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Abstract: In recent times, there has been a notable global phenomenon characterized by a double
predicament arising from the concomitant rise in worldwide life expectancy and a significant decrease
in birth rates. The emergence of this phenomenon has posed a significant challenge for governments
worldwide. It not only poses a threat to the continued viability of state-funded welfare programs,
such as social security, but also indicates a potential decline in the future workforce and tax revenue,
including contributions to social benefits. Given the anticipated escalation of these issues in the
forthcoming decades, it is crucial to comprehensively examine the extension of the human lifespan to
evaluate the magnitude of this matter. Recent research has focused on utilizing stochastic differential
equations as a helpful means of describing the dynamic nature of mortality rates, in order to tackle
this intricate issue. The usage of these models proves to be superior to deterministic ones due to their
capacity to incorporate stochastic variations within the environment. This enables individuals to gain
a more comprehensive understanding of the inherent uncertainty associated with future forecasts.
The most important aims of this study are to fit and compare stochastic differential equation models
for mortality (the geometric Brownian motion and the stochastic Gompertz model), conducting
separate analyses for each age group and sex, in order to generate forecasts of the central mortality
rates in France up until the year 2030. Additionally, this study aims to compare the outcomes obtained
from fitting these models to the central mortality rates in Portugal. The results obtained from this
work are quite promising since both stochastic differential equation models manage to replicate
the decreasing central mortality rate phenomenon and provide plausible forecasts for future time
and for both populations. Moreover, we also deduce that the performances of the models differ
when analyzing both populations under study due to the significant contrast between the mortality
dynamics of the countries under study, a consequence of both external factors (such as the effect of
historical events on Portuguese and French mortality) and internal factors (behavioral effect).

Keywords: central mortality rates; geometric Brownian motion; stochastic Gompertz model; stochastic
differential equation models; forecasting; life insurance

MSC: 65C05; 65C30

1. Introduction

In France, as in most Western nations, the demographic composition of the population
has been undergoing a transformation characterized by an increasingly aging populace,
primarily attributed to the simultaneous decline in birth rates and the rise in life expectancy
over the years. During the last couple of months, the topic of French mortality has come to
light once again due to the massive pension protests organized in France’s major cities to
try to avert the French government’s decision to raise the French retirement age from 62 to
64 years.
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Nonetheless, given the clear certainty that the mortality risk escalates with an individ-
ual’s advancing age, mortality rates have been plummeting worldwide. This circumstance
has prompted an examination of both the inherent and external factors that can account for
this development. Several models, including deterministic and, more recently, stochastic
models, such as the Lee–Carter model [1], the bi-factorial Lee–Carter model (LC2) (see [2,3]),
and the Plat model [4], have been put to the test, leading to innovative mortality modeling
approaches and comparative studies aimed at determining the most suitable model for
application in this context (see [5–12]).

Furthermore, stochastic mortality models play a pivotal role in the field of demog-
raphy and actuarial science, offering essential tools for understanding and forecasting
mortality rates. The works of [13,14] emphasize the significance of these models. Mortality
models provide a systematic framework to analyze historical data, identify trends, and
project future mortality rates, thereby aiding in various demographic and actuarial appli-
cations. They are crucial in understanding the aging population, assessing the financial
implications of longevity risk in pension plans, and enabling accurate life insurance pric-
ing. These models also help policymakers make informed decisions regarding healthcare
resources and social security. Furthermore, mortality models assist researchers in inves-
tigating the complex factors influencing mortality, such as healthcare advancements and
socio-economic conditions, and thus contribute to our broader understanding of human
population dynamics.

Given these considerations, and notwithstanding the extensive research of human
mortality in previous research works, the primary goal of this endeavor is to apply stochas-
tic differential equation models, referred to as SDE, to the French population’s central
mortality rates. By employing these types of models in a cross-sectional examination of
historical French mortality data, we can predict the forthcoming trends in diminishing
central mortality rates for all age brackets and for both sexes. This approach also allows us
to produce step-by-step (SS) and long-term (LT) forecasts.

The French population’s central mortality rates referenced in this manuscript were
sourced directly from [15], without performing any additional computations on the data
set. This data set that incorporates the central mortality rates (commonly represented in the
literature regarding mortality dynamics as mx,t) referenced above, represents the aggregate
number of fatalities within a country during a defined time span, encompassing all causes
of death, in relation to an estimate of the resident population. Furthermore, the resident
population estimate encompasses individuals subjected to the risk of mortality within an
identical age bracket, including military personnel, regardless of deployment or death
abroad. Additionally, within this manuscript, we will be working with 200 time series, each
having an annual frequency, spanning from 1940 to 2020. These series cover 100 annual
age groups, ranging from ages 0 to 99, for both sexes (male and female). Moreover, note
that we have decided to use mortality data from the pandemic-affected year 2020 in our
study, being that the incorporation of the mortality data of this do not significantly affect
the results obtained from the models applied in this manuscript per se.

In the scientific field of Demography, it is customary to have data organized by cohorts,
providing a longitudinal perspective over time. A cohort consists of a group of individuals
born in an identical year, being subsequently tracked throughout the entirety of their lives.
When using the longitudinal approach, there is no distinction between age and calendar
year. Consequently, modeling all age groups across the human lifespan becomes extremely
challenging, as it requires an exceptionally high number of parameters.

