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Abstract: In this paper, we present a novel class of analytic functions in the form i(z) = zP + Y. a;z"in

k=p+1
the unit disk. These functions establish a connection between the extended Mittag—Leffler function and

the quantum operator presented in this paper, which is denoted by 87 (., a,b) and is also an extension
of the Raina function that combines with the Jackson derivative. Through the application of differential
subordination methods, essential properties like bounds of coefficients and the Fekete-Szeg® problem
for this class are derived. Additionally, some results of special cases to this study that were previously
studied were also highlighted.
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g-integration; subordination relation; differential subordination; Fekete-Szeg6 function; operators in
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1. Introduction

We shall establish the definition of the class of analytic functions represented by A,

as follows -
h(z) =2+ ) aZk, (zeD, peN=1{1,2,..}), (1)
k=p+1
where the set D encompasses all the values of z within the open unit disk z € C satisfying
lz| < 1.

Given two analytic functions, /11 and hy, within the domain D, the relationship where
hy is subordinated to h; is denoted as h1(z) < hy(z). This implies the existence of a function
w, known as the Schwarz function, which is analytic in the open disk DD and satisfies the
criteria w(0) = 0and |w(z)| < 1 for z € D; this function w further satisfies the condition
that h1(z) = hp(w(z)) for all z € D. If the function ¢ € S (S is the family of all functions
that are univalent in the domain ), then (cf., e.g., [1,2])

hi(z) < ha(z) < h1(0) = hp(0) and k(D) C hy(D).
If we have two functions hy(z) = zP + § apzFand hy(z) = zP + f by ZF of Ay,

k=p+1 k=p+1
then the Hadamard product of these functions is defined by:

(h xhy)(z) =2+ ) a bzt z €D,
k=p+1
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see for example [3].
Furthermore, let

P = {‘B:&B(z):l—kblz—i—bzzz—i—..., Re‘B(z)>0,z€]D)}

denote all the Carathéodory functions (see [4,5]).

Quantum calculus holds substantial importance in many fields like hypergeometric
series theory and quantum physics as well as other physical phenomena. The definition of
both q differentiation and q integration was first defined by Jackson ([6,7]).

There are many authors who have studied the operators of quantum calculus through
many diverse applications in geometric function theory; e.g., Attiya et al. [8] studied
differential operators related to the g-Raina function, Ibrahim [9], Al-shbeil et al. [10] and
Karthikeyan et al. [11] studied the g-convolution of a certain class of analytic functions
related to the quantum differential operator in GFT, Ismail et al. [12] and Riaz et al. [13]
studied starlike functions defined by g-fractional derivatives, Shaba et al. [14] studied
coefficient inequalities of g-bi-univalent associated with g-hyperbolic tangent functions,
Al-Shaikh et al. [15] studied a class of close-to-convex functions defined by a quantum dif-
ference operator, Sitthiwirattham et al. [16] studied Maclaurin’s coefficients inequalities for
convex functions in g-calculus, Al-Shaikhm [17] studied some classes of analytic functions
associated with a Salagean quantum differential operator, and Tang et al. [18] studied the
Hankel and Toeplitz determinant for certain subclasses of multivalent g-starlike functions.

We need the following definitions, lemmas and notations to obtain our results in the
second and third sections in this paper.

Definition 1. Raina’s function ([19]; see also [8]) is defined by using gamma function I as follows:

o L)
H,p(2) = ————7z",z€D,
L ll/b( ) kgol—'(ak b)

where both a and b are complex values in the complex number field C, and provided that Re(a) > 0
and Re(b) > 0, L(k) is a member of the sequence {L(k) }ycy, which is a bounded sequence of
arbitrary complex numbers.

Raina’s function is an extension of the Mittag-Leffler function:
The Mittag-Leffler function [20,21] is defined by

00 k

E@) = L k1)

(0« € C; Re(a) > 0).
We denote the Pochhammer symbol by (6),, which is defined by:

1, n=20
(‘S)n_{ S(6+1)(64+n—1) n#0 "

Prabhakar [22] introduced the function ES 4(z) (z € C) in the form

B

) 6) Zk
By =y — Oz @
82 kg T (ak + B) k!
(a,B,6 € C; Re(a) > 0; Re(B) >0; Re(s) >0),
noting that Eirﬁ(z) = E, 5(2) (z € C) was introduced by Wiman ([23]).

