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Abstract: As multi-factory production models are more widespread in modern manufacturing
systems, a distributed blocking flowshop scheduling problem (DBFSP) is studied in which no
buffer between adjacent machines and setup time constraints are considered. To address the above
problem, a mixed integer linear programming (MILP) model is first constructed, and its correctness is
verified. Then, an iterated greedy-algorithm-blending multi-factory collaboration mechanism (mIG)
is presented to optimize the makespan criterion. In the mIG algorithm, a rapid evaluation method
is designed to reduce the time complexity, and two different iterative processes are selected by a
certain probability. In addition, collaborative interactions between cross-factory and inner-factory
are considered to further improve the exploitation and exploration of mIG. Finally, the 270 tests
showed that the average makespan and RPI values of mIG are 1.93% and 78.35% better than the five
comparison algorithms on average, respectively. Therefore, mIG is more suitable to solve the studied
DBFSP_SDST.

Keywords: blocking; iterated greedy algorithm; distributed flowshop scheduling; multi-factory
collaborative strategy; makespan

MSC: 93B28

1. Introduction

Industrial intellectualization and informatization are the frontier trends of manufac-
turing development. Manufacturing is the mainstay of the real economy and the lifeblood
of the national economy, and its development is an essential reflection of a country’s
comprehensive national power. Smart manufacturing is the main research content of the
manufacturing system at this stage. In the manufacturing industry, the flowshop schedul-
ing problem (FSP) has been a popular topic of research and is of great practical importance.
In FSP, jobs are processed on a series of machines according to a fixed process flow. The
ultimate goal is to find the optimal scheduling sequence with optimal value(s) of the single
(multiple) objective function(s). As we all know, in the context of globalization, the collabo-
rative production mode between companies is becoming more and more common. The
traditional centralized production methods are no longer able to meet market demands.
Thus, the centralized manufacturing model is gradually shifted to a distributed manu-
facturing model [1], which can break geographical restrictions and make full use of the
resources of multiple enterprises or factories to achieve a rational allocation, optimal combi-
nation, and sharing of resources [2]. Due to the above advantages of the distributed model,
researchers have applied the distribution constraint to FSP and proposed the distributed
permutation flowshop scheduling problem (DPFSP).

Many works on the DPFSP have been done. Naderi and Ruiz first constructed a
MILP model and adopted heuristic of construction, and a variable neighborhood descent
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method to address this problem [3]. Liu and Gao presented a hybrid variable neigh-
borhood search by combining with the electromagnetism mechanism to optimize the
makespan criterion [4]. Since then, a number of constructive algorithms have emerged,
i.e., the improved variable neighborhood descent (VND) algorithm [5], the taboo search
(TS) algorithm [6], the estimation distribution algorithm (EDA) [7], the scatter search (SS)
algorithms [8], and the bounded search iterated greedy (BSIG) algorithm [9]. In addition,
Komaki and Malakooti [10] presented a variable neighborhood search (VNS) to solve the
DPFSP with a no-wait constraint. In recent years, new scheduling algorithms, i.e., two stage
iterated greedy algorithms containing different local search operators [11] and a coopera-
tive co-evolutionary algorithm (CCEA) [12] have been developed to optimize DPFSP and
successfully applied to the distributed robotic scheduling problem [13]. To optimize the
total flowtime value of DPFSP, Fernandez-Viagas et al. discussed some properties of DPFSP
and proposed eighteen construction heuristics to obtain a solution with high quality [14].

Recently, researchers have also taken sequence-dependent setup times (SDSTs) into
account in DPFSP, called DPFSP_SDST, and have done some work on DPFSP_SDST. To
address this problem, an IG with restart strategy (IGR) is presented [15]. The experimental
results have demonstrated that IGR has the best performance among all the compared
algorithms, i.e., chemical reaction optimization, differential evolution, evolutionary algo-
rithm, etc. Han et al. designed an iterated greedy (NIG) algorithm that includes swapping
of single jobs and job blocks [16]. Furthermore, it shows better performance compared to
advanced algorithms. Li et al. also extended the DPFSP by considering a heterogeneous
machine with unrelated parallel (forming DHHFSP_SDST) [17]. Next, to further design
a good algorithm, the three heuristics based on problem specifics and a discrete artificial
bee colony (DABC) algorithm were employed to solve DPFSP_SDST [18]. The study in [19]
proposed two mathematical models of DPFSP_SDST, i.e., constraint planning (CP) and
MILP. The authors also presented an evolution strategy algorithm based on a self-adaptive
mechanism to quickly provide the quality of solutions. In [20], the authors considered
DPFSP_SDST with assembly constraints and presented a hyper-heuristic algorithm based
on genetic programming.

The above scheduling problems assume that the buffers are infinite between any
adjacent machines. However, due to cost constraints, temporary buffers may not be
allowed between any adjacent machines. The current machine must be blocked with a job
until the next machine is free. In this case, FSP with no buffer is transformed into a blocking
flowshop scheduling problem (BFSP). Thus, our article simultaneously considers the above
blocking, SDST and distributed constraints, and forms a distributed flowshop scheduling
problem based on blocking and sequence-dependent setup times (DBFSP_SDST).

DPFSP with more than two machines has been evidenced in the literature [12] as an
NP-hard problem. However, DBFSP_SDST, as an extension of DPFSP, adds blocking and
sequence-dependent setup time constraints that are more complex than the permutation
flowshop scheduling problem (PFSP). This is because, (1) from a distributed perspective,
PFSP is a single-factory problem. One issue that needs to be solved is how to generate
the optimal scheduling sequence. However, when it comes to DBFSP_SDST, the following
two sub-issues must be taken into account. One is to assign the job to factories in a
reasonable way, and the other is to arrange the job sequence for each factory [21,22]. (2)
The DBFSP_SDST simultaneously considers blocking and SDST constraints in a distributed
manufacturing environment in addition to the constraints listed in PFSP.

Regarding DBFSP, Companys and Ribas initially studied this problem and presented
ten constructive heuristics based on typical heuristic rules [21]. Ying and Li constructed
a MILP model of DBFSP and developed different hybrid IG algorithms [23]. Zhang et al.
designed a discrete differential evolution (DDE) method based on problem features to opti-
mize two different mathematical models [24]. Shao et al. employed a fruit fly optimization
algorithm incorporating constructive heuristic initialization and an enhanced local search
strategy [25]. Next, a mutation strategy combining crossover and insertion operators is
employed to obtain a good solution [26]. Recently, Han et al. considered SDST and blocking
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constraints in DPFSP and developed a variable IG (VNIG) algorithm to optimize energy
cost [27].

In the present study, the iterated greedy algorithm (IGA) and its modifications have
been successfully applied in many discrete scheduling problems. Ruiz and Stützle pro-
posed IGA to address FSP with the makespan criterion for the first time [28]. Next, Lin
et al. modified the IGA by improving initialization, local search, and destruction and
reconstruction strategies to optimize DPFSP [29]. Pan and Ruiz proposed an effective IG to
solve the mixed no-idle FSP [30]. The study in [31] presented an IG based on a reference
(IRG) algorithm to effectively solve no-idle DFSP. Huang et al. designed an enhanced IGA
to optimize the assembly DPFSP with total flowtime [32]. Mao et al. presented a multi-stage
IGA to address DPFSP with a preventive maintenance constraint [33]. For the scheduling
problems with the blocking constraint, IGA also shows superiority. Ribas et al. developed
an efficient IGA for optimizing the blocking parallel flowshop scheduling problem with a
total tardiness criterion [34]. Qin et al. considered an IG algorithm based on double-level
mutation (IGDLM) in solving a hybrid BFSP [35]. For the DBFSP with makespan and
total flowtime criteria, Chen et al. used some constructive heuristics in the IGA [36] and a
population-based IG [21], respectively, to minimize the above two objectives. In addition,
Öztop et al. employed four different IG algorithms for the hybrid flowshop scheduling
problem to optimize the objective of total flowtime [37].