To illustrate this approach, please refer to the graph in Figure 1, which depicts the
logarithm of the central mortality rates across different age brackets. In this instance,
the year 1994 served as a reference point, and despite the decline in infant mortality and
increased longevity in recent decades, the exponential effect is visible and similar to Figures
2 to 7 from [16].

On the other hand, the cross-sectional methodology we adopt (following the pioneering
work of [17]) is justified, given that we examine events that have an impact across all age
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groups. Notably, we emphasize positive factors, such as improvements in socio-economic
living conditions over time, advances in medical technology, enhanced quality of healthcare
services, and the proliferation of healthcare facilities. Moreover, global issues, such as cli-
mate change, which leads to extreme events and other catastrophic situations, can have a
widespread influence on the French population, thereby increasing mortality risk.

The phenomenon described exhibits a significant declining pattern during the period
under examination, as depicted in Figure 2. Across nearly all age groups, male central mor-
tality rates surpass those of females, with distinct variations in all of the age brackets under
consideration. Moreover, in this manuscript, we segmented every temporal sequence con-
cerning the historical central mortality rates of the French population into two subgroups:
one for modeling and estimation, covering the years from 1940 to 2009, and another for
forecast validation, spanning the years from 2010 to 2020. The process described above is
commonly known in mathematics and statistical modeling as “Hold-out”. The “Hold-Out”
process involves dividing a data set into two subsets: the training set (1940–2009) and the
test set (2010–2020). The training set is used to train and build the model, while the test
set is held out and not used during the training phase. Instead, it is used to evaluate the
model’s performance after training. This approach has many applications, including also
being used for mortality modeling (see [11]).
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Figure 1. Logarithm of the central mortality rates of the French population for the year 1994 (longitu-
dinal representation).

-5.0

-4.5

-4.0

-3.5

1940 1960 1980 2000 2020

Year

Lo
g 

(C
en

tr
al

 M
or

ta
lit

y 
R

at
es

)

Female

-4.0

-3.5

1940 1960 1980 2000 2020

Year

Lo
g 

(C
en

tr
al

 M
or

ta
lit

y 
R

at
es

)

Male

Figure 2. Logarithm of the central mortality rates of individuals aged 64 over time (cross–sectional
representation).

This manuscript is organized in the following manner: In Section 2, we utilize both
the geometric Brownian motion and the stochastic Gompertz model to analyze French
mortality data (central mortality rates) for the purpose of deriving model estimations and
forecasts. Additionally, we delve into the statistical elements of parameter estimation
and validation for both models, concluding with a model comparison to determine the
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most suitable one for forecasting French central mortality rates. Furthermore, in the final
part of this section, we perform a comparative study between the results obtained from
these SDE models when they were fitted to the Portuguese central mortality rates (the
results regarding this application are stated in [18]). Additionally, the primary findings and
conclusions of this study are outlined in Section 3.

2. Stochastic Differential Equation Models Fitted to Central Mortality Rates
2.1. The Geometric Brownian Motion and the Stochastic Gompertz Model

The geometric Brownian Motion (briefly, GBM), also referred to as the Black–Scholes
model, holds significant recognition in the financial community. It stands out as the
predominant model for characterizing the dynamics of a particular stock price on the stock
exchange and other economic variables. Notable references include [19,20].

The GBM is characterized by two parameters, r and σ, which signify, respectively,
the arithmetic mean rate of return and the volatility of a given stock price over time. The
stochastic differential equation (SDE) that represents the GBM is as follows:

dX(t) = rX(t)dt + σX(t)dW(t), X(0) = x0. (1)

In this equation, X(t) signifies the price of a specific stock at a time t, while W(t)
represents the value of the standard Wiener process at the same moment in time. It is
worth noting that this equation finds applications beyond stock prices since it can also
be employed to model diverse phenomena, such as population growth, as demonstrated
in references such as [21,22], as well as various other variables across different scientific
domains. The solution to Equation (1), by applying Itô’scalculus, is:

X(t) = x0 exp
{(

r− σ2

2

)
t + σW(t)

}
. (2)

In this paper, we make the assumption that the observed central mortality rates of
the French population follow a GBM. Additionally, we will henceforth use the notation
X(t) = mx,t to signify the central mortality rate for an individual of a specific age and sex
during the time periods considered in this study. We also assume that the initial observed
value X(0) = x0 = mx,0 is known and independent of the Wiener process. By defining

Y(t) = ln
(

mx,t
mx,0

)
and applyingItô’sformula to Y(t), we obtain

dY(t) = Rdt + σdW(t), Y(0) = 0. (3)

Here, let R = r− σ2

2 . Moreover, within this study, the parameters R and σ of the GBM
signify, respectively, the mean rate of growth of Y(t) and the influence of the stochastic
environmental variations on mortality dynamics.

