditions and the gradient images of the pressure field
in two directions into the loss function to train the deep learning model, as shown in
Figure 14.
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The loss function of the physics-driven model is shown below:

L(ŷ; x) = V(ŷ; x) + λB(ŷ)
V(ŷ; x) = 1

n

(
‖τ+ x�∇u‖2

2 + ‖∇ · τ− f‖2
2

)
B(ŷ) = ‖u[:, 0]− 1‖2

2 + ‖u[:,−1]‖2
2 + ‖τ2[[0,−1], :]‖2

2

 (7)

where ŷ is the predicted value of the deep learning model, which refers to the pressure field
and the gradient field components of the flow field in both horizontal and vertical directions;
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x is the parameter of the deep learning model input, referring to the permeability field,
x(i) ∈ Dinput; V(ŷ; x) is the error of the equation in the form of the residual parametrization
of the partial differential equations [77] or the generalized variational function [104]; B(ŷ) is
the boundary loss of the predicted value of the deep learning model; λ is the weight of soft
forced boundary condition (Lagrange multiplier); n is the number of uniform grid points
of the Sobel multiplier [105]; τ = [τ1,τ2] is the flow field; τ1, τ2 are the horizontal and
vertical components of the flow gradient field; ∇u = [uh, uv] is the pressure field; [uh, uv]
are the two gradient images along the horizontal and vertical directions estimated by the
Sobel filter; � is the element-by-element product; and f is the source field.

This physics-driven model is an image-to-image regression model, which is a spatial
model. The model does not require labeled data, and the input data is the permeability
field, which is predicted for the pressure field and the gradient field components of the
flow field in both horizontal and vertical directions. The model also uses the pseudo-time
series output of multiple output channels to predict the pressure and flow fields multiple
times. This model is the first physics-driven deep learning approach to the solution of oil
reservoirs’ partial differential equations. Without labeled data, the deep learning model is
trained by introducing boundary loss and equation loss, considering pressure field and
flow field gradients via the loss function.

Shen et al. [106] proposed a physically driven deep learning method model PDE-
Asymptotic-Solution network (AS-net) without labeled data for solving reservoir partial
differential equations for reservoir pressure field distribution and wellbore pressure pre-
diction to address the non-stationary and strongly nonlinear problems of reservoir oil and
gas flow process in porous media. The model is based on the parametric solution of the
reservoir partial differential equation [107] for the reservoir partial differential equation,
as follows:

û = u0 + D(x, y, t) · fθ2(x, y, t) (8)

where û is the model prediction value; u0 is the initial value; D(x, y, t) is a smooth function
used to encode the output of the neural network fθ2(x, y, t) so that it can satisfy the bound-
ary and initial conditions; and fθ2(x, y, t) is the neural network prediction. The model uses
an asymptotic solution of the partial differential equation for the work of the D(x, y, t) as an
alternative, but the asymptotic solution performs accurately only in certain circumstances.
Therefore, the model uses the established approximation neural network combined with
the asymptotic solution method for the D(x, y, t) calculation. Another modified neural
network is also built to correct the error of the approximation neural network. The model
is constrained using the control equation, initial condition, and mass conservation errors.
The process and model structure are shown in Figures 15 and 16.
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where û   is the model prediction value; 0u   is the initial value; ( , , )D x y t   is a smooth 
function used to encode the output of the neural network 2 ( , , )f x y tθ  so that it can satisfy 
the boundary and initial conditions; and 2 ( , , )f x y tθ  is the neural network prediction. The 
model uses an asymptotic solution of the partial differential equation for the work of the 

( , , )D x y t as an alternative, but the asymptotic solution performs accurately only in certain 
circumstances. Therefore, the model uses the established approximation neural network 
combined with the asymptotic solution method for the ( , , )D x y t   calculation. Another 
modified neural network is also built to correct the error of the approximation neural net-
work. The model is constrained using the control equation, initial condition, and mass 
conservation errors. The process and model structure are shown in Figures 15 and 16. 

 
Figure 15. The workflow of AS-net [106]. 

 
Figure 16. The network structure of AS-net [106]. 

Figure 15. The workflow of AS-net [106].



Mathematics 2023, 11, 4418 25 of 44

Mathematics 2023, 9, x FOR PEER REVIEW 25 of 45 
 

 

flow field in both horizontal and vertical directions. The model also uses the pseudo-time 
series output of multiple output channels to predict the pressure and flow fields multiple 
times. This model is the first physics-driven deep learning approach to the solution of oil 
reservoirs’ partial differential equations. Without labeled data, the deep learning model is 
trained by introducing boundary loss and equation loss, considering pressure field and 
flow field gradients via the loss function. 

Shen et al. [106] proposed a physically driven deep learning method model PDE-
Asymptotic-Solution network (AS-net) without labeled data for solving reservoir partial 
differential equations for reservoir pressure field distribution and wellbore pressure pre-
diction to address the non-stationary and strongly nonlinear problems of reservoir oil and 
gas flow process in porous media. The model is based on the parametric solution of the 
reservoir partial differential equation [107] for the reservoir partial differential equation, 
as follows: 

0 2ˆ ( , , ) ( , , )u u D x y t f x y tθ= + ⋅  (8)
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This physics-driven deep learning method for solving partial differential equations
in reservoirs is used to solve unsteady compressible oil and gas flow equations in porous
media with sinks by building an approximation-correction model, constructing a spatial
mapping model of the permeability field to the pressure field, and predicting the reser-
voir pressure field and wellbore pressure without any labeled data. The model contains
two neural networks: one for approximating the asymptotic solution and the other for
correcting the approximation error. Like the traditional numerical solution, the method
eliminates the dependence on labeled data and can solve partial differential equations with
time and space information.

