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Abstract: Low-resource language (LRL) processing refers to the development of natural language
processing (NLP) techniques and tools for languages with limited linguistic resources and data.
These languages often lack well-annotated datasets and pre-training methods, making traditional
approaches less effective. Sentiment analysis (SA), which involves identifying the emotional tone or
sentiment expressed in text, poses unique challenges for LRLs due to the scarcity of labelled sentiment
data and linguistic intricacies. NLP tasks like SA, powered by machine learning (ML) techniques,
can generalize effectively when trained on suitable datasets. Recent advancements in computational
power and parallelized graphical processing units have significantly increased the popularity of
deep learning (DL) approaches built on artificial neural network (ANN) architectures. With this
in mind, this manuscript describes the design of an LRL Processing technique that makes use of
Improved Deep Learning with Hunter–Prey Optimization (LRLP-IDLHPO). The LRLP-IDLHPO
technique enables the detection and classification of different kinds of sentiments present in LRL
data. To accomplish this, the presented LRLP-IDLHPO technique initially pre-processes these data to
improve their usability. Subsequently, the LRLP-IDLHPO approach applies the SentiBERT approach
for word embedding purposes. For the sentiment classification process, the Element-Wise–Attention
GRU network (EWAG-GRU) algorithm is used, which is an enhanced version of the recurrent
neural network. The EWAG-GRU model is capable of processing temporal features and includes an
attention strategy. Finally, the performance of the EWAG-GRU model can be boosted by adding the
HPO algorithm for use in the hyperparameter tuning process. A widespread simulation analysis
was performed to validate the superior results derived from using the LRLP-IDLHPO approach.
The extensive results indicate the significant superiority of the performance of the LRLP-IDLHPO
technique compared to the state-of-the-art approaches described in the literature.

Keywords: low-resource languages; natural language processing; deep learning; sentiment analysis;
hunter–prey optimizer

MSC: 68T50

1. Introduction

Social media is one of the quickest ways for individuals to express themselves, lead-
ing to a flood of content on newsfeeds that reflects their opinions [1]. Analysing these
newsfeeds is a direct method for capturing their sentiments and emotions. Sentiment
analysis (SA), also known as opinion mining, is the process of identifying, extracting, and
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categorizing specific information from unstructured texts using text analysis and com-
putational linguistic techniques in Natural Language Processing (NLP) [2]. SA involves
classifying opinionated textual content into polarity categories such as positive, negative,
or neutral [3–6]. LRL processing has a profound effect on SA by extending the scope of
languages that can be analysed. It facilitates the inclusion of languages with limited digital
resources into SA application, thereby making sentiment analysis culturally diverse and
more inclusive. This enables organizations to gain insights into sentiment trends, con-
sumer preferences, and brand perception in previously underserved regions and languages,
improving their global market understanding. Furthermore, LRL processing allows for
cross-cultural analysis, supports humanitarian efforts in crisis responses, and contributes
to the preservation of endangered languages, representing its wide-ranging implications
for SA in our increasingly interconnected world.

LRLs, frequently spoken by underserved or marginalized populations, present unique
challenges in the field of NLP. These languages lack the abundance of digital resources
that are readily available for high-resource languages like English (such as large, labelled
datasets and pre-trained models). Despite this scarcity in terms of resources, the significance
of addressing LRL processing is vital for many compelling reasons. The major concern this
research study aims to address is the limited accessibility and utilization of NLP technology
for LRLs. This faces countless barriers, including the absence of well-established language
technologies, the scarcity of labelled datasets, and limited linguistic resources. Subsequently,
there is an urgent need for innovative approaches that make LRL processing more accessible,
impactful, and effective.

The classification of text based on various features remains an interesting topic of
study [7]. SA and opinion mining employ rule-based systems, deep learning (DL), and
machine learning (ML) to continually enhance this area of research. Consequently, the
advent of highly complex language models able to use previous knowledge and adapt
it to the particular tasks in which it is utilized has improved performance and decreased
the expenditure of computing resources [8]. Of particular interest are language models
dependent upon deep neural networks (DNNs), which have the significant capability of
classifying sentiments by automatically learning important features from databases [9].
However, these outcomes are highly dependent upon the language considered and espe-
cially on the accessibility of the extensive databases used to train the model in its early
stages. This condition generally only applies to Chinese and English languages, while other
languages are typically classified as LRLs [10].