The solution for Equation (3) is given by

Y(t) = Rt + σW(t), (4)

which follows a Gaussian distribution with an expected value Rt and variance σ2t, that is,

Y(t) ∼ N
(

Rt, σ2t
)

. (5)

In this context, mx,t follows a log-normal distribution, where the expected value is given
by E[mx,t] = mx,0 exp{Rt}. Hence, Equation (4) can be expressed in its initial format as:

mx,t = mx,0 exp{Rt + σW(t)}.

Moving on to the second model applied in this work, the stochastic Gompertz model
(SGM), a deterministic model serving as an illustration for the Gompertz model fitted to
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central mortality rates may be depicted as

dmx,t = bmx,t ln
(

a
mx,t

)
dt. (6)

In this context, mx,t denotes the dynamic central mortality rate of a specific demo-
graphic group characterized by age and sex. Furthermore, a signifies the asymptotic central
mortality rate, while b represents the rate at which mortality approaches its asymptotic
value, as described in [21].

For simplification purposes, let us introduce the notations Y(t) = ln(mx,t) and
A = ln(a). This allows us to derive a tantamount equation from (6) as

dY(t) = −b(A−Y(t))dt. (7)

Following [23], to obtain the stochastic Gompertz model (briefly, SGM), we introduce
into (7) a stochastic element, ε(t), such that dW(t) = ε(t)dt. The standard Wiener process,
represented as W(t) with a parameter σ, encapsulates the cumulative impact of “environ-
mental” disturbances on the mortality dynamics up to a time t. Parameter σ quantifies
the degree of environmental variability resulting from random disruptions that affect the
variable Y(t) and deviate it from its dynamic trend. Consequently, we can derive the
autonomous SDE

dY(t) = −b(A−Y(t))dt + σε(t)dt = −b(A−Y(t))dt + σdW(t), Y(t0) = y0, (8)

where Y(t0) = y0 denotes the known original value, a (with A = ln(a)) represents the loga-
rithm of the average rate of asymptotic mortality, b signifies the velocity of approximation to
the asymptotic value, and σ expresses the intensity of random environmental fluctuations.

The solution of (8), by applyingItô’scalculus, is

Y(t) = A + (yt0 − A) exp{−b(t− t0)}+ σ exp{−bt}
∫ t

t0

exp{bs}dW(s).

Taking into consideration that t0 = 0, we obtain

Y(t) = A + (y0 − A) exp{−bt}+ σ exp{−bt}
∫ t

0
exp{bs}dW(s),

and considering its expected value and variance, yields

Y(t) ∼ N
(

A + (y0 − A) exp{−bt}, σ2
(

1− exp{−2bt}
2b

))
.

2.2. Estimation

For the case of the GBM, from Equation (5), and following [21], we derive the p.d.f of
Y(t), f (t, y), expressed as

f (t, y) =
1√

2πVt
exp

{
− (y− Rt)2

2Vt

}
, V = σ2.

Let us consider the presence of the subsequently ordered pairs of observation instances
and observed values (t, y) = (tk, yk) where k ranges from 0 to n, and t0 = 0. Additionally,
let us assume that tk denotes the years in which the French central mortality rates were
recorded for each age and sex, where n corresponds to the final year of observed French
central mortality rates. Under these conditions, the p.d.f. of Y(tk) given Y(tk−1) = yk−1 is
given by:

fY(tk)|Y(tk−1)=yk−1
(yk) =

1√
2πVtk

k−1

exp

{
−
(yk − yk−1 − Rtk

k−1)
2

2Vtk
k−1

}
, (9)
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assuming that tk
k−1 = tk − tk−1.

Moreover, when we take into account the parameter vector p = (R, V), we can derive
the maximum likelihood function for (9), expressed as:

L(y; p) =
n

∑
k=1

ln ( fY(tk)|Y(tk−1)=yk−1
(yk))

= −n
2

ln (2πV)− 1
2

n

∑
k=1

ln (tk
k−1)

− 1
2V

n

∑
k=1

(yk − yk−1 − Rtk
k−1)

2

2Vtk
k−1

.

Additionally, we can derive the explicit expressions for the maximum likelihood
estimators of p, as detailed in [21], by solving the ensuing system of equations{

∂L(y;p)
∂R |R̂,V̂ = 0

∂L(y;p)
∂V |R̂,V̂ = 0,

deriving, for tk
k−1,

R̂ =
Y(tn)

tn
,

and

V̂ =
1
n

n

∑
k=1

(yk − yk−1 − R̂tk
k−1)

2

tk
k−1

.

Since, in this work, the central mortality rates for the French population are represented
on an annual basis, we can make the reasonable assumption that tk

k−1 = 1. This simplifica-
tion greatly streamlines the calculations, and it is applicable to both SDE models fitted to the
mortality data of the French population and demonstrated in the subsequent subsections.

To construct confidence intervals for parameters R and V, we can explore the asymp-
totic properties of the maximum likelihood estimators. As illustrated in [24], the Fisher
information matrix for this case is

F =

 tn
V 0

0 n
2V2

.

On the other hand, the variance of each one of the parameters in p̂ is given by the
diagonal values of the inverse of F, represented as matrix H,

H = F−1 =

 V
tn

0

0 2V2

n

.

