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Abstract: This article explores adapted mathematical methods to solve the coupled nonlinear
Schrödinger (C-NLS) equation through analytical and numerical methods. To obtain exact solutions
for the (C-NLS) equation, we utilize the improved modified, extended tanh-function method. By
separating the Schrödinger equation into real and imaginary parts, we can obtain four coupled
equations, which we then analyze using the generalized tanh method to extract exact solutions. This
system of equations is essential for understanding the behavior of quantum systems and has various
applications in quantum mechanics. We obtain an analytical solution and demonstrate numerical
solutions using implicit finite difference. Studies have shown that this scheme is second-order in
space and time, and the von Neumann stability analysis confirms its unconditional stability. We
introduce the comparison between numerical and exact solutions.
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1. Introduction

Nonlinear partial differential equations (PDEs) are crucial in describing various physi-
cal, biological, and engineering phenomena. The nonlinear Schrödinger equation (NLSE)
is a pivotal partial differential equation in classical and quantum mechanics. The non-
linear Schrödinger equation (NLSE) is a partial differential equation that describes wave
propagation dynamics in various physical systems, particularly in nonlinear optics and
Bose–Einstein condensates. Therefore, the coupled nonlinear Schrödinger equations pro-
vide a robust framework for understanding and modeling the behavior of coherent optical
pulses in nonlinear media. These equations are essential for investigating soliton dynamics,
pulse compression, and mode interactions in various optical systems. The future behavior
of these problems is well-known from the exact and numerical solutions of the corre-
sponding PDEs. In other words, to better understand the long-term behavior of nonlinear
phenomena, exploring their exact solutions is consequential. Therefore, developing fun-
damental and systematic methods for deriving analytical solutions to PDEs has become a
popular and fascinating subject for most scholars. Among these techniques, we propose the
Kudryashov approach [1,2], the improved Q-expansion strategy [3,4], the

(
G′
G

)
-expansion

method [5], and the Jacobi elliptic expansion [6,7]. These methods are handy for transform-
ing a given PDE into a more straightforward ordinary differential equation (ODE) that
can be more easily solved. Furthermore, numerical methods are often required for solving
nonlinear PDEs when analytical solutions are not feasible. Some commonly used numer-
ical methods to solve nonlinear PDEs include the finite difference method (FDM) [8,9],
the compact finite-difference method [10], the Galerkin finite element method (GFEM) [11],
and the adaptive mesh refinement method, which is a powerful approach for efficiently
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solving PDEs while maintaining high accuracy, making it particularly valuable for sim-
ulations involving complex and dynamic phenomena [12–16], and more others [17–19].
The chosen method depends on the problem’s nature, the desired accuracy, computational
resources, and available software libraries. Additionally, it is essential to consider stability,
convergence, and efficiency when selecting a numerical method for solving nonlinear PDEs.
Some other analytical and numerical solution methodologies can be found in the litera-
ture [20–25]. Several studies have examined the coupled nonlinear Schrödinger equation
for its numerical and exact solutions. For example, references [26–28] introduced a finite
difference method for a numerical simulation of the coupled nonlinear Schrodinger equa-
tion. Jianqiang Gu et al. [29] obtained analytical solutions via the collocation approach, the
generalized Kudryashov method, the modified Kudryashov method, and the exponential
rational function method. In [30], the extended, modified auxiliary equation mapping
method establishes several solutions for the coupled nonlinear Schrödinger equations.
Previous studies on the coupled nonlinear Schrödinger equations have mostly focused
on finding the analytical or numerical solutions with the same type of equations in the
system. Therefore, our study developed some traveling wave and numerical solutions
of the system for two different types of equations. Consider the second-order coupled
nonlinear Schrödinger (C-NLS) equation:

ιψt + ιβψx − αψxx +
(
|ψ|2 + γ|φ|2

)
ψ = 0,

ιφt + αφxx +
(
|φ|2 + γ|ψ|2

)
φ = 0.

(1)

where ψ(x, t) and φ(x, t) are complex unknown functions, β, α describes the dispersion in
the optic fiber, γ is the self-phase modulation parameter.

The initial conditions are as follows:

ψ(x, 0) = F1(x), φ(x, 0) = F2(x), (2)

the following are the boundary conditions:

ψx(x, t) = 0, φx(x, t) = 0, at x = xL, xR. (3)

We write the complex functions ψ and φ as a sum of their real and imaginary parts.

ψ(x, t) = u1(x, t) + ιu2(x, t), φ(x, t) = v1(x, t) + ιv2(x, t), (4)

where uj, vj, j = {1, 2} are real-valued functions. By superseding Equation (4) into sys-
tem (1), we obtain the following system

∂u1

∂t
+ β

∂u1

∂x
− α

∂2u2

∂x2 +
(
(u2

1 + u2
2) + γ(v2

1 + v2
2)
)

u2 = 0,

∂u2

∂t
+ β

∂u1

∂x
+ α

∂2u1

∂x2 −
(
(u2

1 + u2
2) + γ(v2

1 + v2
2)
)

u1 = 0,

∂v1

∂t
+ α

∂2v2

∂x2 +
(
(v2

1 + v2
2) + γ(u2

1 + u2
2)
)

v2 = 0,

∂v2

∂t
− α

∂2v1

∂x2 −
(
(v2

1 + v2
2) + γ(u2

1 + u2
2)
)

v1 = 0.