From the analysis above, it is found that (1) unlike other population-based algorithms,
the iterated greedy algorithm (IGA) is an efficient meta-heuristic algorithm with a simple
framework that can be coded and replicated easily. (2) Among the intelligence algorithms
for DPFSP discussed above, the iterated greedy algorithm (IGA) exhibits advanced perfor-
mance. The advantages of the IG algorithm are attributed to the simplicity of the algorithm
framework, with few parameters, ease of integration, and good reinforcement and local
convergence performance. For the DBFSP_SDST, no relevant research has attempted to
solve this problem by using improved IGA. Therefore, to make the IGA more appropri-
ate for DBFSP_SDST, this article has made some adjustments according to the problem
characteristics and designed a multi-factory collaborative iterated greedy algorithm.

Our main innovations are that (1) a MILP of DBFSP_SDST with makespan is con-
structed, and the Gurobi solver is adopted to verify the correctness of this model. (2)
According to the characteristics of the problem, a new refresh acceleration calculation
method based on job insertion is designed to speed up the calculation of the objective,
thereby reducing the time complexity of the algorithm. (3) To enrich the diversity of solu-
tions, iterative process I and iterative process II strategies are selected by a certain probability.
(4) A collaborative strategy between cross-factory and inner-factory is presented.

The remaining parts are listed as follows. Section 2 formulates a MILP model of DBFSP-
SDST. Section 3 states the specific details of the mIG algorithm. Experimental results and
statistical analyses are performed in Section 4. Section 5 summarizes the research on the
problem, algorithm, and future directions of research.

2. Problem-Specific Characteristics

The DBFSP_SDST considered in this article can be characterized as follows. Assume
that F(F > 2) identical factories exist. For each factory, J jobs have been processed on M
machines. All factories should meet the restrictions in the MILP. The constraints are as
follows: (1) A job has been processed continuously in only one factory. (2) Each job should
be processed on one machine at a time according to the scheduled order. (3) Each machine
can process only a job at a time. (4) No buffer exists between adjacent machines. The current
machine must be blocked with a job until the next machine is free. (5) On each machine,
the sequence-dependent setup time is taken into account. In addition, the first job on the
machine needs to be set with an initial setup time. (6) Jobs cannot be interrupted during
processing. Based on the above constraints, the optimization objective of DBFSP_SDST is
makespan (unit: seconds).
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2.1. Mathematical Model

Notations:
F Number of factories.
J Number of jobs.
M Number of machines in each factory.
j, j′ Index of jobs, j, j′ ∈ {0, 1, · · · , J}, where 0 denotes a dummy job that starts and

ends at each factory.
m Index of machines.
pj,m Processing time of job j on machine m.
sj,j′ ,m Setup time of adjacent job j and job j′ on machine m. s0,j,m is a predetermined

value when j is the initial job on machine m.
h A positive large number.
Decision Variables:
Cj,m Completion time of job j on machine m.
Dj,m Departure time of job j on machine m.
xj,j′ A decision variable using binary coding, 1 if job j′ is a direct successor of job j, 0

otherwise.
Objective:

MinimizeCmax (1)

Constraints:
J

∑
j′=0,j′ 6=j

xj,j′ = 1, ∀j ∈ {1, 2, · · ·, J} (2)

J

∑
j=0,j 6=j′

xj,j′ = 1, ∀j′ ∈ {1, 2, · · ·, J} (3)

J

∑
j′=1

x0,j′ ≤ F (4)

J

∑
j=1

xj,0 ≤ F (5)

J

∑
j′=1

x0,j′ =
J

∑
j=1

xj,0 (6)

Dj,m ≥ Cj,m, ∀j ∈ {1, 2, · · ·, J}, ∀m ∈ {1, 2, · · ·, M} (7)

Cj,m − pj,m = Dj,m−1, ∀j ∈ {1, 2, · · ·, J}, ∀m ∈ {1, 2, · · ·, M} (8)

Cj′ ,m − pj′ ,m ≥ Dj,m + sj,j′ ,m + (xj,j′ − 1) · h, ∀j, j′ ∈ {1, 2, · · ·, J}, j 6= j′, ∀m ∈ {1, 2, · · ·, M} (9)

Cj,m − pj,m ≥ s0,j,m + (x0,j − 1) · h, ∀j ∈ {1, 2, · · ·, J}, ∀m{1, 2, · · ·, M} (10)

Cmax ≥ cj,M, ∀j ∈ {1, 2, · · ·, J} (11)

Equation (1) is the makespan objective. Constraints (2) and (3) ensure that each
job in the scheduling sequence can only have one immediate predecessor and successor,
respectively. Constraints (4) and (5) assure that the dummy job has an immediate successor
and predecessor, respectively. The dummy job must have an equal number of immediate
predecessors and successors, which is assured by Constraint (6). Each job on each machine
must have a departure time that is equal to or more than its completion time, as required by
Constraint (7). According to Constraint (8), the departure time of each job from the previous
machine is equal to the time that started processing on the current machine. Constraint
(9) is that the start time of job j′ on machine m is larger than the sum of the departure time
of job j on machine m and the setup time sj,j′ ,m. Constraint (10) considers the initial setup
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time s0,j,m of the first job on machine m. Constraint (11) defines the makespan. No more
than 2F dummy jobs are used for sequence-based variables. The job sequence within each
factory starts and ends with dummy jobs.

2.2. Example Instance

The described problem is clearly reflected by considering the example having five jobs
(J = 5), two machines (M = 2), and two factories (F = 2). Table 1 gives the processing
times for the five jobs, and the SDSTs are shown in Table 2. Processing time and SDST are in
seconds. One possible solution is denoted as: x0,1 = 1, x1,4 = 1, x4,0 = 1, x0,5 = 1, x5,3 = 1,
x3,2 = 1, x2,0 = 1; the rest decision variables are equal to 0. The solution corresponds to a
sequence {0, 1, 4, 0, 5, 3, 2, 0}, where the dummy job 0 divides it into two sequences {1, 4}
and {5, 3, 2}. It means that factory 1 processes jobs 1 and 4, and factory 2 processes jobs 5, 3,
and 2. The makespan is 57, and the scheduling Gantt chart as shown in Figure 1.