In these works, the essence of the physics-driven approach, whatever it is, is to con-
struct residuals using the governing equations of the partial differential equations and
constants such as boundary conditions, to construct loss functions using the sum of the
residuals, and to compute deviations from the set of partial differential equations using
automatic differentiation, which can be extended to nonlinear problems. In the purely
physical mechanistic driven case, considering the missing tag data, but not negligible is the
effect of the strong inhomogeneity of the non-homogeneous reservoir on the mass conser-
vation law using automatic differentiation and the effect of the high gradient around the
well (source/sink term) on the accuracy of automatic differentiation. Moreover, compared
with fully connected neural networks, convolutional neural networks perform better on 2D
and 3D data that can be considered as images.

Zhang et al. [108] developed a PIDCNN label-free data physics-driven model for
solving two-dimensional transient single-phase Darcy flow partial differential equations for
highly inhomogeneous reservoir models with source-sink terms based on the PINN [109].
The model uses a convolutional neural network with a finite volume discretization of the
loss function to approximate the residuals so that the two-point flux approximation can
naturally satisfy the continuity of fluxes between cells of different properties. Meanwhile, a
well model is introduced in the loss function to approximate the high gradient variation
near the source/sink terms, and a label-free physically informed deep convolutional neural
network (PIDCNN) is established for simulating and predicting two-dimensional transient
Darcy flow with source/sink terms in non-homogeneous reservoirs. The model starts with
a CNN network model to predict the pressure field at the next moment of the instantaneous
change, with the input parameters being the initial pressure field. The model structure is
shown in Figure 17.
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To simulate transient Darcy flow at different time steps, a series of neural networks
are stacked together to form a deep convolutional neural network. The input in the initial
condition is a two-dimensional tensor of the dependent variable p(x, y). Using a finite-
volume discrete loss function, the first CNN is trained by minimizing the residuals of
the partial differential equations, and then the output p(x, y) is used as the input to the
second CNN. Each subsequent CNN is trained initially, and then the output is used as
input to the following CNN, as shown in Figure 18.
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The spatial distribution (K(x, y)) of the reservoir model’s physical properties is used
as an input to each CNN for practical applications. The output of the trained CNN for
the current time step is the pressure field p(x, y), which trains the CNN for the next time
step in the loss function. Although CNNs are connected by loss functions in training, they
are independent regarding prediction. For the prediction process, it is convenient to input
K(x, y) directly to the nth CNN to obtain the pressure field at the n-th time step, as shown
in Figures 19 and 20.



Mathematics 2023, 11, 4418 27 of 44

Mathematics 2023, 9, x FOR PEER REVIEW 27 of 45 
 

 

To simulate transient Darcy flow at different time steps, a series of neural networks 
are stacked together to form a deep convolutional neural network. The input in the initial 
condition is a two-dimensional tensor of the dependent variable ( , )p x y . Using a finite-
volume discrete loss function, the first CNN is trained by minimizing the residuals of the 
partial differential equations, and then the output ( , )p x y  is used as the input to the sec-
ond CNN. Each subsequent CNN is trained initially, and then the output is used as input 
to the following CNN, as shown in Figure 18. 

 
Figure 18. DCNN structure-based multi-step transient Darcy oil and gas flow simulation in porous 
media for two-dimensional reservoirs [108]. 

The spatial distribution ( ( , )K x y ) of the reservoir model’s physical properties is used 
as an input to each CNN for practical applications. The output of the trained CNN for the 
current time step is the pressure field ( , )p x y , which trains the CNN for the next time step 
in the loss function. Although CNNs are connected by loss functions in training, they are 
independent regarding prediction. For the prediction process, it is convenient to input 

( , )K x y   directly to the n  th CNN to obtain the pressure field at the n-th time step, as 
shown in Figures 19 and 20. 

 
Figure 19. DCNN structure-based multi-step transient Darcy oil and gas flow simulation in porous 
media for two-dimensional reservoirs [108]. 

  

Figure 19. DCNN structure-based multi-step transient Darcy oil and gas flow simulation in porous
media for two-dimensional reservoirs with spatial distribution K(x, y).
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Based on the above work, Zhang et al. [110] extended the method to two-phase flows.
The physics-driven deep learning approach to solve reservoir partial differential

equations essentially trains the model with constraints via reservoir control equations,
boundary conditions (BC), and initial conditions (IC) without labeled data, enhancing the
physical rationality of the model with a strong physical background and prediction results
in line with the physical mechanism. Compared with data-driven approaches, physics-
driven deep learning approaches emphasize the role of physical laws and equations in
constraining model predictions, which eliminate the reliance on labeled data, do not require
labeled data, and reduce the cost of data labeling. This approach uses physical equations
to constrain the model, making the model more consistent with the laws of physics, thus
improving the accuracy and reliability of the model and making the model’s prediction
results more straightforward to understand and interpret. In solving reservoirs partial
differential equations, physics-driven deep learning methods can improve the accuracy and
interpretability of predicting fluid motion in oil reservoirs by incorporating the fundamental
physical laws of fluid motion, such as continuity equations and momentum conservation
equations, into the training process of deep learning models. This approach can use
the powerful representational capabilities of deep learning to learn complex nonlinear
relationships and make predictions while satisfying the constraints of the laws of physics.