For the Mittag—Leffler function and its generalizations, see for example [24-29].
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Remark 1. 1. We obtain the Mittag—Leffler function [20,21], from Raina’s function, if L(k) = 1
(k>0)andb = 1.
2. We obtain Wim’s function E, g(z), see [23], from Raina’s function, if L(k) =1 (k > 0).
()¢

3. We obtain the function Eg,ﬁ(z) given by (2) from Raina’s function if L(k) = o

4. If L(k) = (azlé (D) , in this case, Raina’s function simplifies to the Gaussian hypergeometric
k

function described below.

, z€D.
= () T(k+1)

Definition 2 ([6]). The Jackson derivative for the function h(z) is provided as follows:

(09 )h(z) := M, (0<g<1).

z(1—9)

Then, we have

oo 1—4" 4
Dq(z)zl_qz , ke NU{0}.

In the case where the function / takes the the form (1), then

(0) (@) = [Ple? + Y K2,

k=p+1
where L
1—9q
[k]’i T 1— q :
Also, note that

0,k =0 and lim (05) h(z) = I'(z),
q—1-
where « represents a constant within the set of complex numbers.
In the case where s € C, the g-shifted factorial is established through the subsequent
formula (see [6]):

|
_

T

(s;q)7 := (1 —qfs), ((s;9)o =1, TeN={1,2,...}). 3)
j=0
If
Ty(s+1) zw, 0<g<1
and .
(i) =T1(1-9).
il

by employing the expression (3), we are able to present the g-shifted gamma function as:

(301 —9)"
(7900 '

by (=TT L
(o)== Tl =

For £(0) # 0, the normalized function 2X;, (see [8]) is defined by

v Lk-DI(0B) &

cRap(2) =2+ k:ZZ LOT(d(k—1)+b) "

z eD. (4)
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If (k) =(k+1)°,s€R, s>0,a=0andb = 1, the operator (4) can be described
as the the Sédldgean integral operator with order s (see [30]).

Utilizing the g-gamma function, Attiya et al. [8] introduced the generalized normalized
function ; /R, ;(z), which is defined in the following manner:

qrgNd,b(z) =z+ Z D (d, b, E,q)zk, z €D,
k=2

where

L(k—1)Ty(b)
LT, ((k—1)d+b)’
(Red > 0;Reb > 0; L(0) # 0).

Dy(d, b, L,q) =

The g-Raina differential operator Rj : Ay — A; was introduced by Attiya et al. [8] as
follows:

cRY(d,D)h(2) = h(z) %q0 Rap(2),
XY (d, b)h(z) = 20, (ENg(d,b)h(z)),
SR, b)h(z) = oN)(d,b) (XL, b)) ), ®)

RE(,D)(z) = oR(,b) (R, 0)()), (h€ Ay keN; k>2).
Therefore, when / belongs to A; in the form (1), we have:

. & Lk—1)Ty(b)
R (d, b)h(z) _Z+,§2[k]’1£(o)rq((k—lq)d+b) a2k,

Now, analogously to (R} , we introduce a novel operator N (L, d, b) for functions in

Apinthe form h(z) =zF + Y arz5, z € D, as follows:
k=p+1

Definition 3. Let the function h(z) € Ayp be in the form (1). The operator X7 (L, d, b) is defined as

NI (L, d,b) Ay — Ay

. & (H LG
Nap (Lo DN(E) =21 *k%(mk) COT, (k-1 +b) % 4

00 k n
=+ Y (Hq) i(d,b, L, q)aiz, z €D,
k=p+1 [p]k

where 0 < g <1, Red > 0,Reb > 0,L£(0) # 0and ®y(d, b, L, q) is given by (5).

Remark 2. (i) Setting p = 1and L(k—1) =1 (k > 1), in (7), we have the g-differential operator
of [31].

(ii) Substituting p =1, L(k—1) =1 (k > 1) and d = 0 in (7), we derive the Sdiligean
g-differential operator defined in [32].

(iii) Putting p = 1,9 — 1~ and L(k — 1) = 1 in (7), we have a class studied in [33] (see
also [34]).

Remark 3. Unless otherwise stated in this paper, we will use constraints on the parameters
g, n, d, b, L(k) as follows:
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0<g<1néeNRed>0Reb>0and L(k) € {L(k)}cy, whichisabounded sequence

of arbitrary complex numbers with £(0) # 0.