For both parameters within p, we manage to approximate the confidence interval
bounds based on a confidence level of (1− α)× 100%, where 0 < α < 1. The corresponding
asymptotic confidence intervals for both parameters within p are as follows:

CI(1−α)×100%(R) =

R̂± z1− α
2

√
V̂
tn

,

and

CI(1−α)×100%(V) =

V̂ ± z1− α
2

√
2V̂2

n

,
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where z1− α
2

represents the quantile associated with the probability 1− α
2 from the normal

distribution. In this scenario, it is also possible to calculate the exact confidence intervals, de-
noted as CIe

(1−α)×100%, using the exact distributions, as detailed in [21]. These distributions
are defined as:

(R̂− R)

√(
n− 1

n
tn

V̂

)
∼ t(n−1),

and
nV̂
V
∼ χ2

(n−1).

In this context, t(n−1) and χ2
(n−1) denote the t-Student and Chi-squared distributions,

each with n− 1 degrees of freedom. Consequently, the precise confidence intervals for both
R and V are computed through the following formulas:

CIe
(1−α)×100%(R) =

R̂± t1− α
2 ;(n−1)

√
n

n− 1
V̂
tn

,

and

CIe
(1−α)×100%(V) =

 nV̂
χ2

1− α
2 ;(n−1)

,
nV̂

χ2
α
2 ;(n−1)

.

In this specific scenario, t1− α
2 ;(n−1) and χ2

1− α
2 ;(n−1) signify the quantiles corresponding

to the probability 1− α
2 in the t-Student and Chi-squared distributions, respectively, each

with n− 1 degrees of freedom.
Given that we possess the observed values of the central mortality rates for the French

population (across various ages and sexes) until a specific time instance denoted as tn, and
one of the principal objectives of this study is to elucidate the forthcoming trajectory of the
French central mortality rates using SDE models, the subsequent task involves generating
forecasts for the time period t > tn. Let us assert that Y(t) is a Markov process. Hence,

E[Y(t)|Y(t1), . . . , Y(tn)] = E[Y(t)|Y(tn)],

and, from (9), one obtains

Y(t)|Y(tn) ∼ N
(

Y(tn) + R(t− tn), V(t− tn)

)
.

For long-term (LT) forecasts concerning each age and sex and for time instances t > tn,
we can adopt the following approach,

Ŷ(t) = Ê[Y(t)|Y(tn) = ytn ] = ytn + R̂(t− tn). (10)

In the given context, Ê(·) signifies the approximated value of the mathematical expec-
tation. Since the real value of R remains unknown, we substitute it with R̂.

The step-by-step (SS) forecasts are generated employing a logic akin to the one em-
ployed in deriving (10). However, at each time step, which, in our case, corresponds to one
year, we update t, the latest observed value, and the parameter estimates. This approach
ensures that our forecasts evolve dynamically as we progress through time.

As we are dealing with random variables, we turn to Monte Carlo simulations to
approximate the forecasting error distribution, Ŷ(t) − Y(t), and ascertain the forecast-
ing confidence intervals. Utilizing Equation (9), we compute the mean and variance of
Y(tk)|Y(tk−1) = ytk−1 . Employing maximum likelihood estimates for p, we simulate a
sufficiently large number of trajectories, denoted as S (in this case, S = 2000), represented
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by the vector Y(t), for each age and sex. This process allows us to obtain, up to a specific
year tn, a new parameter vector p for each of the S simulated replicas. Additionally, we
obtain forecasts denoted as Ŷ(t) (for t > tn), along with the corresponding forecast errors,
Ŷ(t)− Y(t). Furthermore, we compute the empirical mean and variance of these errors
across a set of S replicas. These computed values are subsequently utilized to estimate the
mean and variance of the forecasting errors.

Let Mt and Vt denote the respective empirical expected values and variances. Subse-
quently, we can derive an approximation, denoted as CI, for Y(t) for a specific age and sex,
expressed as:

CI(1−α)×100%(Y(t)) =
(

Mt ± z1− α
2

√
Vt

)
.

In the case of the SGM and following the analogous rationale for the GBM, let us
assume that t0 = 0 and designate tk = k (k = 0, 1, 2, . . . , n) as the years during which the
central mortality rates of the French population were recorded. The transient p.d.f. of
Y(tk)|Y(tk−1) is then:

fY(tk)|Y(tk−1)=yk−1
(yk) =

1√
2πs2

exp
{
− (yk − µ)2

2s2

}
,

where
µ = E[Y(tk) | Y(tk−1)] = A + (Y(tk−1)− A) exp

{
−btk

k−1

}
,

and

s2 = Var[Y(tk)|Y(tk−1)] = σ2

1− exp
{
−2btk

k−1

}
2b

.

The parameter vector p = (A, b, σ) can be estimated using the maximum likelihood
method as well. Consequently, we obtain,

L(y; p) =
n

∑
k=1

ln
(

fY(tk)|Y(tk−1)=yk−1
(yk)

)
= −n

2

(
ln (2π) + ln (s2)

)
− 1

2

n

∑
k=1

(Y(tk)− µ)2

s2 . (11)

In order to obtain p̂, one must compute
∂L(y;p)

∂A |Â,b̂,σ̂ = 0
∂L(y;p)

∂b |Â,b̂,σ̂ = 0
∂L(y;p)

∂σ |Â,b̂,σ̂ = 0.