This paper introduces LRL Processing using Improved Deep Learning with the Hunter–
Prey Optimization (LRLP-IDLHPO). The LRLP-IDLHPO technique begins with data pre-
processing to improve the usability of the data. Next, it applies the SentiBERT algorithm
for word embedding purposes. Then, the sentiment classification process is performed by
the Element-Wise–Attention GRU network (EWAG-GRU), an enhanced variant of the RNN.
The HPO approach is applied for fine-tuning to further improve the performance of the
EWAG-GRU algorithm. A comprehensive set of simulations was performed to validate
and ensure the better performance of the LRLP-IDLHPO method. The key contributions of
this paper are as follows:

• The LRLP-IDLHPO method, which confronts the challenges of LRL processing for SA
by integrating SentiBERT, EWAG-GRU-based classification, and HPO-based parameter
tuning is proposed. To the best of our knowledge, the proposed model has never been
described previously in the literature.

• SentiBERT helps convert text data into a numerical representation that captures se-
mantic context, enabling accurate SA in LRL settings.

• The EWAG-GRU model, an advanced variant of the RNN which can effectually
process temporal features was employed, and its results improved using the attention
mechanism for sentiment classification.
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• The addition of the HPO technique for fine-tuning the EWAG-GRU algorithm illus-
trates a commitment to optimizing model performance, ensuring it operates at its best
in the SA task.

2. Related Works

In [11], the authors proposed the extraction of sentiments from tweets dependent
on their topical subject. The model employs NLP techniques for recognizing sentiments
related to a specific problem. In this research study, three different methods were utilized
to identify sentiments: classification depending on subjectivity, semantic association, and
classification depending on polarity. AlBadani et al. [12] employed deep learning (DL)
methods in various real-time applications across multiple domains, including sentiment
analysis (SA). This study introduced an innovative and efficient approach to SA, utilizing
DL techniques by integrating “universal language model fine-tuning” (ULMFiT) with a
Support Vector Machine (SVM) to enhance recognition accuracy and effectiveness. Ad-
ditionally, a novel DL method was employed for Twitter SA to recognize the opinions of
individuals. Anand et al. [13] aimed to address MOLD_DL (Multilingual Offensive Lan-
guage Detection using DL) approaches and utilized NLP in FS and classification. This FS
was implemented to segment information using a fuzzy-based FCNN. Later, the extraction
of chosen features and classification was executed by combining the model of the Bi-LSTM
method with a hybrid NB framework with a SVM.

Kumar et al. [14] presented a technique that employed Graph Neural Networks
(GNNs) for classifying texts based on their content. GNNs were implemented because they
work effectively with 2D vectors, and through using GNNs, textual data can be represented
in a 2D format. The computation of Self-Organizing Maps (SOM) was carried out to
compute the adjacent neighbours in the graphs and determine the actual distances among
the neighbours. In [15], the tweets of individuals were analysed using hybrid deep learning
(DL) algorithms. SA was conducted through a five-point scale classification, which includes
categories such as positive, negative, highly negative, highly positive, and neutral. This
approach was found to require less time when handling a larger number of tweets compared
to other methods, namely Decision Trees (DT), Random Forest (RF), and Naive Bayes (NB)
classifiers. Alyoubi and Sharma [16] presented a new hybrid embedding technique aimed
at augmenting word embeddings through the integration of NLP techniques. This study
also introduced a novel DL algorithm for feature extraction and BiRNN for temporal and
contextual feature application.

Rodrigues et al. [17] suggested a technique that can identify whether tweets are “ham”
or “spam” and estimate the sentiment of tweets. The extracted features after pre-processing
the tweets can be classified using different classifiers, such as LR, DT, multinomial NB,
Bernoulli NB, RF, and SVM to detect spam, and these methods have been utilized for
SA. Zuheros et al. [18] recommended the SA-based Multiperson Multicriteria Decision
Making (SA-MpMcDM) technique for aiding smarter decisions. This involved combining
an end-to-end multitask DL algorithm for feature-based SA, called the DOC-ABSADeepL
approach, which was capable of detecting the feature classifications stated in an expert
analysis and extracting their conditions and opinions.