Definition 4 ([35]). Let us establish a definition for the convex analytic function vy; g in domain I

as follows:
1+z s
1—2z2’ =0,
’)/]',3<Z> = Fl(j' s)/ lf] =1,
F2(7,9), ifo<j<l,
FB(]'/%)/ Uc]> 1/

where S € C\ {0}, and the subsequent functions are established by (see [35])

=1+ 2o )
23

7 sinh? (i arccos(j) arctanh(ﬁ)) ,

() — 3 s [ n VE dg
Fs(j,9)(z) =1+ 1 —EtE Sm(ZY(t) /o V1I-221- (Ct)2>'

!
Here, we select /(z) = : f for t € (0,1) in such a way that t = cosh ( Y )
where Y (t) represents Legendre s complete elliptic 1ntegra1 of the first kind, and Y’ (t)
signifies the complementary integral of Y( ), with (Y/(t )) =1—(Y(£)2
Now, we introduce the new class S"7 03 (d, b) for functions belonging to A,.

Definition 5. The function h € Ay is in the class S;é »
tion relation

(d,b) if we have the following subordina-

(Ng;l(ﬁ,d, b)h(z)) <ria(2) ©
[plgR2 ,(L,d,b)h(z) =
where Vi3 in the form (see also [8,35,36])
V5@ =14+mz+ 12 +...,z€D 9)

is given by the Definition 4.

Definition 6. The class Sg’,;(d, b) is the class S;é,p (d,b) when q approaches 1 from the left.

Lemma 1 ([37]). Consider G(z) =
domain D, and fulfills the relation:

o
Y. giz¥, which represents a univalent convex function in the
0

= i ek < G(z).

k=0

Then, |hy| < |g1| forall k > 1.

Lemma 2 ([38]). Assume P(z) =1+ Y, pkzk is an analytic function in the domain D such that
k=1
ReP(z) >0 (z € D). Then

‘Pz -5 p%’ < 2max{1;|2s — 1]}, s € C.
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In our paper, we present the class S{;é »

Important properties for the class S";’é p(d, b) are derived. Also, bounds of coefficients and

(d,b), which is related to the operator N/ (L, d, b).

the Fekete-Szeg® problem for this class S;é )

special cases to this study that were previously studied were also highlighted.

(d,b) are obtained. Moreover, some results of

2. Certain Properties for the Class SZ’% p(d,b)

The theorem presented below gives a new result of functions in the class Sg’j (d,b).

Theorem 1. If h of the form (1) is in the class Sg’jp(d, b), then

No (L, d,b)h(z) < zexp (/Z L

2 (o) - i),

where w denotes a Schwarz function, z € D. Additionally, if |z| := ¢ < 1, we have

exp( [ Lma(-0) - 1) de) < | L (8L a0pe) | <exp( [ Limale) - 1)de).
(s z be

Proof. Since / belongs to Sg',;(d, b), then

(Nn' L d'b>h(z))/ 1 5(w(z)) =1/
” _Ps p
PN{]’/p(ﬁ, d, b)h(Z) N E o z , Z € D. (10)

By integrating both sides of the equation mentioned above, it can be deduced that

Z

(6, 0)h(2) < zexp( [ (7500 ~ Vi),

then, we have

n Z
W < exp (/0 %(P'Yj,%(?() — 1)dx>-
Since
7is(—elz]) < Re (7;s(w(z0))) < 7j5(elzl),
therefore

[ 3 min(elh = Do < [ L (Re(pa(etze))) ~ Do < [ % (prialelzD) ~ e

then, we obtain

11 NI (L,d,b)h(z)| 11
Jy gl (-elzh = )de <tog = < [ (pryalel) — 1)de,
then
11 N, (L,d,b)h(z) 11
eXp</o o Prs=a=1) dg) STt SeXP(/O o Pria(e)=1) d@)-

O

Remark 4. Theorem 1 extends the findings of various authors, including the following:

1. Setting p =1, in Theorem 1, we can attribute this result to Attiya et. al. [8] (Theorem 6).
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2. Lettingp =1and L(k) =1 (k > 1), in Theorem 1, we can attribute this result to Noor and

Razzaque [31] (Theorem 6).