Table 1. Processing times pj,m of jobs.

pj,m J1 J2 J3 J4 J5

M1 11 3 11 12 9
M2 25 3 13 5 17

Table 2. The SDSTs sj,j′ ,1 and sj,j′ ,2 of jobs.

sj,j’,1 J1 J2 J3 J4 J5 sj,j’,2 J1 J2 J3 J4 J5

7 14 6 21 5 24 1 22 12 10
J1 - 11 16 10 20 J1 - 13 18 3 20
J2 12 - 12 9 23 J2 8 - 20 19 1
J3 0 5 - 23 16 J3 16 3 - 18 23
J4 4 3 11 - 0 J4 20 22 15 - 17
J5 15 23 6 2 - J5 9 13 7 5 -
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2.3. Improved Rapid Evaluation Criteria

A type of acceleration method inspired by Taillard [38] was proposed to save compu-
tational effort by combining the characteristics of the problem under study. In the rapid
evaluation process, forward and backward calculation methods are adopted. The forward
calculation is as follows. (1) Compute the leave time of the first job on the first machine,
the second machine, and up to the last machine, respectively. (2) Similarly, the departure
times on each machine for the second job, the third job, and until the last job are calculated.
See Figure 2a. The backward calculation is as follows. (1) Calculate the departure time of
the last job on the last machine, on the penultimate machine, and up to the first machine,
respectively. (2) Similarly, the departure times on each machine for the penultimate job, the
antepenultimate job, and up to the first job are calculated. See Figure 2b.
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Figure 2. Rapid evaluation criteria. (a) Calculate the time jd[j],m. (b) Calculate the time je[j],m.

(c) Insert job τ j′ t into position 2. (d) Recalculate jd[j],m of the job after position 2. (e) Recalculate je[j],m
of the job before position 2 and calculate jej′ t ,m.
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Assume that the factory f consists of η f jobs processed according to the sequence

π f =
{

π1
f , π2

f , · · ·, π
j
f , · · ·πη f

f

}
, where the job in the factory f is represented as π

j
f j ∈{

1, 2, · · ·, η f

}
. [j] denotes the index of the jth job. In the forward calculation, jc[j],m and

jd[j],m denote the completion time and the leave time, respectively, of π
j
f on m. In the back-

ward calculation, js[j],m and je[j],m denote the completion time and leave time, respectively,

of π
j
f on m.
Refresh accelerated calculation for inserting job:
An attempt is made to insert ηs jobs τ j′1 , τ j′2 , · · ·, τ j′ t , · · ·, τ j′ηs , j′t ∈ {1, 2, · · ·, ηs}

sequentially into the job sequence π f to minimize the makespan of the factory f .
Step 1: Set t = 1 and consider the insertion of the job τ j′ t .
Step 2: Forward calculate jd[j],m for job π

j
f on machine m according to Equations (12)–

(14). Please see Figure 2a.

jc[j],0 = 0, j = 1, 2, · · · , η f (12)

jc[j],m =

{
max(s0,[j],m, jc[j],m−1) + p[j],m, j = 1, m = 1, 2, · · · , M
max(jd[j−1],m + s[j−1],[j],m, jc[j],m−1) + p[j],m, j = 2, 3, · · · , η f , m = 1, 2, · · · , M

(13)

jd[j],m =

{
jc[j],m+1 − p[j],m+1, j = 1, 2, · · · , η f , m = 1, 2, · · · , M− 1
jc[j],m, j = 1, 2, · · · , η f , m = M

(14)

Step 3: Backward calculate je[j],m for job π
j
f on machine m according to Equations (15)–

(17). Please see Figure 2b.

js[j],M+1 = 0, j = η f , η f − 1, · · · , 1 (15)

js[j],m =

{
js[j],m+1 + p[j],m, j = η f , m = M, M− 1, · · · , 1

max
(

je[j+1],m + s[j],[j+1], js[j],m+1

)
+ p[j],m, j = η f − 1, η f − 2, · · · , 1, m = M, M− 1, · · · , 1

(16)

je[j],m =

{
js[j],m−1 − p[j],m−1, j = η f , η f − 1, · · · , 1, m = M, M− 1, · · · , 2
js[j],m, j = η f , η f − 1, · · · , 1, m = 1

(17)

Step 4: The job sequence π f has a set of η f + 1 positions. The job can be tested in these
positions. Suppose that the qth position is inserted by job τ j′ t , where q = 1, 2, . . . , η f + 1.
Then, jdj′ t ,m can be calculated by using Equations (18) and (19), as shown in Figure 2c.

jdj′ t ,0 = 0 (18)

jdj′ t ,m =

 max
(

s0,j′ t ,m, jdj′ t ,m−1

)
+ pj′ t ,m, q = 1, m = 1, 2, · · · , M

max
(

jd[q−1],m + s[q−1],j′ t ,m
, jdj′ t ,m−1

)
+ pj′ t ,m, q = 2, · · · , η f + 1, m = 1, 2, · · · , M

(19)

Step 5: From Equation (20), the makespan of factory f , Cmax(j′t, q), can be calculated
after inserting job τ j′ t into the qth position of job sequence π f , as shown in Figure 2c.

Cmax(j′t, q) =

 max
m=1,2,··· ,M

(
jdj′ t ,m + sj′ t ,[q],m

+ je[q],m
)

, q = 1, 2, . . . , η f

jdj′ t ,M, q = η f + 1
(20)

Step 6: Repeat steps 3 and 4 until all positions have been considered. It is assumed
that position qbest is the best position at which job τ j′ t can be inserted.
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Step 7: After job τ j′ t is inserted into position qbest, the jd[j],m (je[j],m) of the job before
(after) position qbest is unchanged. Therefore, we only need to recalculate jd[j],m of the job
after position qbest, according to Equations (12)–(14), and je[j],m of the job before position

qbest, according to Equations (15)–(17). It is also necessary to calculate jej′ t ,m of job τ j′ t , as
shown in Figure 2d,e.

Step 8: Set t = t + 1, η f = η f + 1.
Step 9: Repeat steps 4, 5, 6, 7, and 8 until all ηs jobs have been considered.
With the above steps, we find that the computational complexity of inserting the

jobs into the sequence is reduced from O
(

m
(

ηsη2
f +

ηs

∑
t=1

(
2tη f + t2

)))
≈ O

(
mn2) to

O
(

m
(
(2ηs + 1)η f +

ηs

∑
t=1

(2t− 1)
))
≈ O(mn). The computational cost savings are substan-

tial when dealing with large-scale problems.

3. Proposed IG Algorithm for DBFSP_SDST

First, unlike other population-based algorithms, the iterated greedy algorithm focuses
on the iteration of one solution and has a strong local search capability due to its greedy
strategy. It has the advantages that it is a simple framework, has a small number of
parameters, and is easy to encode and replicate. Considering the multi-factory feature
of DBFSP_SDST and the diversity of solutions from a global perspective, we make some
modifications to the IGA, such as designing iterative processes I and II to increase the
diversity of solutions and focusing on the cooperation between global search and local
search. Thus, we propose a multi-factory collaborative iterated greedy algorithm, i.e., mIG
to solve DBFSP_SDST.

3.1. Algorithm Description

Figure 3 shows the flow chart of mIG. It is well-known that an initialization solution
with high quality can enhance the convergence of the algorithm. Thus, we first design
an enhanced NEH heuristic, Re f resh_NEH_en, to initialize the solution by using refresh
accelerated calculation (see line 1 of Algorithm 1). Then, we adopt a multi-neighborhood
structures search based on the variable neighborhood descent (mVND) method to improve
the quality of the initialization solution described above (see line 2 of Algorithm 1). Con-
sidering the multiple factories characteristic of DBFSP_SDST and enhancing the diversity
of solutions from a global perspective, we also design two iterative stages, called iterative
process I and iterative process II, and each iterative process is adopted with a certain probabil-
ity (see lines 4–8 of Algorithm 1). After performing the above search strategy, a simulated
annealing acceptance criterion is adopted to enhance the diversity of solutions. If the per-
formance of the current new solution is not better than the original one, the original one is
still retained using the following criterion, r ≤ exp

{
−(Cmax(πcurrent)− Cmax(πorigin))/T

}
,

T = λT, λ ∈ (0, 1), r ∈ (0, 1). Furthermore, the proposed refresh accelerated calculation for
inserting job method is adopted throughout the algorithm.