3. The Proposed Model

In this manuscript, we propose the use of the LRLP-IDLHPO system for the processing
of LRLs. The LRLP-IDLHPO technique enables the detection and classification of the
different kinds of sentiments present in LRL data. To accomplish this, the presented
LRLP-IDLHPO technique incorporates pre-processing, SentiBERT, a EWAG-GRU model,
and a HPO algorithm for hyperparameter tuning. Figure 1 shows the overall flow of the
LRLP-IDLHPO approach.
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3.1. Data Pre-Processing

Data pre-processing phases differ based on the SA task and the features of the database.
Executing suitable pre-processed approaches is vital to generating a clean and informative
database that allows for correct sentiment forecasting via ML approaches. Text cleaning,
tokenization, and lowercasing are employed to eliminate irrelevant noise from the text.
However, techniques such as stemming and lemmatization further reduce words to their
base forms, thereby enhancing the model’s ability to recognize sentiment-related patterns.
Special attention is paid to the handling of emojis, negations, and emoticons that change
sentiment context.
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3.2. SentBERT Model

BERT is an attention-based language method that employs a stack of transformers
encoded and decoded for learning textual data [19]. It also employs a multi-head attention
mechanism for extracting helpful features for tasks. The bi-directional transformer NN, as
the encoded feature of BERT, changes the entire word token to a numeric vector to process
a word embedded for words that are semantically connected, which will be decoded to the
numerically close embeddings. BERT and its variations are executed for several NLP tasks,
including named entity detection, relation extraction, machine translation, and question
and answer, accomplishing the desired outcomes.

The proposed approach employs the Sent-iBERT approach for word embedding.
SentiBERT is instrumental in converting words or tokens from the LRL data into numerical
representations that capture semantic and contextual information. This embedding process
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is fundamental for the sentiment analysis task, as it enables the model to understand the
meaning and sentiment associated with each word or phrase. SentiBERT adjusts BERT by
adding a phrase node forecast unit and semantic composition unit. Specifically, the semantic
composition unit’s purpose is to attain phrase representation, which is led by contextual
word embedding and an attentive constituency parsing tree. SentiBERT tokenizes input text,
generates contextualized word embeddings, and utilizes a classification head to predict
sentiment labels. Its ability to capture context and adapt to LRLs makes SentiBERT a
powerful tool for accurate sentiment analysis in languages with limited linguistic resources.

3.3. Design of the EWAG-GRU Model for Classification

The EWAG-GRU model is an enhanced version of the RNN used for the classification
process, and it has the ability to process temporal features with the inclusion of an attention
strategy [20]. Integrating the attention and gating mechanism in the DL model, we use an
element-wise attention Gate (EQAG) to provide attention to the RNN neuron, which allows
the RNN neuron to gain the capability to concentrate on the building blocks of input. It
can apply a shareable EWAG with a similar size to the outcome attention vector as input to
execute each neuron of the RNN blocks.

The RNN architecture better demonstrates the features of EWAG-GRU. The outcome
response rt of the t time step is evaluated in the input xt, and the output rt is as follows:

rt = tanh(Wxrxt + Wrrrt−1 + εr) (1)

In Equation (1), a ∈ {x, r}, b ∈ {r}, and c ∈ {r}, where Wab represents the weight
matrix for a and b, and εc represents the bias vector.

EWAG provides the aforementioned RNN neuron attention capability; at represents
the response vector, and the dimension is similar to the prior RNN’s input xt. The compu-
tation formula is as follows:

at = ϕ(Wxaxt + Wrart−1 + εa) (2)

In Equation (2), The significance level of the input x̃t can be defined by the existing
input rt−1 and the prior hidden layer (HL) xt. ϕ represents the Sigmoid activation function.
The input x is updated using the attentional response model as follows:

x̃t = xt � at (3)

Then, the GRU model implements a recursive computation dependent upon upgraded
input x. Figure 2 depicts the infrastructure of the GRU.
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The GRU is a kind of RNN that is developed to address the problem of long-term
memory and vanishing gradients. It involves updating and resetting the gating units. The
former defines what amount of the prior data is to be given to the existing state, whereas
the latter controls the amount of novel input that needs to be integrated into the existing
state. Once the EWAG was applied to the GRU block, it provided RNN neurons with
the capability to selectively attend to the crucial components from the input series. The
computation formula for the EWAG-GRU block is given below:

rt = σ(Wr � [ht−1, at � xt] + εr) (4)

zt = σ(Wz � [ht−1, at � xt] + εz) (5)

h̃t = tanh(W � [rt × ht−1, at � xt] + εh) (6)

ht = ht−1 + zt

(
h̃t − ht−1

)
(7)

where zt represents the update gate, and rt represents the reset gate. ht denotes the output
vector of HL. at refers to the response vectors, W represents the respective weight matrix,
tanh, and σ represents the activation function. ε denotes the bias vector, and h̃t represents
the vector after activation. Then, use the response of at, the EWAG, to control Xt to X̃t and
replace Xt with X̃t to perform the follow-up. This is known as EWAG-GRU.