(5)

Although numerous researchers work analytically to find the traveling wave solutions
of the NLS equation Equation (1), only a few scientists investigate the analytical and
numerical solutions of this problem after converting it into a system of real and imaginary
parts. The generalized tanh method is a powerful technique for searching traveling waves
from one-dimensional nonlinear waves and evolution equations to extract exact solutions
of system (5). Hence, the numerical approach is employed to generate accurate and
dependable results. One of the greatest ways to ensure accurate solutions is to check the
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conformity of exact and numerical solutions. Even though some experts only find exact
solutions, in this study, we compare the exact and numerical solutions to ensure that the
solutions are perfectly accurate and correct.

This paper is structured as follows: Section 2 describes the improved modified
extended tanh-function method utilized to express the exact traveling wave solutions,
and then apply it to extract solutions of system (1), while in Section 3, we obtain the ana-
lytical solution to (5) using the generalized tanh method. Section 4 is dedicated to solving
system (5) by employing the implicit finite difference. Section 5 introduces the results and
discussion. Section 6 highlights the most critical results discovered in this article.

2. Improved Modified Extended Tanh-Function Technique

This section established the improved modified extended tanh-function method and
soliton solutions of nonlinear evolution equations (NLEEs). We assume that the following
nonlinear evolution equations (NLEEs)

Ω1(ψt, ψx, ψxx, φt, φx, φxx, . . .) = 0, (6)

where ψ = ψ(x, t), φ = φ(x, t).
The transformation of waves can be represented as

ψ(x, t) = u(ζ)eι(x−σt+ε), φ(x, t) = v(ζ)eι(x−σt+ε), ζ = x− wt. (7)

By substituting Equation (7) into Equation (6), we obtain the following ordinary differential
equations (ODEs)

Ω2
(
u′, u′′, v′, v′′, . . .

)
= 0. (8)

The traveling wave solution of Equation (8), according to the modified extended tanh-
function technique [31], takes the following form

u(ζ) =
N1

∑
j=0

ajΘ(ζ)j +
N1

∑
j=1

âjΘ(ζ)−j, v(ζ) =
N2

∑
j=0

bjΘ(ζ)j +
N2

∑
j=1

b̂jΘ(ζ)−j. (9)

where aj, âj, bj, and b̂j are evaluated later. The values of N1 and N2 can be obtained by find-
ing the homogeneous balance of the nonlinear term and the highest derivative. The function
Θ(ζ) solves the following Riccati differential equation:

Θ′ = λ + Θ2. (10)

Equation (10) has the general solutions [32], where λ ≥ 0 or λ < 0. The method is improved
by generalizing Riccati Equation (10) to the following general ODE [33]:

Θ′(ζ) = ẑ
√

c0 + c1Θ + c2Θ2 + c3Θ3 + c4Θ4. (11)

We have a set of constants, denoted by cl , where l belongs to set {0, 1, 2, 3, 4} and subject to
certain restrictions. Additionally, ẑ is equal to either 1 or −1. We need to determine the val-
ues of N1 and N2 for use in Equation (9). After that, we can combine Equations (9) and (11)
with Equation (8) to obtain algebraic equations. We obtain a system of equations by collect-
ing the coefficients for the same power of Θ(ζ). Solving this system gives us the values of
aj, âj, bj, and b̂j.
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Application of the Method

New traveling wave solutions of system (1) are obtained by substituting Equation (7)
into (1). The coefficients are then collected and equated to zero for both imaginary and real
parts, resulting in some relations:

(−2α + β− w)u′ = 0,

− αu′′ + (σ− β + α)u ++γuv2 + u3 = 0,

(2α− w)v′ = 0,

αv′′ + (σ− α)v ++γvu2 + v3 = 0.

(12)

We obtain w and β as follows:
w = 2α, β = 4α. (13)

When the conditions Equation (13) are applied, then Equation (12) becomes

− αu′′ + (σ− 3α)u + γuv2 + u3 = 0,

αv′′ + (σ− α)v + γvu2 + v3 = 0.
(14)

By using the balancing procedure between u′′ and u3 in the first equation, and between v′′

and v3 in the second equation, we obtain N1 = N2 = 1. Equation (9) takes the form

u = a0 + a1Θ + â1Θ−1, v = b0 + b1Θ + b̂1Θ−1. (15)

To solve aj, bj, â1, b̂1, γ, σ, we substitute (11) and (15) into (14) and collect terms with the
same order of Θ. This converts the left-hand side of (14) into a polynomial in Θ. Equating
each coefficient of the resulting polynomial to zero gives us a set of algebraic equations.
We can solve these equations using Mathematica and obtain the following values, where
j = {0, 1}:

If c1 = c3 = 0, c0 =
c2

2
4c4

, then

a1 =
1
2

√
± s

c0
+ 4αc4ẑ2, b1 = ±1

2

√
± s

c0
− 4αc4ẑ2, â1 = ±

s
√
± s

c0
+ 4αc4ẑ2

2αc4(c2ẑ2 + 1)
,

b̂1 = −
s
√

s−4αc0c4 ẑ2

c0

2αc4(c2ẑ2 + 1)
, σ =

2
(
α + αc2ẑ2 ∓ sẑ2)

c2ẑ2 + 1
, s =

√
c0c4(α + αc2ẑ2)2,

κ =
√

α2c2
2(c2 + 1)2, γ = −1, a0 = b0 = 0.