3.2. Solution Representation

Regarding the solution encoding of DBFSP_SDST, a solution is represented by adopting
a discrete integer encoding. That is, a solution π can be expressed,

{
π1, π2, · · ·, π f , · · ·, πF

}
,

with each π f consisting of
{

π1
f , π2

f , · · ·, π
j
f , · · ·πη f

f

}
, in which π f refers to the job sequence

of factory f , and η f refers to the number of jobs in factory f . The specific example can be
found in Section 2, in which a solution can be expressed as π = {π1, π2}, where π1 = {1, 4},
π2 = {5, 3, 2}, η1 = 2, and η2 = 3. This means that factory 1 processes jobs 1 and 4 in the
order 1→ 4 . Similarly, factory 2 processes jobs 2, 3, and 5 in the order 5→ 3→ 2 .
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Algorithm 1: The proposed mIG

Input: ρ is the probability value.
01: π = Re f resh_NEH_en
02: πtemp = mVND(π)
03: while (the current CPU time <terminate time) do
04: if rand(0, 1) > ρ

05: π = iterative process I(πtemp)
06: else
07: π = iterative process II(πtemp)
08: end if
09: πbest = AcceptanceCriterion(π)
10: end while
Output: BestSolution

Mathematics 2023, 11, 581 9 of 27 
 

 

accelerated calculation (see line 1 of Algorithm 1). Then, we adopt a multi-neighborhood 
structures search based on the variable neighborhood descent (mVND ) method to im-
prove the quality of the initialization solution described above (see line 2 of Algorithm 1). 
Considering the multiple factories characteristic of DBFSP_SDST and enhancing the di-
versity of solutions from a global perspective, we also design two iterative stages, called 
iterative process I and iterative process II, and each iterative process is adopted with a certain 
probability (see lines 4–8 of Algorithm 1). After performing the above search strategy, a 
simulated annealing acceptance criterion is adopted to enhance the diversity of solutions. 
If the performance of the current new solution is not better than the original one, the orig-
inal one is still retained using the following criterion, 

max maxexp{ ( ( ) ( )) / }current originr C C Tπ π≤ − − , , (0,1), (0,1)T T rλ λ= ∈ ∈ . Furthermore, the pro-
posed refresh accelerated calculation for inserting job method is adopted throughout the 
algorithm. 

 
Figure 3. Flow chart of the mIG algorithm. 

Algorithm 1: The proposed mIG 
Input: ρ is the probability value. 
01: _ _Refresh NEH enπ =  
02: ( )temp mVNDπ π=  
03: while (the current CPU time <terminate time) do 
04:     if (0,1)rand ρ>  
05:           I( )tempiterative process ππ =  
06:     else  
07:           II( )tempiterative process ππ =  
08:     end if 
09:     ( )best AcceptanceCriterionπ π=  
10: end while 
Output: BestSolution  

3.2. Solution Representation 
Regarding the solution encoding of DBFSP_SDST, a solution is represented by adopt-

ing a discrete integer encoding. That is, a solution π  can be expressed,

Figure 3. Flow chart of the mIG algorithm.

3.3. Initialization Solution

As mentioned above, an initialization sequence is closely related to the convergence
nature of the algorithm. Thus, initialization operations are performed by using the heuristic
method. According to the distributed characteristic of DBFSP_SDST, two issues need to be
addressed. One is the assignment of jobs into factories, and the other is the arrangement of
a reasonable scheduling sequence for each factory. NEH2_en presented by [11] has shown
superior performance when optimizing a distributed flowshop scheduling problem and
can solve the above two issues. However, NEH2_en has high time complexity due to the
objective function needing to be reevaluated when jobs are put into all possible positions
of all factories. Considering the problem characteristics and rapid evaluation method
of the insertion job designed in Section 2.3, we propose a rapid initialization strategy
Refresh_NEH_en by using refresh accelerated calculation.

Algorithm 2 shows the procedure of Refresh_NEH_en in detail. First, the total pro-
cessing time Pj is calculated for every job on all machines (see line 1), and a scheduling
sequence τ is obtained according to the descending of Pj (see line 2). Second, we take
each job from the sequence τ and put it into each factory one by one (see lines 3–5), which
ensures uniform allocation. The remaining jobs are removed one after another and put
into all positions in all factories; finally the best position is selected (see lines 6–12). After
finishing the insertion operator, we remove a job at position pos f ∗ − 1 or pos f ∗ + 1 from
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π f ∗, attempt it at all positions in π f ∗, and select the position with minimal makespan (see
lines 13–16).

Algorithm 2: Refresh_NEH_en

Input: an initial solution π = φ.
01: Pj = ∑M

m=1 pj,m, j = 1, 2, · · · , J
02: τ =

{
τ1, τ2, · · · , τ J} (Sort jobs according to decreasing Pj)

03: for j = 1 to F do %% uniformly allocate the jobs to the factories
04: Take job τ j from the set of jobs and assign it in πj
05: end for
06: for j = F + 1 to J do
07: for f = 1 to F do
08: Insert τ j in all positions in π f and calculate the corresponding makespan by using
refresh accelerated calculation
09: C f = min

η f +1
pos f =1C

pos f

f and pos f = arg(min
η f +1
pos f =1C

pos f

f )

10: end for
11: pos f ∗ = arg(minF

f=1C f ) %%pos f ∗ is the best position of factory with minimal makespan

12: Insert τ j into position pos f ∗ of π f ∗

13: Randomly select a job j′ from pos f ∗ − 1 or pos f ∗ + 1 of π f ∗

14: Measure job j′ in all positions using refresh accelerated calculation
15: Insert job j′ in the position with minimum makespan
16: end for
Output: the initial solution π

3.4. Multi-Neighborhood Structures Search

According to the distributed characteristic of DBFSP_SDST, a variable neighborhood
descent based on the multiple neighborhood structures search (mVND) method is adopted
to further disturb the current solution. Multiple parallel isomorphic factories exist in
DBFSP_SDST; we consider using cross-factory and inner-factory neighborhood search to
explore the global solution. In addition, a critical factory that is the one with maximum
makespan decides the final makespan value of DBFSP_SDST. In view of this, two neigh-
borhood structures search operators based on a critical factory and non-critical factory, i.e.,
Critical_cross_swap1(π) and Critical_inner_insert(π fcritical

), are designed.
Critical_cross_swap1(π) accomplishes the interaction between the critical factory and

secondary factory, called a cross-factory interaction, where the secondary factory is the one
with the second highest makespan. The details are as follows. First, a critical factory is
found (if there are more than one critical factory, one will be chosen randomly) according
to the current solution π. Second, a job is chosen from the critical factory. Third, another
job is selected from the secondary factory. Next, the above two selected jobs are swapped
and evaluated. If the objective value of the critical factory is reduced, the current solution
will be updated.