Compared with the most widely used data-driven deep learning methods for solving
reservoir partial differential equations, physics-driven deep learning methods for solving
reservoir partial differential equations are still in their infancy in petroleum engineering
but have excellent development prospects and research significance. The model is trained
with several physical solid constraints, including control equations, mass conservation
laws, boundary conditions, initial conditions, and other physical constraints. Similar to
traditional numerical solution methods, no data annotation is required, and the reservoir
partial differential equations are solved by relying on spatial and temporal data from
the field. The physics-driven model has a solid physical background, and the predic-
tion results of the model are more consistent with the physical mechanism, making the
physics-driven approach more suitable for reservoir engineering fields with strong physical
rationality requirements.
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There are some shortcomings in the physics-driven approach as well. The physics-
driven approach relies on the constrained training of physical equations describing the
physical process of reservoir oil and gas flow in porous media. Still, there are various
nonlinear, non-homogeneous, and non-stationary phenomena in actual reservoirs, and it
is difficult for the physical equations to describe all the complex phenomena. Moreover,
it is challenging to introduce physical constraints into the deep learning framework, and
combining physical constraints with deep learning losses makes it challenging to consider
physical constraints in the deep learning process accurately. In physics-driven loss function
calculations, the gradients of various residual terms such as boundary conditions, mass
conservation, initial conditions, and physical equation of state have competing relation-
ships [107]. The loss terms with larger weights have a significant role in the optimization
process of deep learning models, and how to select and balance the weights of each loss
term also requires careful consideration.

Currently, physics-driven deep learning for solving partial differential equations is
in a state of development, and many innovative and inspiring algorithms and models are
being proposed and improved to solve practical problems in various fields. In reservoir
engineering, the introduction and innovation of the method are also in the initial stage,
and there are still many problems to be solved in the actual field application. However,
the current application of the method has shown great potential and application value. In
the future, with the innovation of technical methods, mature physics-driven methods will
significantly improve the computational efficiency of reservoir numerical simulation and
provide a more accurate and reliable decision basis for reservoir development.

4.3. Physical-Constraints Deep Learning Approach for Solving Reservoir Simulation Problem

Data-driven deep learning methods for solving partial differential equations in oil
reservoirs have disadvantages such as weak generalization ability, lack of physical con-
straints, and poor physical rationality of prediction results. Still, they also have a strong
fitting ability to describe high-dimensional complex mapping relationships between vari-
ables. The physics-driven deep learning approach can improve the generalization ability,
enhance the physical rationality of the model, and reduce the dependence on labeled data.
Still, the physics-driven solution method has disadvantages such as complex model con-
struction, high computational cost, poor characterization of physical equations, and limited
physical equations that cannot characterize the whole oil and gas flow process in porous
media. Therefore, integrating physics-driven and data-driven solution methods is often
used in solving oil reservoir partial differential equations by deep learning methods. The
integration method is also known as the physics-constrained deep learning method, which
can reduce the dependence on labeled data and have physical solid constraint capability, as
shown in Figure 21.

The physics-constrained deep learning approach to solve the reservoir partial dif-
ferential equations is essentially a training process using labeled data while constraining
the deep learning model with the help of the fundamental physical laws of the reservoir.
The trained deep learning model establishes the mapping relationships between reservoir
parameters and reservoir pressure field, saturation field, and production. The deep learning
method based on physical constraints to solve the oil reservoir partial differential equations
can train the neural network using labeled data and physical mechanisms. The physical
constraints method is less complicated to train than the physically driven method and
does not require much labeled data compared to the data-driven one, avoiding much
data labeling.



Mathematics 2023, 11, 4418 29 of 44

Mathematics 2023, 9, x FOR PEER REVIEW 29 of 45 
 

 

and there are still many problems to be solved in the actual field application. However, 
the current application of the method has shown great potential and application value. In 
the future, with the innovation of technical methods, mature physics-driven methods will 
significantly improve the computational efficiency of reservoir numerical simulation and 
provide a more accurate and reliable decision basis for reservoir development. 

4.3. Physical-Constraints Deep Learning Approach for Solving Reservoir Simulation Problem 
Data-driven deep learning methods for solving partial differential equations in oil 

reservoirs have disadvantages such as weak generalization ability, lack of physical con-
straints, and poor physical rationality of prediction results. Still, they also have a strong 
fitting ability to describe high-dimensional complex mapping relationships between vari-
ables. The physics-driven deep learning approach can improve the generalization ability, 
enhance the physical rationality of the model, and reduce the dependence on labeled data. 
Still, the physics-driven solution method has disadvantages such as complex model con-
struction, high computational cost, poor characterization of physical equations, and lim-
ited physical equations that cannot characterize the whole oil and gas flow process in po-
rous media. Therefore, integrating physics-driven and data-driven solution methods is 
often used in solving oil reservoir partial differential equations by deep learning methods. 
The integration method is also known as the physics-constrained deep learning method, 
which can reduce the dependence on labeled data and have physical solid constraint ca-
pability, as shown in Figure 21. 

 
Figure 21. Physics-constrained method process for solving partial differential equations. 

The physics-constrained deep learning approach to solve the reservoir partial differ-
ential equations is essentially a training process using labeled data while constraining the 
deep learning model with the help of the fundamental physical laws of the reservoir. The 
trained deep learning model establishes the mapping relationships between reservoir pa-
rameters and reservoir pressure field, saturation field, and production. The deep learning 
method based on physical constraints to solve the oil reservoir partial differential equa-
tions can train the neural network using labeled data and physical mechanisms. The phys-
ical constraints method is less complicated to train than the physically driven method and 
does not require much labeled data compared to the data-driven one, avoiding much data 
labeling. 

Physics-constrained models can avoid data and physical law dependence by lever-
aging both the constraining power of physical laws and the data-driven power of labeled 

Figure 21. Physics-constrained method process for solving partial differential equations.