Therefore, the hyperbolic function solutions for system (1) are as follows:

ψ1(x, t) =

(√
− c2

c4

√
c4(2αc2

2+κ)
c2

2
tanh

(√
−c2(x−2αt)√

2

)(
αc2

2 + αc2 − κ coth2
(√
−c2(x−2αt)√

2

)))
2αc2(c2 + 1)

× exp
(

ι(c2(−2αt + x + ε)− 2αt + κt + x + ε)

c2 + 1

)
,

(16)

φ1(x, t) =

√
− c2

c4

√
c4(κ−2αc2

2)
c2

2
tanh

(√
−c2(x−2αt)√

2

)(
αc2

2 + αc2 + κ coth2
(√
−c2(x−2αt)√

2

))
2αc2(c2 + 1)

× exp
(

ι(c2(−2αt + x + ε)− 2αt + κt + x + ε)

c2 + 1

)
.

(17)
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Then, the trigonometric function solutions of system (1) can be written as

ψ2(x, t) =

√
c2
c4

√
c4(2αc2

2+κ)
c2

2
tan
(√

c2(x−2αt)√
2

)(
αc2

2 + αc2 ± κ cot2
(√

c2(x−2αt)√
2

))
2αc2(c2 + 1)

× exp
(

ι(c2(−2αt + x + ε)− 2αt + κt + x + ε)

c2 + 1

)
,

(18)

φ2(x, t) =±

√
c2
c4

√
c4(κ−2αc2

2)
c2

2
tan
(√

c2(x−2αt)√
2

)(
αc2

2 + αc2 ∓ κ cot2
(√

c2(x−2αt)√
2

))
2αc2(c2 + 1)

× exp
(

ι(c2(−2αt + x + ε)− 2αt + κt + x + ε)

c2 + 1

)
.

(19)

Figures 1 and 2 show the real and imaginary parts of ψ1(x, t) and φ1(x, t), respectively.
These surfaces clarify the physical meaning of the discussed equation. We have w, β, and we
take it, depending on the condition of Equation (13).

Figure 1. Illustrations of real and imaginary traveling wave solutions for ψ1(x, t) are shown in (a,b).
The parameter values are α = −4, ε =1, c2 = −2, c4 =1, z =1, Nx =1000 with t = 0→ 10 and x = −5→ 3.

Figure 2. Illustrations of real and imaginary traveling wave solutions for φ1(x, t) are shown in (a,b).
The parameter values are α = −4, ε =1, c2 = −2, c4 =1, z = 1, Nx =1000 with t = 0 → 10 and
x = −5→ 3.



Mathematics 2023, 11, 4597 6 of 16

3. Generalized Tanh Method

We simply describe the fundamental steps of the generalized tanh method [32].
The generalized tanh method replaces the tanh function in the tanh method with a Riccati
equation solution. Consider the general form of the nonlinear partial differential equations
(NPDEs) as follows:

Ω1(u1,t, u1,x, u1,xx, u2,t, u2,x, u2,xx, v1,t, v1,x, v1,xx, v2,t, v2,x, v2,xx, . . .) = 0, (20)

where uj = uj(x, t), vj = vj(x, t), j = {1, 2}. Then we employ the following wave transfor-
mation

u1 = U1(ζ), u2 = U2(ζ), v1 = V1(ζ), v2 = V2(ζ), ζ = x− wt. (21)

By substituting Equation (21) into Equation (20), we obtain the following ordinary differen-
tial equations (ODEs)

Ω2
(
U′1, U′′1 , U′2, U′′2 , V′1, V′′1 , V′2, V′′2 , . . .

)
= 0. (22)

Then we propose the following series expansion as a solution to Equation (22):

U1 = a0 +
N1

∑
j=1

ajΦj, U2 = c0 +
N2

∑
j=1

cjΦj,

V1 = b0 +
N3

∑
j=1

bjΦj, V2 = d0 +
N4

∑
j=1

djΦj.