Critical_inner_insert(π fcritical
) accomplishes the interaction within the critical factory,

called inner-factory interaction. First, select a random job in the critical factory. Second, try
the selected job in all positions of π fcritical

, and select the best position.
Algorithm 3 gives the pseudocode of the multi-neighborhood structures search algorithm.

3.5. Two Iterative Processes

As mentioned above, IGA is an efficient meta-heuristic algorithm with a simple
framework. Because its structure is easy to reproduce, many good strategies can be ported
to its framework to further improve the performance of IGA. In addition, considering the
multiple factories characteristic of DBFSP_SDST and enhancing the diversity of solutions
from a global perspective, two iterative processes are designed, called iterative process I and
iterative process II, and each iterative process is adopted by a certain probability.



Mathematics 2023, 11, 581 11 of 25

Algorithm 3: mVND(π)

Input: π is the initial solution.
01: Find a critical factory fcritical and secondary factory fsec ondary and record their scheduling
sequences π fcritical

and π fsec ondary
, respectively.

02: pmax = 2 and p = 1
03: do {
04: if p = 1
05: πtemp = Critical_cross_swap1(π)
06: else
07: πtemp = Critical_inner_insert(π fcritical

)
08: end if
09: if Cmax is improved
10: π = πtemp

11: p = 1
12: else
13: p = p + 1
14: end if
15: } while(p ≤ pmax)
16: end while
Output: π

The iterative process I (see Algorithm 4) adopts vDestruction_Reconstruction(π) (see
Algorithm 5) and Critical_cross_swap1(π) (see Section 3.4) operators to disturb the current
solution. The traditional destruction and reconstruction operators [11] are improved
according to the distributed characteristics, abbreviated as vDestruction_Reconstruction(π).
The details are as follows. First, initialize a parameter, d, using the random function
randbetween(2, 6) and use it to generate an integer between 2 and 6. Second, a sequence
πR with d jobs is obtained, in which d/2 jobs are extracted from the critical factory, and
the rest are randomly selected from the non-critical factories (see lines 2–9). At the same
time, the above d jobs are sequentially removed from the original sequence. Third, adopt
the jump reconstruction operator [39] to insert d jobs in all possible positions and finally
select the best position (see lines 13–21). It should be noted that (1) the difference between
jump reconstruction and the traditional reconstruction is that the former adopts a jumpy
insertion when the insertion cannot improve the quality of the solution, which can accelerate
insertion speed and reduce the time complexity; (2) a refresh accelerated calculation is
adopted when performing the above insertion operator and calculation function value. The
proposed vDestruction_Reconstruction(π) can further explore the deep neighborhood of
the solution, increasing the diversity of solutions to prevent falling into the local optimum.
Algorithm 5 displays the procedure of vDestruction_Reconstruction(π) in detail.

The iterative process II (see Algorithm 6) accomplishes the interaction of cross-factory
and inner-factory. Since the completion time of the critical factory directly affects the
optimal solution of the whole scheduling, it is necessary to appropriately schedule the
critical factory. Combined with the distributed characteristic of DBFSP_SDST, the cross-
factory and inner-factory strategies are designed, respectively. In this way, the development
and exploration of the proposed algorithm can be balanced by the cooperation of the two
strategies.

Multiple search strategies can improve the diversity of solutions. Therefore, in the cross-
factory strategy, four disturbing operators are designed, i.e., vDestruction_Reconstruction(π),
Critical_cross_swap1(π), Critical_min_swap(π), and Critical_cross_swap2(π), to improve
the opportunity of obtaining potential solutions. To further increase the search efficiency of
mIG, the above four strategies will be adaptively selected (see Algorithm 6). In the inner-factory
strategy, an operator Critical_inner_swap(π fcritical

) is proposed to optimize the sequence within
the factory.
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Algorithm 4: iterative process I

Input: π is the current primary solution; J is the total number of jobs in π.
01: Find a critical factory fcritical and secondary factory fsecondary and record their scheduling
sequence π fcritical

and π fsecondary
, respectively.

02: π = vDestruction_Reconstruction(π) %% Algorithm 5
03: for cnt = 1 to J/2 do
04: πtemp = Critical_cross_swap1(π) %% subSection 3.4
05: if Cmax is improved
06: π = πtemp

07: end if
08: end for
Output: π

Algorithm 5: vDestruction_Reconstruction(π)

Input: π is the current primary solution; d is the number of removed jobs from π, πR=∅
01: Find a critical factory fcritical and record its scheduling sequence π fcritical

/* Destruction */
02: d = randbetween(2, 6)
03: for cnt = 1 to d/2 do
04: Select a random job j from π fcritical

05: πR ← j and π fcritical
= π fcritical

\j
06: end for
07: while |πR| < d do %%|πR| refers to the number of jobs in πR
08: Randomly select a job j from π f (π f 6= π fcritical

) %%π f is the sequence of factory f
09: πR ← j and π f = π f \j
10: end while
/* Reconstruction based on jumpy insertion and refresh accelerated calculation */
11: for j = 1 to d do
12: for f = 1 to F do
13: pos =0 and K = 1

14: while pos ≤
∣∣∣π f

∣∣∣ do

15: Measure job j at position pos of π
temp
f using refresh accelerated calculation

16: if Cmax is improved
17: Insert job j at pos of π

temp
f , and K = 1

18: else
19: K = K + 1
20: end if
21: pos = pos + K
22: end while
23: end for
24: end for
Output: π

Except for Critical_cross_swap1(π) and vDestruction_Reconstruction(π), which are
stated in Sections 3.4 and 3.5, respectively, Critical_cross_swap2(π), Critical_min_swap(π),
and Critical_inner_swap(π fcritical

) are as follows.
Critical_min_swap(π) is the interaction between the two factories with maximal and

minimal makespan. First, select two jobs from each of the two factories mentioned above.
Second, the above two selected jobs are swapped and evaluated. If the objective value of
the critical factory is reduced, the current solution will be updated.

Critical_cross_swap2(π) performs the Critical_cross_swap1(π) operation twice to ex-
plore the space more deeply and facilitate the improvement of the quality of the solution.

Critical_inner_swap(Ss) : Select two jobs at random from the sequence of critical
factory. Next, swap the two selected jobs. This will get a new solution and apply this swap
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when a sequence of smaller makespan solutions is produced. If the objective value of the
critical factory is reduced, the current solution will be updated.

In the self-adaptive strategy, two lists are defined, i.e., List and BestList. List contains
sixty search strategies that are randomly selected from the above four strategies. BestList
is initialized to empty. Each value of parameter R represents one of the four strategies,
R ∈ (1, 2, 3, 4). During the iteration, if the solution is improved, the corresponding strategy
is saved to the BestList. Last, by using the strategies in the BestList to update List by
parameter ω, ω determines how many strategies in BestList are available to update List
(see lines 17–22). The details of iterative process II, including the self-adaptive strategy, are
described in Algorithm 6.