The network selectively focuses on the features significant to all the inputs, which anal-
yse various components with different levels of attention to attain more specific outcomes.
The network resolves the problems of reducing long-term dependency, along with the
problems of time-series exclusion (produced via data analysis for managing the correlation).
This contributed to an enhancement in detection performance amidst continuous activity.

3.4. Processes Involved in HPO-Based Hyperparameter Tuning

In this work, the HPO algorithm was utilized for the tuning of the hyperparameters
related to the EWAG-GRU approach. The HPO algorithm is a new swarm-based optimizer
technique that stimulates the behaviours among the prey and predators [21]. The HPO
updates its features as it imitates the predictor behaviours but hunts the target; meanwhile,
the target moves towards a safer position to escape from the predators. Consequently,
the safer position is updated dynamically, and the predator needs to adapt its position
according to the safer position. In HPO, Since the HPO is the metaheuristic algorithm, it
begins with the group of random solutions that is calculated by the subsequent equation.

Zj = lb + rand× (ub− lb)i = 1, 2, . . . , N, (8)

In Equation (8), rand ∈ [0, 1] represents the uniformly distributed random number. ub
and lb denote the upper and lower boundaries of the searching region (vector form with
dimensional = 1, 2, . . . , D), and the N and D symbols are the overall size of populations
and the amount of problem variables. The fitness function (FF) can be evaluated by the
first set of solutions to identify the bad and good performances. Next, according to the
fundamental steps of the HPA method, the initial phase of the solution is updated in the
set of independent runs. During the exploration phase, the searching agent with a higher
chance is used to determine the global and local points in the searching region. At the same
time, the exploitation stage retakes the randomized minimum to circulate the potential
solution. Iraj et al. developed the following equation for modelling the exploitation and
exploration stages.

Zim(t + 1) = Zim(t) + O.5
[(

2αβPreyP(m) − Zim(t)
)
+
(

2(1− α)βµ(m) − Zim(t)
)]

(9)

In Equation (9), Zim(t) and Zim(t + 1) denote the existing and future locations of
the jth hunter, respectively. The prey location is represented as Preyp; the β, α, and µ
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symbols are the balancing parameters, adaptive parameters, and mean of each location,
respectively. These parameters can be calculated using the following equations:

R and =
→
R1 < α; index = (Rand == 0);

β = R2 ⊗ index +
→
R3 ⊗ (∼ index). (10)

α = 1− it
(

0.98
MAXIt

)
. (11)

where Rand, R2,
→
R1, and

→
R3 indicate the random vector within [0, 1], and the index repre-

sents the index number of vector
→
R1 that meets the conditions of (P == 0). The balance

variables α are calculated by Equation (11). The α operator has a value that declines from 1
to 0.02 in the iteration. MAXIt refers to the maximum amount of iterations.

As previously stated, the aim is to catch the target; thus, the prey updates the position,
employing the average of location (µ) using Equation (10), and later calculates the distance
of all the searching agents from the mean location.

µ =
1
n

n

∑
i=1

→
Z i. (12)

The distance can be measured according to Euclidean distance

Deuc(i) = (
d

∑
m=1

(Zim − µm)
2)0.5. (13)

The searching agent with the maximum distance in the mean of placement is consid-
ered prey

(
PreyP(m)

)
based on the following expression:

−−−−−→
PreyP(m) =

→
Z i

∣∣∣∣iissortedDeuc (kbest). (14)

where est = round(α× N) and N represents the solution counts. Once the target is attacked,
it attempts to run away to escape towards the safer region. Iraj et al. considered the better
safer position as the optimum global location, and the hunter updates its location to choose
another target as follows:

Zim(t + 1) = GP(j) + αβcos(2πR4) ∗
(

GP(j) − Zim(t)
)

, (15)

In Equation (15), GP represents the optimum global position (safer location), and
R4 ∈ [−1, 1] represents the random integer.