(23)

where Φ = Φ(ζ) satisfies the following ordinary differential equation

Φ′ = v + Φ2. (24)

The positive integers Nl , l = {1, 2, 3, 4} can be determined by balancing the highest deriva-
tive term with nonlinear terms in (22). Substituting (23) and (24) into (22) and then setting
zero all coefficients for the same order of Φ, we can obtain a system of algebraic equations,
from which the constants a0, aj, b0, and bj are obtained explicitly. The Riccati equation
admits various kinds of solutions, presented in [32]. By using the solution to Equation (24),
we obtain:

Φ =


−
√
−v tanh

(√
−vζ

)
−
√
−v coth

(√
−vζ

) for v < 0. (25)

Application of the Method

To find the solitary wave solutions of system (5), we use the wave transformation (21),
the system (5) can be converted to the following ODEs:

− wU′1 + βU′1 − αU′′2 +
((

U2
1 + U2

2

)
+ γ

(
V2

1 + V2
2

))
U2 = 0,

− wU′2 + βU′2 + αU′′1 +
((

U2
1 + U2

2

)
+ γ

(
V2

1 + V2
2

))
U1 = 0,

− wV′1 + αV′′2 +
((

V2
1 + V2

2

)
+ γ

(
U2

1 + U2
2

))
V2 = 0,

− wV′2 − αV′′1 +
((

V2
1 + V2

2

)
+ γ

(
U2

1 + U2
2

))
V1 = 0.

(26)

By balancing the highest derivative and nonlinear terms for each equation in system (26),
we obtain Nl = 1, where l = {1, 2, 3, 4}, so according to Equation (23), we assume that

U1 = a0 + a1Φ, U2 = c0 + c1Φ,

V1 = b0 + b1Φ, V2 = d0 + d1Φ.
(27)
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Substituting Equation (27) and the necessary derivatives into system (26) using
Equation (25), applying trigonometric identities and collecting the coefficients of the same
power of Φ that contain independent combinations to zero, we obtain the following cases
and solutions

Family 1: a0 =
√

d2
0 − 2α, b1 = ∓

√
d2

0 − 2α, c0 = ∓
√

d2
0 − 2α,

d1 = ∓
√

d2
0 − 2α, w = ± 2αd0√

d2
0 − 2α

, β = ±
4α
(
d2

0 − α
)

d0

√
d2

0 − 2α
,

γ = −1, v = −1, a1 = ±d0, c1 = d0, b0 = −d0.

Thus, the new exact solutions of the (C-NLS) can be identified as:

u1(x, t) =
√

d2
0 − 2α∓ d0 tanh

x− 2αd0t√
d2

0 − 2α

,

u2(x, t) = ∓
√

d2
0 − 2α− d0 tanh

x− 2αd0t√
d2

0 − 2α

,

v1(x, t) = ±
√

d2
0 − 2α tanh

x− 2αd0t√
d2

0 − 2α

− d0,

v2(x, t) = ±
√

d2
0 − 2α tanh

x− 2αd0t√
d2

0 − 2α

+ d0.

(28)

Thus, by substituting Equation (28) into Equation (4), we obtain the exact solution to system (1):

ψ3(x, t) =
√

d2
0 − 2α∓ d0 tanh

(
x− 2αd0t√

d2
0−2α

)
+ ι

(
∓
√

d2
0 − 2α− d0 tanh

(
x− 2αd0t√

d2
0−2α

))
,

φ3(x, t) = −d0 ±
√

d2
0 − 2α tanh

(
x− 2αd0t√

d2
0−2α

)
+ ι

(
d0 ±

√
d2

0 − 2α tanh
(

x− 2αd0t√
d2

0−2α

))
.

(29)

The traveling wave solutions of (C-NLS):

u1(x, t) =
√

d2
0 − 2α± d0 coth

 2αd0t√
d2

0 − 2α
+ x

,

u2(x, t) = ±
√

d2
0 − 2α− d0 coth

 2αd0t√
d2

0 − 2α
+ x

,

v1(x, t) = ∓d0 ∓
√

d2
0 − 2α coth

 2αd0t√
d2

0 − 2α
+ x

,

v2(x, t) = d0 ∓
√

d2
0 − 2α coth

 2αd0t√
d2

0 − 2α
+ x

.

(30)

Thus, by substituting Equation (30) into Equation (4), we obtain the exact solution to system (1):

ψ4(x, t) =
√

d2
0 − 2α± d0 coth

(
2αd0t√
d2

0−2α
+ x
)
+ ι

(
±
√

d2
0 − 2α− d0 coth

(
2αd0t√
d2

0−2α
+ x
))

,

φ4(x, t) = ∓d0 ∓
√

d2
0 − 2α coth

(
2αd0t√
d2

0−2α
+ x
)
+ ι

(
d0 ∓

√
d2

0 − 2α coth
(

2αd0t√
d2

0−2α
+ x
))

.
(31)
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Family 2: a0 = 2
√

α, a1 = ±2
√

α, b0 =
√

2
√

α, b1 = ±
√

2
√

α,

c0 = 2
√

α, c1 = ∓2
√

α, d0 =
√

2
√

α, d1 = ∓
√

2
√

α,

w = ±2α, β = ±4α, v = −1, γ = −1.