Physics-constrained models can avoid data and physical law dependence by lever-
aging both the constraining power of physical laws and the data-driven power of la-
beled data [109,111–117]. Considering that data-driven deep learning-based methods for
solving oil reservoir partial differential equations lack guidance from physical equations,
Wang et al. [118] proposed a physics-guided autoregressive model for reservoir partial
differential equation solution. The proposed autoregressive model couples the mass conser-
vation law into a neural network model based on LSTM and introduces the idea of display
difference in the autoregressive model. The predicted value of the current moment gener-
ated by the model is calculated by displaying the predicted value of the previous moment.
The introduction of display difference makes the prediction process more consistent with
the physical process. The introduction of the mass conservation equation gives the model
a background of physical knowledge. The model inputs are the static initial saturation
field, the static absolute permeability field, the static relative permeability profile, and the
source-sink term to be provided. The static parameters of the reservoir are combined with
the initial dynamic parameters to predict the saturation field at the next moment via a
physics-guided autoregressive model, as shown in Figure 22.
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Zhang et al. [119] physically constrained the FNO model by introducing the boundary
conditions of the reservoir and the initial conditions as penalty terms into the loss function
based on the Fourier neural operator. Li et al. [120] proposed a gradient model based on
spatial pressure distribution to address the accuracy deficiencies of physics-constrained
deep learning methods for solving complex partial differential equations. The model was
introduced into a neural network to participate in training as a special neuron in the hidden
neural network layer to predict the source-sink term’s pressure gradient.

The data-driven models have some limitations, such as high data cost, high impact of
data quality, and the strong dependence of the model on the training set. The physics-driven
deep learning approach fails to involve any scientific principles and laws in such models as
physics-informed neural networks (PINN) [109], theory-guided data science (TGDS) [121],
and physics-guided neural networks (PGNN) [122]. At the same time, as opposed to using
physical knowledge constraints, in real production, some engineering controls and the
experience of field engineers play a crucial role in the system’s response, and these non-
quantitative influences are, to some extent, not described by physical laws. Wang et al. [123]
addressed the above limitations, combining deep learning models incorporating scientific
knowledge or practical experience, integrated physical knowledge (partial differential
equations, boundary conditions, and initial conditions), and practical engineering theory
(engineering control methods and expert knowledge) into a deep learning model. Physical
knowledge and practical engineering theory are transformed into regularization terms as a
priori knowledge and added to the loss function, as shown in the following equation to
guide the training of deep neural networks (DNN).

L(θ) = λDATA MSEDATA + λPDE MSEPDE + λBC MSEBC + λIC MSEIC + λEC MSEEC + λEK MSEEK (9)

A theory-guided neural network (TgNN) is proposed and applied to the groundwater
flow problem for partial differential equation solving, as shown in Figure 23.
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Based on the work of Wang [123,124] and others, several TGNN-based deep learning
models have been developed for application to groundwater flow. Based on the TGNN,
these models have proposed a variety of improved deep neural network structures to
address the shortcomings and limitations of the TGNN, constituting a family of TGNN-
based network structures, such as the combination with the auto-encoder theory-guided
auto-encoder (TgAE) [125], the weak form theory-guided neural network (TgNN-wf) [126],
which solves the constraint accuracy reduction in partial differential equations with high
order derivatives or strong discontinuities under strong constraints, and the theory-guided
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full convolutional neural network (TgFCNN) [127], which extends fully connected neural
networks to the convolutional neural network, and the Lagrangian dual-based TgNN
(TgNN-LD) [128] that uses Lagrangian variables to trade-off the balance between training
data (data-driven) and constraints (physically driven).

With these works, the TGNN-based deep learning model has been successfully applied
to reservoir engineering to solve the oil reservoir partial differential equations using this
physics-constrained deep learning method. Wang et al. [129] introduced this method
to reservoir engineering and proposed a theory-guided convolutional neural network
(TgCNN) for reservoir pressure field prediction to solve reservoirs partial differential
equations. The TgCNN model incorporates the physical knowledge of reservoir oil and
gas flow in porous media into the training process, improving the prediction accuracy and
reducing reliance on large amounts of training data. The model input parameters are the
permeability field and the time matrix. The model architecture uses convolutional neural
networks to predict the reservoir pressure distribution. At the same time, engineering
controls are incorporated into the training process by determining whether the pressure
reaches a predetermined BHP threshold. Then, different physical constraints are imposed
based on the BHP predicted by the TgCNN model. In follow-up work, Wang et al. [130]
applied the method to well optimization work, and the trained TgCNN model can be
combined with a genetic algorithm for effective well optimization.

The above work applies to uncertainty quantification and data assimilation for single-
phase flow problems in reservoirs, but in practical applications, single-phase flow is used
as a proof of concept. From practical reservoir applications, Wang et al. [131] extended
the TgCNN framework to two-phase flow problems by considering water-driven oil flow
problems with pressure and saturation as the main variables. Two convolutional neural
nets were constructed to approximate pressure and saturation, respectively. Furthermore,
the TgCNN models are segmented in the time dimension for different well-controlled
situations and stacked together to predict the pressure field and saturation distribution
over the entire period, as shown in Figure 24.
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Li et al. [132] established two independent neural networks, one approximating the
pressure field distribution and the other approximating the saturation field distribution,
within the framework of TGNN. A two-stage strategy was used. Firstly, after obtaining
satisfactory results in one of the two networks, determine the parameters in the network
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with better performance when calculating the nonlinear terms. Then, continue training
the other neural network until satisfactory performance is obtained, coupling physical
knowledge constraints into the neural network to train both neural networks to couple the
flow of oil and water phases. However, this network structure also has some problems; for
example, the network model structure relies on the output layer for connection and only
relies on the loss function for iterative coupling.