3. Puttingp=1,d=0,L(k) =1 (k>1)and b =1, then in Theorem 1 we can attribute this

result to Hussain et. al. [39] (Theorem 3.1).

The following theorem and corollaries are related to the coefficient estimation for the

class 8™/

"l (d D).

Theorem 2. If h of the form (1) is in the class S;’(é,p (d,b), then

lapsal < [f]th\ , and
q W +1‘ q’p+1(d,b/£/4)
[plalm1] =l [plgl 7l
auil < 7 " [T(1+ 9 an (k>2)
qp[k]q‘l + qu’ ®,41(d, b, L, q) =1 6]’”[7]‘1‘1 + [P]qq‘
where 7y1 is defined by (9).
Proof. If we take:
o (Np3 (. b)h(z) )
zZ) = 7
NI(L,d,b)h(z)
then,
20, (Ng(ﬁ,d,b)h(Z))

[Pl (L,d,b)h(z) P(z), z €D,

putting P(z) = 1+ ¥ piz*, in the above equation, we will obtain
k=1

z%(NZ(L,d,b)h(z)) — [p}q(Ng(c,d,b)h(z)) P(z), z € D.

Then, we have

00 [klg & n . P
zP + 2 ] <[P]q> Dy (d, b, L,q)az

— <z*’ + i ([k]q Dy (d, brﬁrﬁl)ﬂkzk> (1 + i Pk2k>

k=1

(&%) %) o0 k n
=Y P+ Y p Y ([H]q> p(d,b, L,q)az" (po=1)
k=0 k=0 k=p+1 \ LPlg

> £ plali +plg\"
k=1 j=1

By equating the coefficients of z* in the preceding equation, we obtain

[p+k]q [P-i—k]q " . B [P+k]q n ]
< rr >( P > @pik(d,b, L, q) P+k—Pk+( o ><I>k(d,b,£,q) pk

= p+il
- ([P]q

n
& ) Dpy(d, b, L,q) apsj pr—js
]:
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which gives

+k + kg \" p+il\"
(“” ]"1)([’” ]") <1>p+k(d,b,£,q>ap+k=pk+2(“’ ”‘7) Dy i(d, b, L,0) e e

[P]q [P]q =1 [P]q
Consequently, we obtain
1 £ lp+i—1g\"
Yotk = kgl \ " ( [P+ (Z([) Prej-1 (b L) Byt Picjr )
_ = )
( [P]qq ‘7) ( [P]qq 1) q)p+k(d' b, qu) = !
for some calculation implies that
ay ik = 1 K /lp+j—10\"  L(j—1)Ty(b) -
P kg \ ([ Kly - p] LO)Ty(d(j—1)+b) /75
( [P]q ) ( [P]q 1) q)erk(d’ b/ ﬁ'q) =1 ’ !
By Lemma 1, since |pi| < |71]|, we obtain
la, 44| < 71 Ellp+i—1g|" LG —1)T(b) iy
PEL= | [ptKlglply | ( [p+K] ‘ LO)T(d(j—1)+b) P70
[p]z: i ( [p]qq 71) @, (d,b,L,q) =1 [plq (0)Iy(d(j—1) +b)
For k = 1, we obtain
|€l +1‘ < |’)’l| : [P+j_1]q " ‘C(j_l)rﬂ(b) |€l|
P =g B . [ L(0),(d(j—1)+b)"/
g = ] (0)Tq(d(j —1) +b)
[plg ‘1 + [plg ‘ q)p+1(d’ b, E’q) = ! !

B Im1[plg
N p’Hﬂ]"cb (d,b,L,q)
q [p]q p+1\%, Y, /q

In the case where k = 2, and employing the aforementioned inequality, then:

apea] < Sl o Inllh
PRl[1+ T 0pa@ b, L)\ a2+ G

Assume that for a given value of k > 3, the following inequality holds true through
mathematical induction:

i = alltd
|ap+k| < 712 |" : H L QZUM 7 | k=22)
qp[k]q‘1+W’ P,.(d,b,L,q) j=1 qp[ﬂq‘“?@‘

which completes the proof. [

Derived from Theorem 2 as special cases, we yield the following corollaries.
Corollary 1 ([40]). Ifh € S, (d,b) of the form (1) with p = 1, then

|71

< 7
a2l S AT, (@5, £, )

|ak| < |71| _ ﬁ<1+.%|'n>’ ( 23)
L][k—l]q’1+q [k—l]q‘ D (d,b,L,9q) i=1 q[l]q‘l"'q Mq|

where 1 is defined by (9).
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Corollary 2 ([8] Theorem 2). Ifh € S l(1 d,b), of the form (1) with p = 1, then

|71]
217 ([2] —1)@2(d,b, L, q)

and

laz| <

o1 o1
S R G  eyan H< e or) 629

with 1 given by (9).