Based on Family 2, we can identify the new exact solutions of (C-NLS):

u1(x, t) = ∓2
√

α(tanh(x− 2αt)∓ 1), u2(x, t) = ±2
√

α(tanh(x− 2αt)± 1),

v1(x, t) = ∓
√

2
√

α(tanh(x− 2αt)∓ 1), v2(x, t) = ±
√

2
√

α(tanh(x− 2αt)± 1).
(32)

Thus, by substituting Equation (32) into Equation (4), we obtain the exact solution to system (1):

ψ5(x, t) = ∓2
√

α(tanh(x− 2αt)∓ 1))± 2
√

αι(tanh(x− 2αt)± 1),

φ5(x, t) = ∓
√

2α(tanh(x− 2αt)∓ 1)±
√

2αι(tanh(x− 2αt)± 1).
(33)

The traveling wave solutions of (C-NLS):

u1(x, t) = ∓2
√

α(coth(x− 2αt)∓ 1), u2(x, t) = ±2
√

α(coth(x− 2αt)± 1),

v1(x, t) = ∓
√

2α(coth(x− 2αt)∓ 1), v2(x, t) = ±
√

2α(coth(x− 2αt)± 1).
(34)

Thus, by substituting Equation (34) into Equation (4), we obtain the exact solution to system (1):

ψ6(x, t) = ∓2
√

α(coth(x− 2αt)∓ 1)± 2
√

αι(coth(x− 2αt)± 1),

φ6(x, t) = ∓
√

2α(coth(x− 2αt)∓ 1)±
√

2αι(coth(x− 2αt)± 1).
(35)

Figures 3 and 4 present the 3D surfaces of Equation (28) with specific parameter values.
Figure 5 presents the behavior for the analytical solutions in Equation (28) when we change
the values of α, while the other parameters take fixed values d0 = −2, Nx = 1000 with
t = 1, x = −10→ 10. As a result, we can see that changing the parameter α has a different
effect between u1(x, t) and u2(x, t), while v1(x, t), v2(x, t) has the same effect.

Figure 3. The 3D figures for the exact solutions in Equation (28). Figure (a) shows the exact solution
to u1(x, t), while figure (b) shows the exact solution to u2(x, t). The used parameters are α = −1/8,
d0 = −1/2, Nx =1000 with t = 0→ 10, x = − 10→ 10.
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Figure 4. The 3D figures for the exact solutions in Equation (28). Figures (a,b) display 3D plots
of the exact solutions of v1(x, t) and v2(x, t), respectively. The used parameters are α = −1/8,
d0 = −1/2, Nx =1000 with t = 0→ 10, x = − 10→ 10.
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(d)                                                             

Figure 5. These figures show the wave behavior of changing a specific parameter value while fixing
the others for Equation (28); (a,b) plot the exact solution u1(x, t), u2(x, t), while (c,d) plot the exact
solution v1(x, t), v2(x, t). The figures show the behavior when α increases and γ is fixed at −1.
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4. Numerical Solution

In this section, we employ the implicit finite-difference method to extract the numer-
ical results of system (5) on a physical domain [xL, xR]. The domain is divided into Nx
subintervals [xm, xm+1], such that

xm = (m− 1)∆x, ∀xm ∈ [xL, xR], m = 1, 2, . . . , Nx + 1,

where ∆x = (xR − xL)/Nx, ∆x denotes a uniform width of each subinterval. The implicit
finite difference method is a numerical technique used to solve partial differential equations
(PDEs) by discretizing the PDE in time and space. Unlike explicit methods, where the
future solution is computed using information only from the current time step, implicit
methods consider information from both the current and future time steps. This makes
them unconditionally stable and suitable for solving stiff PDEs, where explicit methods
might be impractical due to restrictive stability conditions.

The system presented in Equation (5) can be expressed using matrices and vectors,
if we assume, u T =

[
u1 u2

]
, vT =

[
v1 v2

]
, then

∂Γ
∂t

+ βA
∂Γ
∂x
− αB

∂2Γ
∂x2 + G(Γ)Γ = 0, (36)

where, ΓT =
[

u v
]
, A =

[
I z
z z

]
, k1 =

(
uTu + γvTv

)
, k2 =

(
vTv + γuTu

)
, while

I, z ∈ R2×2 identity matrix and zero matrix, respectively.

B =


0 1
−1 0

z

z
0 −1
1 0

, G(Γ) =


0 k1
−k1 0

z

z
0 k2
−k2 0

.

Then, we use the approximate solutions Γm to the analytical solution Γ(xm, t) = Γ. To ap-
proximate the first and second derivatives in Equation (36), we use the following central
difference formulas:

∂Γ
∂x

=
1

2∆x
(Γm+1 − Γm−1) =

1
2∆x

δxΓm,

∂2Γ
∂x2 =

1
∆2

x
(Γm+1 − 2Γm + Γm−1) =

1
∆2

x
δ2

xΓm.
(37)

When we insert Equation (37) into Equation (36), we obtain the semi-discrete system

Γt|m +
β

2∆x
AδxΓm −

α

∆2
x

Bδ2
xΓm + G(Γm)Γm = 0. (38)

Equation (38) can be expressed in a vector form, as follows:

Γt|m + F(Γm) = 0, (39)

where F(Γm) =
β

2∆x
AδxΓm − α

∆2
x

Bδ2
xΓm + G(Γm)Γm.