Flag =
Zim(t + 1) = Zim(t) + O.5

[(
2αβPreyP(m) − Zim(t)

)
+
(

2(1− α)βµ(m) − Zim(t)
)]

i f R5 ≤ γ ,
Zim(t + 1) = GP(j) + αβcos(2πR4) ∗

(
GP(j) − Zim(t)

)
i f else

(16)

In Equation (16), R5 represents the random integer within [0, 1], and γ denotes the
regulatory parameter with a value of 0.1.

The HPO algorithm derives an FF to attain enhanced classifier outcomes. It explains a
positive integer to represent the best outcomes for the candidate performances. In this case,
the minimized classification error rate is assumed as FF, as expressed in Equation (17).

f itness(xi) = Classi f ierErrorRate(xi)
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=
No. o f misclassi f ied instances

Total no. o f instances
∗ 100 (17)

4. Results and Discussion

The proposed model was simulated using the Python 3.10.10 tool with the following
packages: tensorflow-gpu == 2.10.0, pandas, nltk, tqdm, scikit-learn, pyqt5, matplotlib,
seaborn, gensim, prettytable, and numpy. The proposed model was experimented on using
PC i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD.

The experimental validation of the LRLP-IDLHPO technique was tested on the IIT-
Patna Hindi reviews (IPHR) [22] database and the Arabic Sentiment Twitter Classification
(ASTC) [23] Database. This dataset was built to provide an Arabic sentiment corpus for
the research community to investigate DL approaches for Arabic SA. The dataset includes
tweets annotated with positive and negative labels. The dataset is balanced and consists of
data that use positive and negative emojis. For experimental validation, we used 70% of
the training dataset and 30% of the testing dataset.

The measures used to examine the performance of the proposed model were accuracy,
precision, recall, F-score, and Geometric mean (Gmeasure) [24]. Figure 3 demonstrates the
classifier analysis of the LRLP-IDLHPO system on the IPHR database. Figure 3a,b represent
the confusion matrix achieved via the LRLP-IDLHPO technique at 70:30 of the TR set/TS
set. The outcome value signified that the LRLP-IDLHPO method classified and detected
all three classes accurately. Also, Figure 3c shows the PR curve of the LRLP-IDLHPO
system. The outcome value specified that the LRLP-IDLHPO algorithm attained higher
PR outcomes on three class labels. Figure 3d demonstrates the ROC study of the LRLP-
IDLHPO methodology. The outcome showed that the LRLP-IDLHPO method resulted in
effective experimental results, with higher ROC values on three classes.
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In Table 1 and Figure 4, the outcomes resulting from using the LRLP-IDLHPO tech-
nique on the IPHR database are provided. The table values imply that the LRLP-IDLHPO
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technique properly recognizes three classes. Under the 70% TR set, the LRLP-IDLHPO
technique reaches an effectual accuy of 98.18%, a precn of 97.38%, a recal of 96.35%, an Fscore
of 96.84%, and a Gmeasure of 96.85%. Likewise, under the 30% TS set, the LRLP-IDLHPO
technique attains an efficient accuy of 97.43%, a precn of 96.01%, a recal of 95.03%, an Fscore
of 95.51%, and a Gmeasure of 95.51%.

Table 1. Classifier outcomes resulting from using the LRLP-IDLHPO algorithm on the IPHR Database.

Class Accuy Precn Recal FScore GMeasure

TR set (70%)

Positive 98.59 97.19 99.38 98.27 98.28
Negative 98.51 97.80 92.71 95.19 95.22
Neutral 97.43 97.15 96.96 97.06 97.06
Average 98.18 97.38 96.35 96.84 96.85

TS set (30%)

Positive 97.68 97.18 97.18 97.18 97.18
Negative 98.26 95.45 91.30 93.33 93.36
Neutral 96.33 95.40 96.61 96.00 96.00

Average 97.43 96.01 95.03 95.51 95.51
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Figure 5 shows the training accuracy (TR_accuy) and validation accuracy (VL_accuy)
values derived from using the LRLP-IDLHPO system on the IPHR database. The TL_accuy
is defined by the estimation of the LRLP-IDLHPO method on the TR database, whereas the
VL_accuy is calculated by evaluating the performance of an individual testing database. The
outcomes revealed that TR_accuy and VL_accuy rise with an increase in epochs. Therefore,
the performance of the LRLP-IDLHPO algorithm improves on the TR and TS database with
an increase in the number of epochs.