Fixing b̂ (as seen in [21]), we obtain

Â =
n

∑
k=1

(
Y(tk)−Y(tk−1) exp{−b̂tk

k−1}
1 + exp{−b̂tk

k−1}

)
n

∑
k=1

(
1− exp{−b̂tk

k−1}
1 + exp{−b̂tk

k−1}

)−1

,

and

σ̂ =

2b̂
n

n

∑
k=1


(

Y(tk)− Â− (Y(tk−1)− Â) exp{−b̂tk
k−1}

)2

1− exp{−2b̂tk
k−1}




1/2

.
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Without loss of generality, let us suppose that tk
k−1 = tk − tk−1 = 1, as we are examin-

ing the annual central mortality rates of the French population sourced directly from [15].
Based on the equations presented earlier, we can define Â as a function of b̂, denoted
as Â = ψ1(b̂). Additionally, we can define σ̂ as a function of both Â and b̂, expressed
as σ̂ = ψ2(Â, b̂). Consequently, we establish a new function denoted as L∗, possessing
identical optimal values to those defined in Equation (11) and relying exclusively on the
parameter b,

L∗(y; b) = −n
2

ln
(

ψ2(ψ1(b), b)2

2b

)
− 1

2

n

∑
n=1

ln(1− E2)

− b
ψ2(ψ1(b), b)2

n

∑
k=1

(
(Y(tk)− ψ1(b)− (Y(tk−1)− ψ1(b))E)2

1− E2

)
,

where E = exp{−btk
k−1}.

For each age bracket and both sexes, we ascertain the maximum likelihood estimator
of b by minimizing the symmetric form of L(·) through the use of the R function titled
optimize. This approach, outlined in [25] and put into practice in [21], employs L∗ instead
of L to compute the maximum likelihood estimators for the parameter vector p. This
method proves particularly advantageous when explicit expressions for the estimators
are challenging to derive, offering the primary benefit of computational efficiency. Once
b̂ is obtained, we can determine the maximum likelihood estimators Â and σ̂ using the
expressions Â = ψ1(b̂) and σ̂ = ψ2(Â, b̂).

Given that we possess values related to the French population’s central mortality
rates up to a specific time tn and that one of our main objectives is to compute forecasts
for a future time t, where t > tn, and considering the Markovian nature of the process, it
follows that,

Y(t)|Y(tn) ∼ N
(

A + (Y(tn)− A) exp{−bt∗n}, σ2
(

1− exp{−2bt∗n}
2b

))
,

where t∗n = t− tn. For long-term (LT) forecasts, taking into account each age and sex, we
can employ the following approach,

Ŷ(t) = Ê[Y(t)|Y(tn) = ytn ] = Â + (ytn − Â) exp{−b̂t∗n}. (12)

Here, Ê(·) represents an approximation of the mathematical expectation, with the
exact values of A and b being replaced by Â and b̂.

The SS forecasts are computed using a similar method described in Equation (12).
Nonetheless, with each step forward in time (one year), we update not only the last
observed value but also the values of t and of the parameter estimates.

2.3. Results

We used the GBM in order to fit the observed central mortality rates of the French
population, separately for each age bracket (ages 0 to 99) and for each sex. In this analysis,
we employed the variable Y(t) = ln

(
mx,t
mx,0

)
, where mx,t symbolizes the expected central

mortality rate at a time t, and mx,0 represents the initial observed central mortality rate of
an individual.

In Figures 3 and 4, you can see the estimated model parameters: R̂ and V̂. These
parameters correspond to distinct estimates for each age and gender. The figures also
display the asymptotic confidence intervals denoted as CI and the exact confidence intervals
marked as CIe associated with each parameter. Upon examining the patterns exhibited by
the estimated parameters, we observe that R̂ exhibits a mild growing trend; in particular,
it becomes more pronounced after the initial ages studied and increases notably after
age 20. Additionally, it can also be seen that in the case of males, parameter R̂ exhibits
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a sharp decrease in its value when reaching age 20. This sharp decrease is most likely
linked to the increased volatility registered in the central mortality rates of young males,
which is a consequence of the increased uncertainty related to the survival of young male
soldiers in World War II. Furthermore, it is worth noting that while the estimated parameter
R̂ demonstrates a consistent increasing trend with respect to the individual’s age, The
aforementioned does not apply to V̂. The latter exhibits additional pronounced variations
across different age groups, with notable variations when examining ages between 0 and
40 and beyond age 90, especially within the male population. This presents a distinct
pattern compared to R̂. Regarding the confidence intervals, both of them (CI and CIe)
were computed using a 95% confidence level. For both parameters, CI and CIe exhibit
nearly identical values (as depicted in Figures 3 and 4, where the representations of both
confidence intervals closely align across most ages and both sexes). Therefore, there are no
substantial advantages associated with using exact confidence intervals (CIe) in this study.
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Figure 3. Estimates R̂, CI95%, and CIe
95% for the GBM.
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Figure 4. Estimates V̂, CI95%, and CIe
95% for the GBM.