We solve system (39) by applying the implicit midpoint rule. Here, Γn
m represents the

discrete approximation of the exact solution Γ(xm, tn). The semi-discretization of (39) is
obtained as follows:

Γt|nm + F
(

Γn+1
m + Γn

m
2

)
= 0. (40)

The above system was solved using an ODE solver in FORTRAN, denoted as the DDASPK
solver [34]. This solver uses implicit differentiation operators to approximate time deriva-
tives. The obtained numerical results are acceptable. The Taylor expansion is utilized to
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determine the accuracy of the numerical scheme. When plugging the expansion and sim-
plifying the equation, the accuracy isO(∆2

t , ∆2
x). This means the scheme has a second-order

accuracy in both space and time. Then, we analyze the stability of the numerical method
using the von Neumann stability analysis. This analysis only applies to linear difference
schemes, so we examine the linearized form of Equation (40).

Γn+1
m − Γn

m + ∆tQ
(

Γn+1
m + Γn

m
2

)
, (41)

where
Q(Γn

m) =
β

2∆x
AδxΓn

m −
α

∆2
x

Bδ2
xΓn

m + ÃΓn
m,

Ã =


0 k̃1
−k̃1 0

z

z
0 k̃2
−k̃2 0

, and k̃1 = max{k1}, k̃2 = max{k2}. To ana-

lyze the stability of the difference scheme, we assume

Γn
m = Mneιωm∆x . (42)

When using von Neumann, the following criterion is required for stability.

max
j
|µj| ≤ 1, where j = 1, 2, 3, 4.

After substituting Equation (42) into Equation (41), we obtain the amplification matrix as a
result of a calculation, which can be expressed as a matrix equation:

M
(

I + ιϑ1 A + ϑ2B +
∆t

2
Ã
)
=

(
I− ιϑ1 A− ϑ2B− ∆t

2
Ã
)

, (43)

where ϑ1 = β∆t
2∆x

, ϑ2 = 2α∆t
∆2

x
sin2

(
ω∆x

2

)
.

The matrix M can be given explicitly as

M =

(
I + ιϑ1 A + ϑ2B +

∆t

2
Ã
)−1(

I− ιϑ1 A− ϑ2B− ∆t

2
Ã
)

. (44)

We calculated the eigenvalues of the matrix M, and they take the following forms:

µ1 =
−(ϑ4 − ϑ2) + ι

(ϑ4 − ϑ2) + ι
, µ2 =

(ϑ4 − ϑ2) + ι

−(ϑ4 − ϑ2) + ι
,

µ3 = − (ϑ2 + ϑ3) + ϑ1 + ι

(ϑ2 + ϑ3) + ϑ1 − ι
, µ4 =

−(ϑ2 + ϑ3) + ϑ1 + ι

(ϑ2 + ϑ3)− ϑ1 + ι
,

(45)

where
ϑ3 =

∆t

2
k̃1, ϑ4 =

∆t

2
k̃2.

The modulus of these eigenvalues is equal to 1

|µj| = 1, j = 1, 2, 3, 4. (46)

The stability condition of the von Neumann analysis is satisfied. The scheme is uncondi-
tionally stable.
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5. Results and Discussion

Using the improved modified extended tanh-function method, we obtained some
exact closed-form solutions for the second-order coupled nonlinear Schrödinger (C-NLS)
Equation (1). Figures 1 and 2 show the exact solution ψ1(x, t), φ1(x, t) of system (1), where
Figure 1a,b present real and imaginary parts, respectively. While Figure 2a presents real parts
and Figure 2b presents imaginary parts of φ1(x, t). The parameter values are α = −4, ε = 1,
c2 = −2, c4 = 1, z = 1, Nx = 1000 with t = 0 → 10 and x = (−5, 3). After con-
verting the coupled (NLS) equation to the system of real and imaginary Equations (5),
we investigate the analytical solutions of system (5) using the generalized tanh method.
Figures 3 and 4 present the 3D surfaces of Equation (28) using the parameter values α = −1/8,
d0 = −1/2, Nx = 1000 with t = 0 → 10, x = −10 → 10. Figure 5 presents the behavior
for the analytical solutions in Equation (28) when we change the values of α, while the other
parameters take fixed values d0 = −2, Nx = 1000 with t = 1, x = −10 → 10. As a result,
we can see that changing the parameter α has a different effect between u1(x, t) and u2(x, t),
while v1(x, t), v2(x, t) has the same effect. We examine numerical solutions using the implicit
finite difference method to convert the underlying problems into a system of ODEs while
maintaining continuous time derivatives. Figures 6 and 7 and Table 1 present the most im-
portant aspects of the solutions, enabling a direct comparison between the traveling wave
solutions obtained by using the proposed exact methods with Nx = 2000 and the numerical
solutions obtained by using the finite difference method with various mesh numbers in
the x direction. The ability to make this comparison is facilitated by the data presented in
Figures 6 and 7, as well as in Table 1. The numerical outcomes are comparable to a significant
degree as a consequence of this. When ∆x scores reach zero, the mean error also reaches
zero. The numerical methods are invariably stable when the parameter values are set to
α = −0.125, d0 = −0.5. This method produces reliable and powerful results (Figure 8).

Table 1. At time t = 10, this is the relative error with the L2 norm and CPU.