Algorithm 6: iterative process II

Input: the current solution π, counter c, cnt, i
01: Find a critical factory fcritical and secondary factory fsecondary and a factory with minimal
makespan fmin. Record their scheduling sequence π fcritical

, π fsecondary
, and π fmin

, respectively.
/* cross-factory */
02: for c = 1 to |List| do %% |List| is the length of List
03: R = randbetween(1, 4)
04: switch (R)
05: case 1: πtemp = vDestruction_Reconstruction(π) %% Section 3.5
06: break;
07: case 2: πtemp = Critical_min_swap(π)
08: break;
09: case 3: πtemp = Critical_cross_swap1(π) %% Section 3.4
10: break;
11: case 4: πtemp = Critical_cross_swap2(π)
12: break;
13: if Cmax is improved
14: π = πtemp

15: Record the R value in BestList
16: end for
17: for i = 1 to min{ω× |List|, |BestList|}
18: List[i]=BestList[i]
19: end for
20: for i = min{ω× |List|, |BestList|}+ 1 to |List| do
21: List[i]=randbetween(1, 4)
22: end for
/* inner-factory */
23: for cnt = 1 to J/2 do
24: πtemp = Critical_inner_swap(π fcritical

)
25: if Cmax is improved
26: π = πtemp

27: end if
28: end for
Output: π

3.6. The Computational Complexity of mIG

In mIG, we suppose that there are n jobs, f factories, and m machines. Each factory
contains n

f jobs. The computational complexity of the mIG algorithm includes initialization,
multi-neighborhood structures search, iterative process I, and iterative process II. First, the
time complexity of Refresh_NEH_en is O

(
mn + n log2 n + f + (n− f )

(
mn + 2 n

f + m n
f

))
≈

O
(
n2). Second, the time complexity of the multi-neighborhood structures search is calcu-

lated as O
(

n
f +

n
f ×

n
f ×m

)
≈ O

(
n2). In addition, assume that the number of iterations of

iterative process I and iterative process II are k1 and k2, respectively. For iterative process I, the
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complexity is O
(

k1 × n
2 ×m× n

f × 2
)
≈ O

(
n2). For iterative process II, the complexity is

O
(

k2 × n
2 ×m× n

f

)
≈ O

(
n2). In summary, the complexity of the whole mIG is O

(
n2).

4. Numerical Experiment and Analysis

This section gives the experimental design and analysis to demonstrate the effective-
ness of mIG. The experiments are run on a PC with Intel(R) Core (TM) i7 CPU @ 2.90 GHz
processor and 8 GB of RAM. For the proposed MILP model, the Gurobi 9.1.2 solver is
adopted. For all the compared algorithms, C++ in the Visual Studio 2019 environment is
used for coding and runs on the Release x64 platform. In the algorithm test, to ensure fair-
ness, the maximum CPU elapsed time is adopted as the stopping criterion. In addition, it is
considered that the algorithm has practical significance only when it can solve the problem
in an acceptable time. Therefore, the termination condition is set as TimeLimit = 5× J ×M
milliseconds in this article. J and M indicate the total number of jobs and machines in the
test instance, respectively. Each instance is run 5 times independently.

4.1. Test Data and Performance Metric

The experimental data used in this article can be referred to in [15]. This article
test 270 instances with F×M× J × Factor, where F(F ∈ {2, 3, 4, 5, 6, 7}) is the number of
factories, M(M ∈ {5, 8, 10}) is the number of machines, J(J ∈ {100, 200, 300, 400, 500}) is
the number of jobs, and Factor (Factor ∈ {25, 50, 100}) is the influence factor value that
is used to generate different instances for the same scale size problem. From the above
analysis, 6× 3× 5× 3 = 270 combinations are obtained. Processing times for each job are
evenly distributed within [1, 99). The setup times of each job relative to the other jobs are
calculated by the equation (1 + rand()%99)× Factor/100, where rand() used to generate a
random integer.

We adopt the relative percentage increase (RPI) as an evaluation indicator. RPI es-
timates the difference between the makespan obtained by an algorithm and the optimal
makespan found so far. The equation to calculate the RPI is shown below:

RPI =
Mi −Mbest

Mbest
× 100% (21)

where Mbest is the minimal makespan found by all compared algorithms of 5 independent
running for a test instance. Mi refers to the average makespan obtained by the ith algorithm
of 5 independent running for a test instance. i belongs to ES [40], DABC [18], IGR [15],
EA [14], and DDE [24]. Because there are 3 different instances for each scale instance, the
average PRI is calculated for 3 different instances, called ARPI. Obviously, the smaller the
RPI or ARPI, the better result the algorithm obtained.

4.2. Correctness Verification of MILP

The correctness of the presented MILP model is verified by using 8 small-scale in-
stances. The model is written in Python on the Gurobi solver. In the exact solver, the
maximum termination criterion is set to 3600 s [41,42]. The termination criterion of mIG is
set to TimeLimit = 5× J ×M. Set each instance to run 5 times independently to reduce the
randomness of mIG. Table 3 lists the respective makespan and running time of MILP and
mIG. Among them, the makespan represents the best value found in the termination time.
In addition, F_J_M denotes the numbers of factories, jobs, and machines, respectively.
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Table 3. Result for the MILP model.

F_J_M
MILP mIG

Makespan Time (s) Makespan Time (s)

2_2_2 115 0.00 115 0.02
2_5_2 135 0.02 135 0.05
2_8_2 198 0.14 198 0.08

2_10_2 214 2.43 214 0.10
2_12_2 243 23.04 243 0.12
2_20_2 424 3600 424 0.20
2_35_2 763 3600 742 0.35
2_40_2 879 3600 844 0.40

Best values are indicated in bold.

Table 3 shows that the optimal solution can be found by MILP and takes less time
when the instance size is small, i.e., 2_2_2, 2_5_2, 2_8_2, 2_10_2, and 2_12_2 instances.
Within the termination time, the values of the makespan obtained by Gurobi are good
for 6 (6/8) instances, suggesting that the MILP is correct and can find optimal solutions
in small-scale instances. As the scale of the instances continues to grow, i.e., 2_35_2 and
2_40_2 instances, MILP cannot generate a good solution even if the run time is extended to
3600 s. However, mIG can obtain the best solution in a shorter time for all instances. Thus,
mIG has better capacity to solve large-scale and complicated instances of DBFSP SDST than
MILP.

4.3. Parameter Calibration

In the proposed mIG, two key parameters should be calibrated. One is the threshold
value of two iterative processes, ρ, and the other is the proportion of |BestList| to |List|, ω.
To obtain a more intuitive sensitivity of the two parameters, the Taguchi method of design
of experiment (DOE) is used to determine the best combination of parameter values. For
each parameter, the four levels illustrated in Table 4 are considered, and 16 (4× 4 = 16)
parameter combinations are listed in Table 5. To fairly investigate the sensitivity of these
two parameters, three different instances are randomly selected (F_J_M), i.e., 2_100_5,
4_300_5, 7_500_10. For each instance, 16 combinations are run independently five times
and obtain the average RPI values (see Table 5). Factor-level trends for each parameter are
shown in Figure 4. Table 6 indicates the level of significance of the two parameters. The
largest influence on the algorithm is exerted by the parameter ρ, followed by ω.

Table 4. Parameter level factor.