To solve the above problem, based on this model, Li et al. [133] improved the network
model by connecting two independent neural network blocks to the whole network based
on coupling theory guidance, as shown in Figure 25.
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They form the TgNN model in coupled form, which reflects the coupled nature of
pressure and water saturation in the two-phase flow equation. There are three regions in
the network structure: the input first enters the parameter coupling region, after which the
network is divided into two parts, representing the prediction of pressure and saturation,
respectively. This adjustment of the network structure allows the two outputs (i.e., pressure
and saturation) to be better coupled via the relative permeability in the control equation.

The essence of a physically constrained deep learning approach for solving reservoir
partial differential equations is the joint estimation of known physical laws and unknown
model parameters. A data-driven approach with the help of labeled data is used to obtain
the optimal model parameters to describe the oil and gas flow process in porous media in
the reservoir. Physics-constrained deep learning methods are usually based on deep neural
network models such as FNN, CNN, LSTM, and other network structures. The constraints
of physical laws, such as the law of conservation of mass, the law of conservation of
momentum, and other physical laws, are considered to ensure that the model’s output
satisfies the physical laws. A data-driven approach to learning the physical behavior of the
reservoir was used to achieve a data-driven optimization search under physical constraints
for the model.

The physics-constrained deep learning approach essentially uses labeled data while
training the deep learning model with the help of the fundamental physical laws of the
reservoir to constrain the training process. It can draw on the advantages of both data-
driven and physics-driven solution methods. However, simultaneously, the method also
has the limitations and disadvantages of the two drive releases. Physics-constrained deep
learning methods require accurate constraints on physical laws, but in complex reservoir
contexts, such as critical and supercritical states, the physical mechanisms are not clear, and
the performance of the models can be degraded if there are biases in the physical models or
parameters. The physics-constrained method also has requirements for data quality, and
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the quality of the label data determines the accuracy of the physically constrained method
to some extent.

Physics-constrained deep learning methods are the current hotspot in deep learning
methods for solving reservoir partial differential equations and have been widely applied
and studied in reservoir simulation. Physics-constrained deep learning methods can jointly
estimate known physical laws and unknown model parameters to explain better and predict
reservoir behavior and improve model interpretability. Also, by adding various physical
laws of the physical equations to the neural network model as physical constraints, the
model’s prediction accuracy can be improved and thus solved more accurately. Compared
with traditional data-driven deep learning methods, physically constrained deep learning
methods can use less labeled data to learn the physical laws of the reservoir, thus improving
training efficiency and data utilization efficiency. On this basis, physically constrained deep
learning methods can deal with incomplete data, such as missing or noisy data, and can
be applied under field practices with missing data by incorporating a priori knowledge
of physical laws combined with the data-driven capability of the dataset. Due to the
introduction of physical laws, it has more significant advantages in solving nonlinear
problems. In reservoir engineering, there are coupled problems of multiple physical
fields, such as pressure field-saturation field coupling, and the physically constrained deep
learning method can add the coupling relationship of multiple physical fields into the
model to make the prediction results more consistent with the physical mechanism. The
physically constrained deep learning method can introduce physical laws into the model
and control the output results of the model by adjusting the influence of these laws on the
model, thus improving the controllability and customizability of the model.

The physics-constrained deep learning solution method can make the model more
physically reasonable by leveraging the physical knowledge constraints of the physics-
driven approach. At the same time, the data-driven approach’s data learning and fitting
capabilities can approximate arbitrarily complex functional relationships. The two ap-
proaches can complement each other and have a more comprehensive range of applications.
Therefore, it has become a hot issue in reservoir engineering. However, there is inevitably
the problem of physical constraint dependence and data dependence, which needs to be
carefully evaluated and solved in practical applications.

5. Conclusions

This study provides a comprehensive review and analysis of the integration of machine
learning approaches with numerical methodologies in reservoir numerical simulation. The
introduction section provides the background of the article, outlining the objectives and
highlighting its significance.

Section 2 of the article elucidates the numerical methods currently predominant in
reservoir simulations, conducting a comprehensive analysis of both the strengths and
limitations inherent to each primary approach. Each methodology presents distinct ad-
vantages and constraints, affording reservoir engineers diverse choices tailored to specific
application contexts.

The finite difference method stands as one of the foundational and most intuitive
techniques in numerical simulation. Its primary merit lies in its straightforwardness and
lucidity, facilitating the conversion of partial differential equations into algebraic equations
via suitable differential approximations. Nonetheless, the finite difference method grapples
with challenges in addressing intricate geologic architectures and non-uniform mesh config-
urations. Moreover, when confronted with pronounced nonlinearity or strength-dependent
fluid dynamics, finite difference methods can pose stability and convergence concerns. The
finite element method is renowned for its adaptability, particularly in managing intricate
geometries and diverse boundary conditions. Via the utilization of interpolation functions
and variational principles, the finite element method can yield enhanced and more univer-
sal solutions to a spectrum of physical challenges. Yet, its computational intricacy often
necessitates specialized pre-processing and post-processing methodologies to ascertain
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the precision and stability of the numerical results. The finite volume method derives
its foundation from spatial domain partitioning coupled with the conservation of mass
principle, rendering it especially apt for fluid flow and transport challenges. The finite
volume method ensures the preservation of physical parameters and can secure relatively
precise solutions even within coarser meshes.

Nevertheless, intricate physical phenomena like multiphase flows or chemical inter-
actions may necessitate tailored discretization techniques. Meshless methods represent a
burgeoning category of numerical techniques that bypass conventional mesh or element
segmentation, instead employing points or particles to delineate the solution domain. Their
strength resides in adeptly addressing highly dynamic scenarios, including crack propaga-
tion or substantial fluid flow deformations. Conversely, a limitation of meshless methods
is the necessity for intricate search algorithms and interpolation strategies, which might
induce computational inefficiencies.