In Figure 6, the TR_loss and VR_loss curves derived from using the LRLP-IDLHPO
system on the IPHR database are shown. The TR_loss determines the error between the
predicted performance and original values on the TR data. The VR_loss measures the
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performance of the LRLP-IDLHPO algorithm on separate validation data. The outcomes
specified that the TR_loss and VR_loss tend to reduce with increasing epochs. It implies the
improved performance of the LRLP-IDLHPO method and its ability to generate accurate
classification. The decreased values of TR_loss and VR_loss indicate the superiority of the
LRLP-IDLHPO system in capturing relationships and patterns.
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A comparison of the results derived from using the LRLP-IDLHPO technique on the
IPHR databases are reported in Table 2 and Figure 7 [24–26]. The results indicate that
the NB approach yields worse outcomes, but the DT and LR approaches achieve closer
values. Additionally, the RNN and GRU models yield reasonable performance. Although
the LSTM and IAOADL-ABSA model achieve considerable results, the LRLP-IDLHPO
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technique exhibits superior results, with maximum accuy, precn, recal , and Fscore values of
98.18%, 97.38%, 96.35%, and 96.84%, respectively.

Table 2. Comparison of the results derived from using the LRLP-IDLHPO system and other models
on the IPHR Database.

IPHR Database

Approach Models Accuy Precn Recal FScore

Decision Tree [24] 90.87 90.89 90.90 90.88
Logistic Regression [24] 92.94 93.05 93.02 92.95

Naive Bayes [24] 86.32 86.84 86.31 86.26
RNN [25] 95.09 95.08 95.09 95.10

LSTM Model [25] 97.12 95.16 95.06 95.17
GRU Model [25] 95.04 95.03 95.03 95.04

IAOADL-ABSA [26] 97.96 97.01 95.65 96.10
LRLP-IDLHPO 98.18 97.38 96.35 96.84
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Figure 8 illustrates the classifier performance of the LRLP-IDLHPO system on the
ASTC database. Figure 8a,b depict the confusion matrix achieved by the LRLP-IDLHPO
algorithm at 70:30 of the TR set/TS set. The results suggest that the LRLP-IDLHPO
approach detected and classified all three classes accurately. Figure 8c depicts the results
derived from the PR examination of the LRLP-IDLHPO approach. The simulation values
suggest that the LRLP-IDLHPO approach achieved greater values of PR in three classes.
However, Figure 8d demonstrates the ROC curve of the LRLP-IDLHPO approach. This
result shows that the use of the LRLP-IDLHPO approach led to proficient performance in
terms of ROC in three classes.

In Table 3 and Figure 9, the experimental outcomes derived from using the LRLP-
IDLHPO algorithm on the ASTC database are provided. The values in this table imply that
the LRLP-IDLHPO method properly recognizes three class labels. Under the 70% TR set,
the LRLP-IDLHPO system achieves an effectual accuy of 99%, a precn of 99%, a recal of 99%,
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an Fscore of 99%, and a Gmeasure of 99%. Similarly, under the 30% TS set, the LRLP-IDLHPO
approach achieves an efficient accuy of 99%, a precn of 99%, a recal of 99%, an Fscore of 99%,
and a Gmeasure of 99%.
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Table 3. Classifier outcomes derived from using the LRLP-IDLHPO algorithm on the ASTC database.

Class Accuy Precn Recal FScore GMeasure

TR set (70%)

Positive 98.67 99.33 98.67 99.00 99.00
Negative 99.33 98.67 99.33 99.00 99.00

Average 99.00 99.00 99.00 99.00 99.00

TS set (30%)

Positive 99.33 98.67 99.33 99.00 99.00
Negative 98.68 99.33 98.68 99.00 99.00

Average 99.00 99.00 99.00 99.00 99.00
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Figure 10 illustrates the training accuracy (TR_accuy) and validation accuracy (VL_accuy)
curves derived from using the LRLP-IDLHPO algorithm on the ASTC database. The TL_accuy
is determined by the estimation of the LRLP-IDLHPO system on the TR database, whereas
the VL_accuy is calculated by evaluating the performance on a separate testing database.
The outcomes revealed that TR_accuy and VL_accuy rise with an increase in epochs. Thus,
the performance of the LRLP-IDLHPO approach improves when used on the TR and TS
databases with an increase in the number of epochs.
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In Figure 11, the TR_loss and VR_loss curves derived from using the LRLP-IDLHPO
method on the ASTC database are shown. The TR_loss defines the error between the predic-
tive outcome and original values on the TR data. The VR_loss measures the performance of