Parameters
Parameter Level

1 2 3 4

ρ 0 0.1 0.2 0.3
ω 0.6 0.7 0.8 0.9

From Tables 4–6 and Figure 4, the parameter ρ has the greatest influence on the
experimental results. It directly affects the global and local search balance of the two
iterative processes. As can be seen in Figure 4, when ρ = 0, iterative process I is invoked
completely; iterative process II is not involved. At this time, the value of ARPI (1.282) is
higher, suggesting that the IGA with only the iterative process I strategy easily falls into
a local optimum. However, when ρ = 0.1, the average RPI (1.221) is better than that of
ρ = 0.2 and ρ = 0.3. This can further illustrate the validity of our proposed iterative process
II to increase the diversity of solutions and avoid local optima.

For the parameter ω, it determines how many strategies in BestList are available
to update List. If the value is too small, it suggests that few good search strategies in
BestList are used to update List, which may influence the convergence of the algorithm.
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On the contrary, if the value is too large, the diversity of strategies in List may be reduced.
Thus, the performance of mIG is tested under the values of ω being 0.6, 0.7, 0.8, and 0.9,
respectively. Based on the experimental results of Table 5 and Figure 4, the value of ω is set
0.7.

Table 5. Orthogonal array and ARPI value.

Experiment Number
Parameters

Response (ARPI)
ρ ω

1 0 0.6 1.27
2 0 0.7 1.33
3 0 0.8 1.23
4 0 0.9 1.30
5 0.1 0.6 1.39
6 0.1 0.7 1.08
7 0.1 0.8 1.15
8 0.1 0.9 1.26
9 0.2 0.6 1.27
10 0.2 0.7 1.34
11 0.2 0.8 1.39
12 0.2 0.9 1.34
13 0.3 0.6 1.30
14 0.3 0.7 1.25
15 0.3 0.8 1.28
16 0.3 0.9 1.31
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Table 6. The average RPI response values.

Level ρ ω

1 1.282 1.310
2 1.221 1.249
3 1.335 1.260
4 1.285 1.304

Delta 0.114 0.061
Rank 1 2

Best values are indicated in bold.
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4.4. Evaluation of the Proposed Problem-Specific mVND Operator

In this section, the proposed mVND strategy is investigated to demonstrate its con-
tribution. mIG_NV refers to the mIG without mVND. All instances were tested in the
same experimental environment, and each instance was repeatedly run 5 times, with
TimeLimit = 5× J ×M milliseconds as the same termination time. ANOVA will be used
to evaluate the RPI values of all instances as experimental results. From the results shown
in Figure 5, the value of RPI yielded by mIG with mVND is lower than that of mIG_NV.
This suggests that the proposed multi-neighborhood structures search based on variable
neighborhood descent can increase the diversity of mIG and provide more opportunities to
generate potential solutions. In addition, the reason why mVND has good performance
is due t the designed neighborhood search strategies for cross-factory and inner-factory,
which provide advantages for exploring the global solution.
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4.5. Evaluation of mIG with Other Efficient Algorithms

This section compares the mIG algorithm with five intelligent optimization algo-
rithms for solving DFSP, i.e., ES [40] and DDE [24], which are used to solving DBFSP,
DABC [18], IGR [15], and EA [14], which are used to solving DPFSP. For fairness of com-
parison, all algorithms are carefully implemented according to the characteristics of the
problem under the same termination conditions. The termination condition of all algo-
rithms is set as TimeLimit = 5× J ×M milliseconds. The mIG without refresh accelerated
calculation, called mIG0, is also compared. In Table 7, J_M represents the scale with J
jobs and M machines. In addition, we calculated the percentage values using equation(

PComparing − PmIG
)
/PCmparing × 100%, where PComparing and PmIG refer to the values of

Avg or ARPI obtained by the comparing algorithm and mIG, respectively. The calculated
percentages represent how much better mIG is than other algorithms, and the data are
marked in bold. For Avg, in different size instances of F = 2, the percentages of mIG
superior to EA, DDE, DABC, IGR, ES, and mIG0 are 1.11%, 1.64%, 4.25%, 2.04%, and 1.10%,
respectively. Similarly, for F = 3, 4, 5, 6, 7, the percentages are better than the six comparing
algorithms. For ARPI, the percentages of mIG superior to the comparison algorithms, EA,
DDE, DABC, IGR, ES, and mIG0 are 66.67%, 76.47%, 86.37%, 80.56%, 70.98%, and 50.88%,
respectively. It is obviously the case that when F = 3, 4, 5, 6, 7, the percentages of mIG are
still better than other algorithms.
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Table 7. Average makespan and RPI values of ES, DABC, IGR, EA, DDE, mIG0, and mIG.

Factory J_M Time (s)

Algorithms

EA DDE DABC IGR ES mIG0 mIG

Avg ARPI Avg ARPI Avg ARPI Avg ARPI Avg ARPI Avg ARPI Avg ARPI

100_5 2.5 4464 1.80 4506 2.63 4478 2.05 4572 4.20 4537 3.44 4497 2.44 4416 0.62
100_8 4 5030 2.01 5116 3.78 5060 2.62 5138 4.20 5113 3.68 5079 2.90 4976 0.90

100_10 5 5170 1.45 5241 2.93 5184 1.77 5268 3.44 5255 3.12 5211 2.26 5139 0.83
200_5 5 8775 1.83 8839 2.57 8833 2.54 8907 3.34 8797 2.12 8710 1.13 8688 0.75
200_8 8 9726 1.34 9844 2.54 9799 2.11 9891 3.05 9761 1.69 9701 1.05 9647 0.47

200_10 10 10,057 1.06 10,134 1.85 10,099 1.50 10,193 2.44 10,113 1.59 10,070 1.14 10,003 0.45
300_5 7.5 13,106 1.99 13,182 2.59 13,388 4.14 13,221 2.87 13,054 1.59 12,939 0.66 12,920 0.50

F = 2 300_8 12 14,373 1.57 14,388 1.68 14,595 3.09 14,453 2.15 14,352 1.40 14,267 0.81 14,245 0.61
300_10 15 14,929 1.80 15,005 2.36 15,154 3.28 15,070 2.79 14,905 1.58 14,781 0.77 14,771 0.68
400_5 10 17,195 1.60 17,300 2.15 18,135 6.95 17,371 2.58 17,251 1.84 17,073 0.81 17,041 0.61
400_8 16 18,864 1.77 18,935 2.15 19,483 5.03 18,989 2.45 18,766 1.20 18,665 0.67 18,608 0.35

400_10 20 19,771 1.68 19,868 2.15 20,300 4.30 19,953 2.57 19,697 1.26 19,602 0.74 19,525 0.35
500_5 12.5 21,294 2.12 21,374 2.52 23,006 10.13 21,435 2.82 21,293 2.09 20,995 0.66 20,921 0.28
500_8 20 23,561 1.73 23,608 1.96 24,675 6.50 23,662 2.19 23,439 1.18 23,291 0.53 23,270 0.44

500_10 25 24,559 1.42 24,660 1.84 25,590 5.61 24,733 2.12 24,505 1.14 24,349 0.52 24,348 0.51
Mean - 14,058 1.68 14,133 2.38 14,518 4.11 14,190 2.88 14,056 1.93 13,949 1.14 13,901 0.56

Percentage - 1.11% 66.67% 1.64% 76.47% 4.25% 86.37% 2.04% 80.56% 1.10% 70.98% 0.03% 50.88% - -

100_5 2.5 3072 3.24 3122 4.85 3060 2.82 3146 5.69 3117 4.68 3074 3.23 3001 0.88
100_8 4 3425 2.19 3464 3.38 3419 2.08 3488 4.08 3464 3.40 3425 2.16 3364 0.37