Corollary 3 ([31] Theorem 8).
Ifh e S;il(l,d, b) of the form (1) with p = 1 and L(k) = 1 for all k > 1, then
71l

2]nda(d,b,1,q)([2]4 - 1) and

las| <

71| 71
%l < @b L, Ry =T) H<1+U+1]1 1) k=3,

with 1 given by (9).

Corollary 4 ([39] Theorem 3.2). Ifh € S;l,’é,l(l, 0,1) of the form (1) with p = 1 and L(k) =

forallk > 1, then

71
2]22(0,1,1,q)([2] - 1)

71 =
0,1, ) (1, — 1) JH<

las| <

|ag| <

where 7y, was given by (9).

3. Fekete-Szeg® Problem Related to the Class S"” (d,b)

In the upcoming theorem, we will provide an estlmate for the Fekete-Szeg® problem

nj
for the class S q,g,p(d, b).

Theorem 3. Ifh S;i o (d, b) of the form (1), then

P [71]
ops2 =98 < gL

max{1; [2¥ — 1|},

where p € C, and

¥ = ¥(d,bL,q) =

2T®, 2(d, b, L,q) u B ¥
" T®pio(d,b,L,q)  ([p+ly  \2(lpr1\ ¥ o2
( [plq 1) ( [Plq ) CDZ(d,b,,C,q)
with

7

(11)
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and

where 71 and 7y, are defined by (9).
. n,j
Proof. Since h € Sq,% (d,b), we have

P
(N3t (e, 0)(z))

N (L, d,b)h(z) = 7js(w(z)),

where w is a Schwarz function.
If v € P is defined by:

’U(Z) = M = 1+Ulz+’(]222+..., ZE]D),
1—w(z)
then
1 v2
w(z) = 11212+2<0221>Zz+..., zeD

and 5 )

20 1 v

Yig(w(z) =1+ %2012 + (741 +5 (vz — 21> 71>22 +...

Therefore,

(3 edbi@) )l
Ri (Z,d,b)h(z) :”( mqq) < W,

+<(1 B [p—i—l]q) ([p+1]q)zn®§+lag+1 - (1 _ [p+z]q> ([P+2]q[lg]q>”¢p+zup+2>zz_i_.”/ D,

[P]q [P]q [P]q [P]q

- 1) ®,1(d,b,L,q)ap12

hence, the subsequent coefficients can be established in the following manner:

ayq = 7101
et p+1]y [p+1\" ’
( [P]q 1) ( [P]q ) CDP-H(d/ b, E'q)

_ 1 ~ T1o2 2 _’Yj 7o

T TR, L@ b L) | 2 | T4 s
1 7172

T _ 2

pt2 = Pap 41 Td>p+2(d,b,£,q)( 7 U 1)

7101

(

"
[p+1]
[Plq

2

-9

By using some computation, we have

Apt2 — Pay, 2Tq>p+2(d,b,£,q)

(5 ) (oo

(vp — ‘{’v%),

)
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T:T@h&@z%lf&

where Y is defined by (11) and ¢ € C. So, by using Lemma 2, we achieve the desired
result. O

Theorem 3 generalizes some of the previous findings, including the following:

Corollary 5 ([8] Theorem 3). Ifh € S;Lé,l(l,d, b) of the form (1) with p = 1, then

a3 — pad| < |p1| max{1; 2% — 1|},
sl S Sl b Mg (B, 1) R

where € C, and

1 (13, — 1) 3]:
o M\ —1 Y

/ (12)

with py and py defined by (9).

Corollary 6 ([31] Theorem 10). Ifh € 8{';(\]\5 1(1,d,b) of the form (1) with p = 1 and L(k) = 1
forallk > 1, then

a3 — pad] < il

= 2[3]1@3(d,b,1,9) (3], — 1) max{1; [2¥ — 1|},

where p € C, and

@ 1 1 3], —1)[3]"
T:W@hL@:§1_%_% T (3] ZHq ,
q

with 1 and vy, given by (9).