The boundary element method focuses mainly on the boundary rather than on the
entire solution domain, which gives it an advantage when dealing with certain infinite or
semi-infinite problems. However, the scope of application of the boundary element method
is limited by certain physical processes, such as non-stationary or nonlinear problems that
may complicate its application.

Given the extensive array of these methodologies, reservoir engineers are tasked with
initially delineating their simulation objectives and the particular hurdles they encounter.
In the context of conventional reservoirs, the finite volume method might be favored due
to its dependable forecasts of fluid flow and pressure dispersion. Conversely, for reser-
voirs characterized by intricate fracture networks, meshless or finite element techniques
could prove more suitable. Furthermore, with the advancement and augmented accessi-
bility of computational resources, the amalgamation and integration of various numerical
methodologies become attainable. For instance, employing the finite element method in
one segment of the solution domain and the finite volume method in another allows for
the optimal harnessing of the strengths inherent to each technique. In conclusion, it is
imperative to underscore that, irrespective of the chosen methodology, proper validation
and calibration are essential. The credibility and veracity of the simulation outcomes hinge
on their comparison and scrutiny against actual production data to assess their aptness
and precision.

As experts further explore the diverse numerical methodologies, several pivotal con-
siderations emerge. A primary consideration is computational efficiency. This becomes
particularly salient for expansive or intricately detailed reservoir models. In situations
demanding recurrent simulations or optimization, exemplified by enhanced oil recovery
Strategy assessments or production prognostications, the celerity of the solution emerges as
a critical determinant. Subsequently, the intricacy of physical processes warrants attention.
Reservoirs may encompass varied physical and chemical phenomena, including multi-
phase flow, non-Newtonian fluid behaviors, geothermal influences, microbial interactions,
and more. The adopted methodology ought to competently encapsulate and depict these
processes. Following that, the geometric intricacy of the model must be evaluated. Features
such as fractures, fault lines, and irregular boundaries can influence the selection of the
appropriate numerical approach. Additionally, the robustness of the numerical technique
warrants attention. The selected methodology should exhibit stability amidst a range of
physical and geometric complexities, precluding the generation of numerically oscillatory
or non-physical outcomes. Finally, the model’s scalability is an essential factor. Given
the potential future expansions or integrations with other systems, the selected numerical
methodology should offer adaptability.

To conclude, the judicious choice of numerical methods is pivotal for the efficacy of
reservoir simulation. To guarantee the precision and dependability of the derived results,
reservoir engineers ought to be proficient in diverse numerical strategies and possess a
profound grasp of the reservoir’s physical processes and geological context. Building on
this foundation, incessant model validation and calibration, integrated with real-world
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production data and expertise, stand as the linchpin in harnessing the full potential of
reservoir numerical simulation.

Addressing the limitations of conventional numerical approaches and leveraging the
merits of machine learning techniques—particularly their high computational efficiency
and rapid convergence rates—academics and specialists have integrated machine learning
into numerical methodologies with the goal of overcoming these challenges. The article’s
third section offers a succinct overview and discussion of the contemporary combination
methodologies in use. The prevailing combination is to use machine learning methods
to update the multiscale methods’ basic functions, perform coarse-scale calculations, and
compute the phase equilibrium processes in the component models.

In the numerical simulation of reservoirs, a recurrent challenge is the significance
of intricate reservoir structures and properties across various spatial scales. Multiscale
numerical methodologies have been devised to enhance the efficiency of simulations
without compromising accuracy. Typically, these approaches are anchored on specific basis
functions like those found in multiscale finite elements. Recent endeavors have sought
to refresh or optimize these basic functions by employing machine learning techniques,
capitalizing on the inherent strengths of machine learning. Machine learning techniques
can automatically adjust basis functions based on reservoir data, thus better capturing the
complexity of reservoirs. Basis functions optimized via machine learning might describe
the local behavior of reservoirs more precisely, enhancing the accuracy of simulation results.
Automated machine learning techniques can diminish the need for manual selection and
adjustment of basic functions. Basis functions optimized by machine learning might
sometimes offer faster convergence rates or heightened computational efficiency.

However, inevitably, this approach also has its shortcomings. Employing machine
learning techniques to update basic functions can escalate the computational costs of model
training. Introducing machine learning amplifies the complexity of the model, possibly ne-
cessitating specialized knowledge and skills for implementation and fine-tuning. Machine
learning methods might overfit training data, leading to a decline in the generalization per-
formance of basic functions for unseen scenarios. Compared to traditional physics-driven
approaches, machine learning methods are more akin to “black boxes”, which might render
their predictions or behaviors more challenging to interpret.

In reservoir numerical simulation, coarse-scale calculations are frequently used to
accelerate simulations, but traditional coarse-scale methods might lose certain details.
Incorporating machine learning techniques, especially in the coarse-scale calculations of
reservoir simulations, offers a novel avenue to attain more efficient and accurate results.
Machine learning techniques may deliver coarse-scale solutions more swiftly, especially
when pre-trained models are available. Machine learning, particularly deep learning,
possesses the capability to discern intricate patterns, potentially describing fine-scale effects
better at a coarse scale. Machine learning models can self-adjust based on new data,
making them more adaptive to complex reservoir scenarios and changes. Traditional
coarse-scale models might necessitate explicit simplifications and assumptions, whereas
machine learning methods might eliminate or diminish such reduction.

However, this approach also has its disadvantages. Machine learning techniques, espe-
cially deep learning, typically demand vast amounts of training data, which can challenge
reservoir simulations. Machine learning techniques, especially when deprived of adequate
training data, might run the risk of overfitting, leading to diminished generalization perfor-
mance in new or slightly altered scenarios. In contrast to traditional physics-based models,
machine learning models might lack interpretability, making results and decisions harder to
explain and validate. Although machine learning can hasten coarse-scale simulations, the
training phase might necessitate substantial computational resources and time. Introducing
machine learning can amplify model complexity, necessitating specialized skills, and tools
for implementation and optimization.