Nx The Relative Error CPU

100 6.50× 10−1 0.043× 103 s
200 1.30× 10−2 0.16× 103 s
400 5.50× 10−3 0.41× 103 s
800 2.20× 10−4 0.91× 103 s
1000 4.20× 10−5 2.81× 103 s
2000 1.32× 10−5 5.50× 103 s

Figure 6. Cont.
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Figure 6. In (a,c), we see depictions of the real and imaginary aspects of the traveling wave solutions
of ψ3(x, t); (b,d) show numerical solutions for the real and imaginary parts of ψ3(x, t). The parameter
values used were α = −0.125, d0 = −0.5, Nx = 1000 with t = 0→ 10 and x = −40→ 40.

Figure 7. In (a,c), we see depictions of the real and imaginary aspects of φ3(x, t)’s traveling wave
solutions. (b,d) show numerical solutions for the real and imaginary parts of φ3(x, t). The parameter
values used were α = −0.125, d0 = −0.5, Nx = 1000 with t = 0→ 10 and x = −40→ 40.
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Figure 8. Using Table 1’s L2 norm relative error, we estimate the convergence records based on Nx,
deliberately choosing t = 10 and x = −40→ 40.

6. Conclusions

In this study, we achieve exact traveling wave solutions of the coupled nonlinear
Schrödinger (C-NLS) Equation (1) using an improved modified extended tanh-function
method. Furthermore, we convert the complex-valued function into its real and imagi-
nary parts into a system of differential equations over a real field to solve the nonlinear
Schrödinger equation in one dimension. Also, we investigate the exact and numerical
solutions for system (5) using the generalized tanh method and implicit finite difference
scheme, respectively. The numerical solutions approximately approach the exact solutions
for small ∆x. More precisely, the L2 error rapidly declines for smaller ∆x, as presented
in Table 1 and Figure 8. The numerical scheme is found unconditionally stable via von
Neumann stability analysis, exhibiting second-order accuracy in both time and space. We
use FORTRAN 95 software by applying ODE solvers to extract approximate solutions to the
problem and use Mathematica 13.2 software to investigate the exact solutions. Therefore,
we use MATLAB R2023b software to create 3D graphs that accurately depict the solution
based on specific parameter values. Also, in Figure 5, we plot 2D figures to illustrate the
solution behavior when changing α and fixing others. Furthermore, the 3D figures illustrate
that the exact and numerical solutions coincide and agree. The techniques utilized in this
study can be applied to other NLPDEs in natural sciences.
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9. Yokuş, A.; Kaya, D. Comparison exact and numerical simulation of the traveling wave solution in nonlinear dynamics. Int. J.
Mod. Phys. 2020, 34, 2050282. [CrossRef]

10. Ahmad, H.; Khan, T.A.; Stanimirovic, P.S.; Shatanawi, W.; Botmart, T. New approach on conventional solutions to nonlinear
partial differential equations describing physical phenomena. Results Phys. 2022, 41, 105936. [CrossRef]

11. Ali, H.; Kamrujjaman, M. Numerical solutions of nonlinear parabolic equations with Robin condition: Galerkin approach. TWMS
J. Appl. Eng. Math. 2022, 12, 851–863.

12. Alharbi, A.R. Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-
Ampere method. AIMS Math. 2023, 8, 16463–16478. 10.3934/math.2023841. [CrossRef]

13. Alharbi, A.R. Numerical investigation for the GRLW equation using Parabolic Monge Ampere Equation. Comput. Sci. 2020, 15,
443–462.

14. Budd, C.J.; Williams, J.F. Moving mesh generation using the parabolic Monge–Ampère equation. SIAM J. Sci. Comput. 2009, 31,
3438–3465. [CrossRef]

15. Alharbi, A.; Naire, S. An adaptive moving mesh method for thin film flow equations with surface tension. J. Comput. Appl. Math.
2017, 319, 365–384. [CrossRef]

16. DiPietro, K.L.; Lindsay, A.E. Monge—Ampére simulation of fourth order PDEs in two dimensions with application to elastic-
electrostatic contact problems. J. Comput. Phys. 2017, 349, 328–350. [CrossRef]

17. Rashidinia, J.; Mohammadi, R. Tension spline approach for the numerical solution of nonlinear Klein–Gordon equation. Comput.
Phys. Commun. 2010, 181, 78–91. [CrossRef]

18. Nikan, O.; Molavi-Arabshai, S.M.; Jafari, H. Numerical simulation of the nonlinear fractional regularized long-wave model
arising in ion acoustic plasma waves. Discret. Contin. Dyn. Syst. S 2021, 14, 3685. [CrossRef]

19. Nikan, O.; Avazzadeh, Z.; Rasoulizadeh, M.N. Soliton wave solutions of nonlinear mathematical models in elastic rods and
bistable surfaces. Eng. Anal. Bound. Elem. 2022, 143, 14–27. [CrossRef]

20. Qiu, Y.; Tian, B.; Xian, D.; Xian, L. New exact solutions of nontraveling wave and local excitation of dynamic behavior for GGKdV
equation. Results Phys. 2023, 49, 106463. [CrossRef]