Corollary 7 ([39] Theorem 3.3). Ifh € S

qm(l,o, 1) of the form (1) with p = 1 and L(k) =1
forallk > 1, then

|ag — paj| < il

T 2[3]795(0,1,1,4) Bl —1) max{1;|2¥ — 1|},

where p € C, and

Y. "P(O,l,l,q) _ % 1- % oy [z]ql_ : - ([3]17 - 1)[3}17

with 1 and vy, defined by (9).

The following result is related to the sufficient condition of functions in the class

S™(d,b).

9.3,p

Theorem 4. Assume h € Ay, in the form (1). If

> (G0 -1)+ 1) @0l L)1 (1) o < 131,

k=p+1 Pla



Mathematics 2023, 11, 4963 12 of 15

nj
then h € ngp(d,b).

Proof. Since

20, (mNg o(L, d,b)h(z)) | [ <mNg,p(d,b)h(z)) — ! (L,d,b)h(z)
[Plm®G , (L, d, b)h(z) - [plmG , (L, d, b)h(z)
v (He 1) (K s | (He 1) (K )"
B k:%l Plg 1) ([PJ ) Oe(d b, L, g)are" r %H ([p] 1) ( P]q) Pe(d,b,L,q)]lax] L eD
= ) [k -~ 0 [k] n 7 7
14 Mg k _ el
z +k:§+1( ) @@, b, £, )z -r () @eld b, £,q)|la

based on the theorem’s assumption,

[e0]

- )

k=p+1

\ak| > 0.

<U;]]Z>nq>k(drb/£/q)

Since

2y (mNg,p(ﬁ,d,b)h(z)) RIENEIEL (mNg,p(ﬁ,d,b))h(z)) B
[pIN% (L, d, b)h(z) S [p]mRZ (L, d,b)h(z)

zbq,p(mN;’/p(ﬁ,d,b))h(zD » +' 2, ( o(L,d,b)h(z ))
(PN, (L,d,b)h(z) S [pI p(ﬁ d,b)h(z)

-1

i1 zaw( NI (L, d, b))h(z)) IR INES zaqp( o(£,d,))h(z )) — N (L,d,b)h(2)
|3 [Plm®G , (L, d, b)h(z) N [Plm®G , (L, d, b)h(z)
[e0) & B & n
j+1 k=p+1 ([P]q 1) ( P]q) CDk(d,b,ﬁ,q) |ak| <1l zeD
S - (Y s Lel |
k:p p]q k rYr 4 k

. n,j
then, we obtain h € Sq,S,p(d’ b). O

It can be seen that Theorem 4 is a generalization of other previous results, for example:

Corollary 8 ([8] Theorem 4). Let h € A; be in the form (1) with p = 1. If

(G 1) (kg = 1) + [S0)[@e(d, b, M, q) | [n]glax] < [S],
k=2
thenh € 8% ,(1,d,b).

Corollary 9 ([31] Theorem 12). Let h € A be of the form (1) with p = 1. If

é((ﬁl)([k]q 1) 1 [30) |, b, 1) [k el < 1],
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then

that is h € S} |(d, b) when L(k) =1 for all k > 1.

Corollary 10 ([39] Theorem 3.4). Let h € A be of the form (1) with p = 1. If
> (G + D) (kg = 1) +[S)) |00, 1,1, ) [k]7 x| < |S1,

then

thatis h € S;Zs]\yl (0,1), when L(k) =1 forall k > 1.

4. Conclusions

Through the utilization of quantum calculus and the generalized Mittag-Leffler func-
tion, the operator 87 (£, d, b) introduced in Definition 3 is necessary to study the new

class S;lé »
given in Definition 5. By employing the techniques of differential subordination in the

geometric function theorem, we derived new and interesting results. In the second section,

(d,b) of analytic functions introduced and investigated in this paper, which is

coefficients inequalities for the class Sgé p(d, b) and the subordination relation for a special
case of this class are obtained. Also, in the third section, the Fekete-Szeg® problem and

the sufficient conditions for functions in the class S’/ (d,b) are derived. Additionally,

, 3p
some results of special cases of the class S;é p(d, b) that were previously studied were

also highlighted.
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