In reservoir numerical simulation, component models are typically employed to de-
pict multi-component oil, gas, and water systems. A crucial step in these models is the
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calculation of phase equilibrium, which involves determining the distribution of each
component across different phases under given conditions. This is a nonlinear, computa-
tionally intensive process, where traditional methods often entail iterative solutions. In
recent years, machine learning, especially deep learning, has been utilized to expedite
this procedure. Once trained, a machine learning model might offer phase equilibrium
solutions more rapidly than conventional iterative techniques. Machine learning models
can furnish solutions directly, curtailing or eradicating the iterative procedure. Machine
learning models possess the capability to learn from extensive data, potentially adapting
more efficiently to diverse reservoir conditions and scenarios. With the right training data
and model architecture, machine learning methods could achieve accuracy on par with or
surpass traditional methods. However, this approach also exhibits certain limitations and
shortcomings. Machine learning models necessitate substantial training data, which might
entail time and resources for a generation. If training data is scant or unrepresentative,
machine learning models might falter in accurately predicting unfamiliar or new scenarios.
Deep learning and other intricate machine learning models might require specialized ex-
pertise and tools for training and deployment. In comparison to physics-based traditional
methods, machine learning models might lack transparency and interpretability, potentially
influencing their acceptance in certain applications. Ascertaining the accuracy of machine
learning models can pose challenges, especially in complex multi-component systems.

Although combining machine learning techniques with numerical methods can signif-
icantly enhance computational efficiency, issues such as prolonged computation time and
high costs inevitably persist. This approach does not fundamentally address the computa-
tional expenses and slow convergence associated with numerical methods. Building on
this, experts and scholars contemplate utilizing machine learning techniques to solve the
partial differential equations of reservoirs, thereby substituting the discretization process of
partial differential equations with numerical methods. This aims to fundamentally resolve
the computational cost issues inherent in discretizing partial differential equations using
numerical methods.

With the advancement of machine learning, a branch known as deep learning has
emerged, capable of approximating any function. Theoretically, it can approach and solve
any equation. Numerous scholars have employed deep learning models to solve the partial
differential equations of reservoirs, continuously experimenting in this domain, aiming to
develop mature theoretical techniques for practical applications in solving reservoir partial
differential equations using deep learning. The fourth section of the article summarizes the
current theoretical methods and applications of deep learning in solving partial differential
equations in the field of petroleum engineering.

The initial approach was to employ data-driven deep learning techniques to solve
reservoir partial differential equations. Data-driven methods rely on labeled data. Using
vast amounts of labeled data, neural network models are trained to acquire the expected
neural network model parameters, obtain the anticipated reservoir state, and forecast the
solution to the reservoir partial differential equations.

Applying data-driven deep learning methods in solving reservoir partial differential
equations offers a novel avenue. This method hinges on neural network architectures,
especially deep neural networks, using data to learn and represent the physical behavior
of reservoirs. For complex reservoir systems with many parameters or behaviors that
might be elusive from traditional physical modeling, data-driven approaches can learn
these behaviors directly from data. Conventional numerical methods, like finite difference
and finite elements, might necessitate intricate grid divisions and iterative solutions for
complex geometries or nonlinear issues. In contrast, deep learning methods display
superior adaptability, easily addressing these complexities. Since deep learning algorithms
are based on neural networks, they have heightened parallel computation capabilities
on modern GPUs, offering advantages for large-scale data or problems. Once a neural
network model is well-trained, it can be transferred to other analogous problems or exhibit
commendable generalization within a certain range. Although deep learning models can
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learn from data, they might not wholly represent genuine physical processes, leading to
uncertainties in model predictions. Attaining an optimal model performance often requires
abundant labeled data, which can pose challenges for reservoir simulations. Contrasted
with traditional numerical techniques, deep learning models more closely resemble a
“black box”, making it challenging to elucidate reasons behind errors or anomalies. Deep
learning models, with their millions of parameters, might be prone to overfitting if there
are insufficient training data or a lack of appropriate regularization, potentially leading to
subpar performance on new data. Training and inference of deep learning models might
necessitate substantial computational resources, particularly GPUs.

Physics-constrained deep learning methods merge conventional physical knowledge
with deep learning. They employ deep learning models (e.g., neural networks) to solve
reservoir partial differential equations while incorporating physical constraints within the
model to ensure the physical sensibility of the solutions. This approach intends to strike a
balance between the learning capabilities driven by data and the incorporation of physical
laws. By incorporating physical constraints, the outputs of the model are ensured to abide
by known physical laws, augmenting the reliability of model predictions. The inclusion
of physical constraints might lessen the need for extensive training data, as the model
references physical laws during the learning phase. Models combining physical knowledge
might exhibit superior generalization over unseen data or conditions with minor alter-
ations. The introduction of physical constraints can enhance model interpretability, making
discrepancies between model predictions and actual observations more easily understood
and analyzed. Physical constraints can act as a regularization mechanism, assisting in miti-
gating the risk of model overfitting. However, integrating physical constraints into deep
learning models can augment model intricacy, necessitating more meticulous design and
fine-tuning. Introducing physical constraints might escalate the computational overhead
of the model, particularly during the training phase. Certain physical constraints might
render the training of the model more challenging or unstable. If physical constraints are
based on certain approximate physical laws, they might introduce errors.