21. Lotfy, K.; El-Bary, A.A.; Hassan, W.; Alharbi, A.R.; Almatrafi, M.B. Electromagnetic and Thomson effects during photothermal
transport process of a rotator semiconductor medium under hydrostatic initial stress. Results Phys. 2020, 16, 102983. [CrossRef]

22. Alharbi, A. Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS
Math. 2023, 8, 1230–1250. 10.3934/math.2023062. [CrossRef]

23. Abdelrahman, M.A.; Sohaly, M.A.; Alharbi, A. The new exact solutions for the deterministic and stochastic (2+ 1)-dimensional
equations in natural sciences. J. Taibah Univ. Sci. 2019, 13, 834–843. [CrossRef]

24. Abdelrahman, M.A.; Alharbi, A. Analytical and numerical investigations of the modified Camassa—Holm equation. Pramana
2021, 95, 117. [CrossRef]

25. Khuri, S.A. A complex tanh-function method applied to nonlinear equations of Schrödinger type. Chaos Solitons Fractals 2004, 20,
1037–1040. [CrossRef]

26. Ismail, M.S.; Taha, T.R. Numerical simulation of coupled nonlinear Schrödinger equation. Math. Comput. Simul. 2001, 56, 547–562.
[CrossRef]

27. Sonnier, W.J.; Christov, C.I. Strong coupling of Schrödinger equations: Conservative scheme approach. Math. Comput. Simul.
2005, 69, 514–525. [CrossRef]

28. Sun, Z.Z.; Zhao, D.D. On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations. Comput. Math.
Appl. 2010, 59, 3286–3300. [CrossRef]

29. Gu, J.; Akbulut, A.; Kaplan, M.; Kaabar, M.K.A.; Yue, X.-G. A novel investigation of exact solutions of the coupled non-
linear Schrodinger equations arising in ocean engineering, plasma waves, and nonlinear optics. J. Ocean. Eng. Sci. 2022,
2468–0133. [CrossRef]

30. Seadawy, A.R.; Cheemaa, N. Propagation of nonlinear complex waves for the coupled nonlinear Schrödinger Equations in two
core optical fibers. Phys. Stat. Mech. Its Appl. 2019, 529, 121330. [CrossRef]

31. Elwakil, S.A.; El-Labany, S.K.; Zahran, M.A.; Sabry, R. Modified extended tanh-function method for solving nonlinear partial
differential equations. Phys. Lett. A 2002, 299, 179–188. [CrossRef]

32. Fan, E.; Hona, Y.C. Generalized tanh method extended to special types of nonlinear equations. Z. Für Naturforschung 2002, 57, 101375.
[CrossRef]

http://dx.doi.org/10.31197/atnaa.1125691
http://dx.doi.org/10.1016/j.chaos.2005.04.071
http://dx.doi.org/10.1016/j.cjph.2022.11.023
http://dx.doi.org/10.1016/j.aej.2023.02.032
http://dx.doi.org/10.1142/S0217979220502823
http://dx.doi.org/10.1016/j.rinp.2022.105936
10.3934/math.2023841
http://dx.doi.org/10.3934/math.2023841
http://dx.doi.org/10.1137/080716773
http://dx.doi.org/10.1016/j.cam.2017.01.019
http://dx.doi.org/10.1016/j.jcp.2017.08.032
http://dx.doi.org/10.1016/j.cpc.2009.09.001
http://dx.doi.org/10.3934/dcdss.2020466
http://dx.doi.org/10.1016/j.enganabound.2022.05.026
http://dx.doi.org/10.1016/j.rinp.2023.106463
http://dx.doi.org/10.1016/j.rinp.2020.102983
 10.3934/math.2023062
http://dx.doi.org/10.3934/math.2023062
http://dx.doi.org/10.1080/16583655.2019.1644832
http://dx.doi.org/10.1007/s12043-021-02153-6
http://dx.doi.org/10.1016/j.chaos.2003.09.042
http://dx.doi.org/10.1016/S0378-4754(01)00324-X
http://dx.doi.org/10.1016/j.matcom.2005.03.016
http://dx.doi.org/10.1016/j.camwa.2010.03.012
http://dx.doi.org/10.1016/j.joes.2022.06.014
http://dx.doi.org/10.1016/j.physa.2019.121330
http://dx.doi.org/10.1016/S0375-9601(02)00669-2
http://dx.doi.org/10.1515/zna-2002-0809


Mathematics 2023, 11, 4597 16 of 16

33. Yang, Z.; Hon, B.Y.C. An Improved Modified Extended tanh-Function Method. Z. Für Naturforschung 2006, 61, 103–115. [CrossRef]
34. Brown, P.N.; Hindmarsh, A.C.; Petzold, L.R. Using Krylov methods in the solution of large-scale differential-algebraic systems.

SIAM J. Sci. Comput. 1994, 15, 1467–1488. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1515/zna-2006-3-401
http://dx.doi.org/10.1137/0915088

	Introduction
	Improved Modified Extended Tanh-Function Technique
	Generalized Tanh Method
	Numerical Solution
	Results and Discussion
	Conclusions
	References