Mathematics 2023, 11, 4493 14 of 17

the LRLP-IDLHPO algorithm on individual validation data points. The outcomes indicate
that the TR_loss and VR_loss tend to reduce with increasing epochs. They also indicate the
improved performance of the LRLP-IDLHPO system and its ability to generate accurate
classification. The decreased TR_loss and VR_loss values suggest the superior performance
of the LRLP-IDLHPO approach in terms of capturing relationships and patterns.
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A comparison of the values obtained via using the LRLP-IDLHPO technique and
other similar models on the ASTC databases are stated in Table 4 and Figure 12 [25–27].
The outcomes specify that the NB model obtains worse results, whereas the DT and LR
techniques exhibit performances closer to that achieved by the LRLP-IDLHPO technique.
Additionally, the RNN and GRU systems exhibit reasonable performances. Although the
LSTM and IAOADL-ABSA approaches achieve great outcomes, the LRLP-IDLHPO method
shows superior outcomes, with higher accuy, precn, recal , and Fscore values of 99%, 99%,
99%, and 99% respectively.

Table 4. Comparison of the results derived from using the LRLP-IDLHPO system and other method-
ologies on the ASTC database.

ASTC Database
Approach Models Accuy Precn Recal FScore

Decision Tree [24] 91.40 90.45 89.78 92.59
Logistic Regression [24] 92.97 92.51 92.42 91.85

Naive Bayes [24] 86.76 87.11 87.42 87.62
RNN [25] 94.67 96.90 96.96 96.40
LSTM [25] 97.96 97.86 95.73 98.29
GRU [25] 95.61 96.46 95.92 96.42

IAOADL_ABSA [26] 98.89 98.88 98.89 98.87
LRLP-IDLHPO 99.00 99.00 99.00 99.00

Thus, the results suggest that the LRLP-IDLHPO technique is an accurate tool for
sentiment classification. The LRLP-IDLHPO method achieves better performance over ex-
isting approaches through a combination of innovative strategies tailored to the challenges
of LRL SA. By incorporating data preprocessing to improve data usability, leveraging ad-
vanced word embeddings with SentiBERT, employing EWAG-GRU for effective sentiment
classification, and fine-tuning model parameters with HPO, this technique addresses the
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key challenges posed by LRLs. The meticulous design of the LRLP-IDLHPO technique
enhances each step of the SA pipeline, resulting in better robustness and accuracy, making
it suitable to the unique linguistic characteristics and resource constraints of LRLs. Com-
prehensive simulation analyses validated these advancements, underscoring the method’s
superiority and reinforcing its potential as a transformative solution in the realm of
LRL processing.
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Logistic Regression [24] 92.97 92.51 92.42 91.85 
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RNN [25] 94.67 96.90 96.96 96.40 
LSTM [25] 97.96 97.86 95.73 98.29 
GRU [25] 95.61 96.46 95.92 96.42 
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Thus, the results suggest that the LRLP-IDLHPO technique is an accurate tool for 
sentiment classification. The LRLP-IDLHPO method achieves better performance over ex-
isting approaches through a combination of innovative strategies tailored to the chal-
lenges of LRL SA. By incorporating data preprocessing to improve data usability, lever-
aging advanced word embeddings with SentiBERT, employing EWAG-GRU for effective 
sentiment classification, and fine-tuning model parameters with HPO, this technique ad-
dresses the key challenges posed by LRLs. The meticulous design of the LRLP-IDLHPO 
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5. Conclusions

In this manuscript, we have proposed the use of the LRLP-IDLHPO approach for the
processing of LRLs. The LRLP-IDLHPO technique enables the detection and classification
of the different kinds of sentiments present in LRL data. To accomplish this, the presented
LRLP-IDLHPO technique incorporates pre-processing, SentiBERT, the EWAG-GRU model,
and the HPO algorithm for hyperparameter tuning. The EWAG-GRU model is an enhanced
RNN that has the capability of processing temporal features with the inclusion of an
attention strategy. Finally, the performance of the EWAG-GRU model can be boosted via
the addition of the HPO algorithm for the hyperparameter tuning process. A widespread
simulation analysis was performed to validate the superior performance of the LRLP-
IDLHPO system. The extensive results indicate that the performance of the LRLP-IDLHPO
technique is significantly superior compared to the state-of-the-art approaches described in
the literature.
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