Unsupervised physics-driven deep learning methods represent a fusion of physical
knowledge and autonomous learning when solving reservoir partial differential equations.
This approach aims to train deep learning models by leveraging established physical laws
and structures with unlabeled data. This method does not rely heavily on large sets of
labeled data, which is especially invaluable in reservoir simulations since obtaining labeled
data can be costly, time-consuming, or infeasible. Outputs from the model align with
known physical laws, thereby enhancing the reliability and validity of model predictions.
Physical constraints contribute to better generalization across diverse reservoir conditions or
scenarios. Given the non-reliance on labeled data, existing unlabeled or simulated data can
be employed more effectively for model training. Given its amalgamation of data-driven
learning and physical understanding, the approach might be more seamlessly adaptable to
fresh scenarios or evolving reservoir conditions. However, embedding physical knowledge
into deep learning models escalates their complexity, potentially necessitating profound
expertise and technology for implementation and optimization. Due to the induction
of physical constraints, the model may demand augmented computational resources,
especially during training. If assumptions or approximations underpinning the physical
model are not entirely accurate, those errors could be incorporated into the deep learning
model. Discerning the optimal model structure and parameters might pose challenges due
to the confluence of both the physical and learning domains. Moreover, this methodology
is in its nascent phases of development, and its applicability in real-world settings might
still be some distance away.

The above models based on deep learning methods for solving reservoir partial
differential equations, regardless of the driving approach, can be broadly classified into the
following categories in terms of the deep learning mapping relationships:
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(1) Mapping model (spatial model and spatial–temporal model) from spatial image
(permeability field, porosity field distribution) to spatial image (pressure field distribution,
saturation field distribution).

(2) Mapping model (spatial model and spatial–temporal model) of spatial images
(permeability field and porosity field distribution) to time series (production data).

(3) Mapping model (time model) of time series (production data) to time series (pro-
duction data)

Among these three types of models, the spatial images (pressure field distribution
and saturation field distribution) obtained by the (1) model need to be calculated by the
Peaceman equation and other methods to obtain the corresponding production data. In
contrast, the (2) and (3) types of models can obtain the production data directly. Class (1)
models are primarily used in reservoir engineering for residual oil prediction, combined
with the Peaceman equation and other methods to calculate the production data, and are
also commonly used in the automatic reservoir history matching process, while class (2)
models are commonly used in the direction of production optimization and automatic
history matching, and class (3) models are mainly used in the direction of production
prediction and production optimization.

6. Future Development and Prospects

Traditional numerical approaches, such as the finite difference and finite element
methods, encounter challenges in certain intricate scenarios. Efforts have been made to
bolster the efficacy of these conventional techniques by amalgamating the strengths of
varied algorithms tailored to the distinct characteristics of reservoir models. Furthermore,
by merging multiple traditional numerical strategies suitable for diverse scenarios, the
robustness of these approaches is augmented. As these algorithms evolve, the foundational
numerical methods will undoubtedly be enhanced.

Addressing the limitations inherent in conventional numerical methods, especially the
computationally intensive phase equilibrium computations in component models, there
has been a shift towards integrating machine learning techniques with these methods.
This union capitalizes on the cost-effectiveness and efficiency of machine learning, aim-
ing to expedite numerical simulation calculations, thereby facilitating swift and efficient
reservoir simulations.

With the foray of deep learning techniques in petroleum engineering, the data-driven
approach to solving partial differential equations has gained traction, chiefly due to its
straightforward model architecture and broad applicability. However, a potential pitfall of
this data-driven paradigm is its disregard for the physical laws governing the flow of oil
and gas in porous media. This oversight can lead to skewed predictions that lack physical
veracity. To rectify this, the physics-constrained approach to solving partial differential
equations has emerged as a focal research area. This approach augments deep learning
models by imposing constraints based on physical laws. Moreover, given the challenges
associated with procuring field data and the models’ limited universality, physics-driven
methodologies that solve reservoir partial differential equations without relying on labeled
data are posited to dominate future reservoir intelligence research. As artificial intelligence
continues its trajectory and computational capacities grow, the physics-driven approach
to solving reservoir partial differential equations is poised to become a linchpin in the
realization of the intelligent oilfield paradigm.
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Nomenclature

B(·)(BC) the boundary conditions of the reservoir
B(ŷ) the boundary loss of the predicted value of the deep learning model
b1 the bias vectors of 1× q
b2 the bias vectors of 1× k
D(x, y, t) smooth function used to encode the output of the neural network
b∗ optimization objectives of the neural network
f the source fields
fθ2(x, y, t) the neural network prediction
I(·)(IC) the initial conditions of the reservoir
k dimensional output of a single hidden layer neural network
m static parameters
n the number of uniform grid points of the Sobel multiplier
N (·) differential operator
τ [τ1,τ2]
s production regime
û the model prediction value
u0 the initial value
u(t, x;θ) the approximate solution of the equation
u(t, x) the labeled data required for the data-driven approach
û∗(t, x; W, b) the neural network predictions
V(ŷ; x) the error of the equation in the form of the residual parametrization of the partial

differential equations or the generalized variational function
(W, b) the optimal set of network parameters
W1 weight matrices of d× q
W2 weight matrices of q× k
W∗ optimization objectives of the neural network
x the input data of the neural network
x the parameter of the deep learning model input
xrk relative permeability parameters
y output data of the neural network
ŷ the predicted value of the deep learning model
σ(·) nonlinear model
� the element-by-element product
θ the parameter corresponding to the approximate solution in the equation
θ the set of network parameters {W, b}
λ the weight of soft forced boundary condition (Lagrange multiplier)
η the step size of the ith selected generation
∇θ J gradient of the loss function concerning the model parameter
∇u the pressure field
[uh, uv] the two gradient images along the horizontal and vertical directions estimated by

the Sobel filter
τ the flow field
τ1 the horizontal components of the flow gradient field
τ2 the vertical components of the flow gradient field
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