The range in confidence intervals for R and V is roughly proportional to
√

V and V,
respectively. This relationship accounts for the larger range in the confidence intervals for R
when compared to those for V. Additionally, concerning R, it elucidates the notably wider
confidence intervals observed when analyzing male individuals aged between 10 and
40 years and those aged 90 or older.

Results pertaining to model estimations and central mortality rate forecasts were
reverted to their original scale, denoted as mx,t, instead of the transformed variable Y(t).
In Figure 5, you can observe the central mortality rate’s model estimations (with σ = 0 in
Equation (4) and with the model’s parameters replaced by their maximum likelihood
estimates) and forecasts for a 65-year-old male.
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We would like to emphasize that we utilized the observed central mortality rates
for the years from 1940 to 2009 in our calibration process, reserving the subsequent years
(from 2010 to 2020) to perform forecast validations. Moreover, we opted to present these
values in Figure 5 (top) in relation to model estimations and forecasts. This inclusion serves
to offer additional insight beyond the error estimate, as it enables a comparison of the
model’s predictions against observed trends. In general, the outcomes derived from the
application of the GBM are highly favorable, as the model adeptly captures the observed
central mortality rates’ behavior, replicating the declining trend observed over the last few
decades and providing valid forecasts.

0.00

0.02

0.04

0.06

1940 1960 1980 2000 2020
Year

C
en

tr
al

 M
or

ta
lit

y 
R

at
es

Model estimation/Forecast Observed

Model estimations (1940--2020) and Forecasts (2021--2030) for a 65 year old male

0.00

0.01

0.02

0.03

2012 2016 2020
Year

C
en

tr
al

 M
or

ta
lit

y 
R

at
es

Observed SS Forecasts

SS Forecasts (2010--2020)

0.00

0.01

0.02

0.03

2012 2016 2020
Year

C
en

tr
al

 M
or

ta
lit

y 
R

at
es

CI 95% Simulation LT Forecasts Observed

LT Forecasts (2010--2020)

Figure 5. GBM model estimations (top) and forecasts (bottom) for a 65 year old male.

Moreover, to assess the “goodness of fit" for these values, we employed the Mean
Squared Error (MSE) as a quantitative measure. When conducting a comprehensive analysis
of the results, it becomes evident that both model estimations and forecast values exhibit
a superior fit (as per the aforementioned criterion) within the data series associated with
the female gender. In Appendix A, specifically in Figures A1–A3, we provide visual
representations of the MSE values for each age and gender, for model estimations, and for
both the LT and SS forecasting methods.

The contrast in the model’s performance between sexes becomes increasingly pro-
nounced after the age of 90. In this age group, for both sexes (with the difference being
more pronounced in males), the model struggles to capture the variations in the central
mortality rates’ time series and fails to provide a satisfactory model estimate. This accounts
for the sharp rise in MSE values, as depicted in Figure A1.

Similar to the first part of Section 2.3, related to the GBM, we fitted the stochastic
Gompertz model (SGM) to the French population’s central mortality rates, considering
each age within the range from 0 to 99 years for both sexes. To achieve this, we specifically
employed the variable Y(t) = ln(mx,t).

Figure 6 provides a visual representation of the SGM parameters, a, b, and σ, for
the various age groups considered in this manuscript. It is important to note that while
we estimated the value of A as ln(a), we opted to present the parameter in its original
scale, denoted as a, signifying the average asymptotic central mortality rate (geometric
mean). Additionally, within the same figure, we showcase the SGM parameter values,
excluding the last 10 age groups. These plots are easily distinguishable, as the age axis
ranges from 0 to 100 in the first case and from 0 to 90 in the second case. This extended
age range allows for a more detailed examination of the parameter behavior in adult ages
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and aids in comprehending the patterns observed in each graph, particularly for the case
of parameter b.

Indeed, the outcomes concerning the model’s estimated parameters align with expec-
tations, given the insights gathered from prior research projects and articles focused on the
subject of human mortality. Consequently, parameter a exhibits an increase in relation to
the individual’s age, with markedly increased values observed when examining the later
ages within the lifespan curve, where the likelihood of mortality is significantly higher.

Parameter b exhibits an initial upward trajectory when examining the early ages within
the lifespan curve, followed by a significant surge around age 20, which is particularly
noticeable in males. Subsequently, it shows a declining trend between ages 21 and 70.
After reaching age 90, the estimated values of b experience a substantial increase, reaching
approximately 1.5 for males and 0.4 for females.

Regarding σ, which represents the parameter associated with the stochastic integral
term of the model in question, measuring the degree of random environmental fluctuations
affecting observed mortality rates, the following observations can be made: The estimated
values demonstrate an upward trend in the younger age groups analyzed, particularly
among children and young adults who were significantly affected by World War II, primar-
ily due to conscription. Beyond age 35, there is a marked reduction in these values, with
a relatively stable pattern observed between the ages of 55 and 90. However, in the later
stages of the lifespan curve, there is a renewed upward trend in the parameter, reflecting
the vulnerability of the elderly individuals analyzed, for whom any random event may
result in the death of the individual.

Additionally, Figure 6 indicates a more pronounced variability in the parameter
estimates of b and σ between successive age groups, in contrast to parameter a. When
examining the trend of these estimates in relation to age, it becomes apparent that, while
both sexes exhibit similar patterns, the estimated values are consistently higher in males
than in females across all parameters.

0.0
0.1
0.2
0.3
0.4
0.5

0 25 50 75 100
Age

a

Female Male

0.0
0.1
0.2
0.3
0.4
0.5

0 25 50 75
Age

a

Female Male

0.0
0.5
1.0
1.5
2.0

0 25 50 75 100
Age

b

Female Male

0.0

0.1

0.2

0.3

0 25 50 75
Age

b

Female Male

0.0
0.1
0.2
0.3
0.4

0 25 50 75 100
Age

s

Female Male

0.0
0.1
0.2
0.3
0.4

0 25 50 75
Age

s

Female Male

Figure 6. SGM parameter estimates (a, b, and σ) for each age and sex.

In Figure 7, we illustrate the model estimations of the central mortality rates (obtained
by setting σ = 0 and substituting the model parameters with their maximum likelihood
estimates) and the forecasts for a 65-year-old female.

In broad terms, the outcomes of implementing the SGM exhibit a favorable perfor-
mance. Both the model estimations and subsequent forecasts tend to perform notably better
in the female sex, although the disparity in the model’s performance between sexes is less
conspicuous compared to the GBM. This distinction becomes more pronounced after the
age of 80, as evident in Figures A4–A6 seen in Appendix A. Thus, similar to the previous
subsection concerning the GBM, the SGM appears to be a suitable choice for modeling this
type of data, given the promising results obtained thus far.
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Figure 7. SGM model estimations (top) and forecasts (bottom) for a 65 year old female.

2.4. Comparing the Results from Both Models

From the results obtained so far, in the following subsections, we juxtapose the out-
comes of the two SDE models utilized in the preceding subsections: the GBM and the SGM.

Our conclusion is that both models provide reasonable forecasts, showing values
within a comparable order of magnitude and with nearly identical MSEs. This preliminary
analysis does not provide sufficient evidence to unequivocally favor one model over the
other. Figure 8 demonstrates the application of both stochastic differential equation models
for individuals aged 20, regardless of gender (the results are displayed in their original
data scale).

For the majority of age groups and both sexes, the model’s estimations tend to resemble
the left side of Figure 8. This resemblance is attributed to the declining exponential pattern
in observed central mortality rates, which is a consequence of the high central mortality
rates recorded in the 1940s during World War II. This effect is more noticeable when
analyzing the decreasing central mortality rates’ trend in males. It is important to note that
the curve predicted by the GBM primarily tracks fluctuations in the series towards the end
of the model estimation period, whereas the SGM effectively captures the variability of the
series from the beginning of the analyzed time period, starting in 1940.

Regarding the forecast for the time period between 2010 and 2020, it is noticeable that,
for the majority of age groups, the GBM tends to underestimate with a declining trend,
whereas the SGM tends to overestimate with a rising trend, as illustrated in Figure 8.

While the performance of each model distinctly differs from the other, it becomes
evident when we analyze the disparity in their individual MSE for each age group and
sex, that the GBM presents advantages over the SGM when computing LT and SS forecasts
(except for newborns and individuals aged between 60 and 74), whereas, for computing
model estimations, the SGM outperforms the GBM in almost all of the age brackets (with
the exception of females aged between 25 and 30 years old and males aged between 60 and
74 years old).

Figure A7 through Figure A12, available in Appendix A, illustrate the disparities in
the MSE between the GBM and SGM models, meaning MSEGBM −MSESGM, across all age
groups and for each sex. It is worth noting that to enhance visibility, the differences are
scaled by a factor of 10.000 due to the small and closely matched error estimates in terms of
magnitude for several age groups.
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Figure 8. Comparison between the GBM and SGM model estimations with LT forecasts for the age
20 and for both sexes (Female on the left side, Male on the right side).

2.5. Comparative Study between the Model’s Results: France Versus Portugal

As it was stated in Section 1, two main goals of this work are to compare the mortality
dynamics of the French and Portuguese populations and also to compare the results
obtained when SDE models are fitted to the central mortality rates of these countries,
taking into account the results obtained in [18]. When analyzing Figure 9, we can state that
for young individuals (20 years old) of both sexes, the French central mortality rates are
higher during the time period between 1940 and 1950 than those related to the Portuguese
population. This situation occurs due to the fact that most young French men were drafted
during World War II, leading to a spike in the French central mortality rates during this time
horizon. The same does not occur when we analyze the Portuguese central mortality rates
since Portugal stayed neutral in this war. Moreover, we can see that, for older individuals
(aged 64), the mortality rates present almost similar values, meaning that the effects of this
war did not have a significant impact on the central mortality rates of older individuals.
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Figure 9. Central mortality rates of the French and Portuguese populations for individuals aged
20 years old (top) and for individuals aged 64 years old (bottom).

When comparing the results of the application of SDE models (the GBM and SGM) to
the central mortality rates of France and Portugal, we can state that both models present
realistic model estimations and forecasts that manage to replicate the decreasing central
mortality rates trend recorded in the last few decades for both of these countries. However,
as we have seen previously in Section 2.4, in the case of the French population’s central
mortality rates, the GBM outperforms the SGM when computing LT and SS forecasts
(except for newborns and individuals aged between 60 and 74), whereas, for computing
model estimations, the SGM outperforms the GBM in almost all of the age brackets (with
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the exception of females aged between 25 and 30 years old and males aged between 60 and
74 years old). Meanwhile, for the case of the Portuguese population’s mortality rates, in
the context of both the SS and LT forecasts, the GBM prevails over the SGM in the majority
of age groups for both sexes, as indicated by the differences in MSEs between the models.
In fact, even when only considering the model’s estimations, the GBM in most age groups
outperforms the SGM, with the exception of individuals aged 80 or more years for both
sexes. This difference in the model’s performances between these two countries is most
likely due to the significant spike in the French central mortality rates (particularly in
younger individuals) in the 1940s, which leads the SGM to outperform the GBM since the
SGM managed to capture the variability of the series at the beginning of the time period
under analysis (meaning 1940).

3. Conclusions

It is reasonable to infer that the application of SDE models, such as the GBM and SGM,
closely reproduces the observed trend of declining central mortality rates in the French
population. Additionally, both models yield forecasts that align closely with the historical
data, featuring values of similar magnitude and relatively low MSEs. This balance in
forecast accuracy prevents us from conclusively determining the superiority of one model
over the other.

Nonetheless, in Section 2.4, when we conducted a comparative analysis of the model’s
results, it became evident that the GBM demonstrated superior performance over the SGM
when computing LT and SS forecasts (except for newborns and individuals aged between
60 and 74), whereas, for computing model estimations, the SGM outperforms the GBM in
almost all of the age brackets (with the exception of females aged between 25 and 30 years
old and males aged between 60 and 74 years old).

As expected, SS forecasts exhibit a smaller prediction error in comparison to the
LT forecasts. This is a natural outcome, considering that in the case of SS forecasts, we
continuously update the time variable t, the most recent observed value, and the parameter
estimates as we advance one step through time. In other words, SS forecasts benefit from
increased accuracy due to the additional and current information used, making them
inherently more precise than LT forecasts.

Additionally, when we compare the model’s performance between the French and
Portuguese central mortality rates, we can state that the SGM outperforms the GBM in
the French case (when considering only model estimations) while the opposite occurs
when dealing with the application of these models for the central mortality rates of the
Portuguese population.

In conclusion, our primary objective was to elucidate the mortality trends within
the French population, and we have observed that the methodology applied has yielded
promising results. However, we acknowledge the possibility of one or more unidentified
variables that may influence the likelihood of death in various groups of individuals,
regardless of age or sex, during specific time periods. We believe that enhancing this model
requires extracting more valuable insights from population data, enhancing parameter
estimation flexibility, and ultimately elevating its general performance.

Furthermore, as the data set related to the central mortality rates of the French and
Portuguese populations used in this manuscript only encompasses the year 2020 amidst
the COVID-19 pandemic, it is essential to acknowledge that future research might yield
different results if a broader time horizon, encompassing mortality data from the years 2021
and 2022, is considered. We anticipate recalculating our results once the Human Mortality
Database updates its mortality data to assess any significant variations.

Additionally, all the results presented in this work were computed using the R pro-
gramming language, and the corresponding R code is available upon request to the authors.
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SDE stochastic differential equation
SS Step-by-Step
LT Long-Term
SGM stochastic Gompertz model
GBM geometric Brownian motion
p.d.f probability density function
MSE Mean Squared Error

Appendix A
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Figure A1. Mean Squared Error (MSE) of the GBM central mortality rate’s model estimations (1940–2020).
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Figure A2. Mean Squared Error (MSE) of the GBM LT forecasts (2010–2020).
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Figure A3. Mean Squared Error (MSE) of the GBM SS forecasts (2010–2020).
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Figure A4. Mean Squared Error (MSE) of the SGM central mortality rate’s model estimations.
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Figure A5. Mean Squared Error (MSE) of the SGM LT forecasts (2010–2020).
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Figure A6. Mean Squared Error (MSE) of the SGM SS forecasts (2010–2020).
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Figure A7. Difference (×10,000) between the Mean Squared Errors (MSEs) associated with the central
mortality rate’s model estimations of the GBM and SGM, female sex.
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Figure A8. Difference (×10,000) between the Mean Squared Errors (MSEs) associated with the central
mortality rate’s model estimation of the GBM and SGM, male sex.
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Figure A9. Difference (×10,000) between the Mean Squared Errors (MSEs) associated with the SS
forecasts (from 2010 to 2020) of the GBM and SGM, female sex.
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Figure A10. Difference (×10,000) between the Mean Squared Errors (MSEs) associated with the SS
forecasts (from 2010 to 2020) of the GBM and SGM, male sex.
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Figure A11. Difference (×10,000) between the Mean Squared Errors (MSEs) associated with the LT
forecasts (from 2010 to 2020) of the GBM and SGM, female sex.
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Figure A12. Difference (×10,000) between the Mean Squared Errors (MSEs) associated with the LT
forecasts (from 2010 to 2020) of the GBM and SGM, male sex.
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