100_10 5 3630 2.54 3650 3.14 3619 2.26 3675 3.83 3675 3.81 3628 2.43 3562 0.63
200_5 5 5852 2.21 5874 2.65 5854 2.18 5925 3.50 5875 2.55 5828 1.72 5766 0.60
200_8 8 6539 2.44 6615 3.62 6523 2.14 6633 3.91 6548 2.58 6506 1.85 6428 0.59

200_10 10 6883 1.91 6968 3.18 6879 1.83 6991 3.51 6927 2.52 6881 1.84 6793 0.49
300_5 7.5 8793 2.19 8850 2.87 8876 3.04 8875 3.14 8778 1.95 8731 1.40 8671 0.66

F = 3 300_8 12 9734 1.66 9759 1.97 9776 2.07 9793 2.27 9697 1.26 9658 0.84 9625 0.45
300_10 15 10,070 1.54 10,122 2.04 10,102 1.83 10,157 2.39 10,065 1.44 10,026 1.04 9971 0.47
400_5 10 11,705 1.93 11,749 2.34 11,941 3.84 11,807 2.84 11,671 1.56 11,596 0.92 11,529 0.30
400_8 16 12,812 1.91 12,832 2.07 12,985 3.25 12,884 2.47 12,761 1.46 12,700 1.00 12,642 0.51

400_10 20 13,263 1.69 13,313 2.12 13,408 2.78 13,353 2.40 13,242 1.50 13,180 1.03 13,104 0.40
500_5 12.5 14,443 2.11 14,467 2.27 14,983 5.81 14,518 2.62 14,353 1.48 14,284 1.00 14,231 0.53
500_8 20 15,879 2.13 15,898 2.31 16,271 4.54 15,953 2.64 15,795 1.53 15,725 1.05 15,649 0.53

500_10 25 16,482 1.52 16,541 1.94 16,818 3.49 16,588 2.21 16,442 1.17 16,391 0.89 16,304 0.31
Mean - 9505 2.08 9548 2.72 9634 2.93 9586 3.17 9494 2.19 9442 1.49 9376 0.51

Percentage - 1.36% 75.48% 1.80% 81.25% 2.68% 82.59% 2.19% 83.91% 1.24% 76.71% 0.70% 65.77% - -



Mathematics 2023, 11, 581 19 of 25

Table 7. Cont.

Factory J_M Time (s)

Algorithms

EA DDE DABC IGR ES mIG0 mIG

Avg ARPI Avg ARPI Avg ARPI Avg ARPI Avg ARPI Avg ARPI Avg ARPI

100_5 2.5 2353 3.38 2387 4.98 2325 2.14 2397 5.38 2387 4.84 2337 2.67 2301 1.09
100_8 4 2674 3.46 2702 4.57 2653 2.61 2696 4.32 2703 4.56 2648 2.47 2607 0.87

100_10 5 2824 3.04 2851 4.11 2809 2.50 2860 4.35 2850 4.01 2797 2.05 2758 0.66
200_5 5 4473 2.62 4473 2.60 4454 2.32 4514 3.52 4486 2.87 4462 2.26 4389 0.57
200_8 8 5040 2.51 5092 3.51 5030 2.26 5093 3.55 5054 2.76 5021 2.08 4953 0.66

200_10 10 5253 1.86 5290 2.52 5251 1.87 5332 3.34 5280 2.42 5244 1.73 5183 0.53
300_5 7.5 6691 2.58 6713 2.91 6697 2.61 6732 3.17 6687 2.47 6651 1.90 6574 0.64

F = 4 300_8 12 7373 1.62 7407 2.16 7391 1.77 7429 2.44 7378 1.65 7356 1.28 7299 0.44
300_10 15 7703 1.69 7752 2.35 7710 1.78 7773 2.62 7727 1.98 7690 1.49 7615 0.45
400_5 10 8755 2.13 8769 2.29 8835 2.98 8794 2.57 8707 1.57 8672 1.12 8609 0.33
400_8 16 9681 2.08 9720 2.49 9730 2.56 9760 2.90 9642 1.62 9635 1.52 9556 0.65

400_10 20 10,162 1.84 10,201 2.24 10,210 2.27 10,227 2.51 10,142 1.58 10,133 1.52 10,030 0.44
500_5 12.5 10,797 2.01 10,835 2.42 11,025 4.04 10,866 2.69 10,756 1.58 10,715 1.14 10,629 0.30
500_8 20 11,995 1.47 12,041 1.85 12,178 2.91 12,076 2.14 11,974 1.19 11,957 1.09 11,867 0.26

500_10 25 12,477 1.59 12,489 1.71 12,598 2.55 12,527 2.01 12,427 1.16 12,404 0.95 12,339 0.40
Mean - 7217 2.26 7248 2.85 7260 2.48 7272 3.17 7213 2.42 7182 1.68 7114 0.55

Percentage - 1.43% 75.66% 1.85% 80.70% 2.01% 77.82% 2.17% 82.65% 1.37% 77.27% 0.95% 67.26% - -

100_5 2.5 1928 4.61 1945 5.50 1902 3.13 1946 5.61 1934 4.95 1894 2.71 1862 1.00
100_8 4 2182 3.77 2189 4.10 2152 2.35 2200 4.62 2198 4.52 2150 2.22 2125 1.07

100_10 5 2329 3.45 2357 4.67 2305 2.28 2359 4.73 2356 4.64 2303 2.24 2270 0.80
200_5 5 3650 3.09 3656 3.30 3630 2.50 3675 3.79 3646 2.99 3617 2.05 3568 0.69
200_8 8 4050 2.76 4070 3.33 4024 2.11 4073 3.35 4057 2.96 4026 2.14 3960 0.49

200_10 10 4289 2.48 4313 3.08 4263 1.87 4329 3.42 4311 2.98 4272 2.09 4207 0.46
300_5 7.5 5297 2.32 5302 2.43 5309 2.49 5323 2.81 5304 2.39 5269 1.70 5207 0.45

F = 5 300_8 12 5949 2.68 5966 3.00 5913 2.06 5987 3.33 5938 2.47 5907 1.90 5826 0.45
300_10 15 6239 2.12 6293 3.04 6229 1.90 6311 3.36 6244 2.19 6225 1.85 6132 0.29
400_5 10 7030 5.97 7059 2.41 7080 2.67 7080 2.71 7007 1.67 6991 1.38 6928 0.41
400_8 16 7807 2.06 7826 2.31 7816 2.17 7845 2.56 7778 1.68 7757 1.40 7687 0.42

400_10 20 8153 1.57 8193 2.09 8188 1.97 8217 2.38 8141 1.37 8130 1.22 8056 0.26
500_5 12.5 8781 2.27 8785 2.32 8895 3.54 8814 2.63 8738 1.79 8689 1.21 8636 0.48
500_8 20 9669 1.72 9714 2.27 9743 2.42 9735 2.48 9652 1.48 9643 1.38 9555 0.41

500_10 25 10,139 1.91 10,183 2.37 10,156 2.06 10,198 2.53 10,110 1.61 10,084 1.36 10,008 0.48
Mean - 5833 2.85 5857 3.08 5840 2.37 5873 3.35 5828 2.65 5797 1.79 5735 0.54

Percentage - 1.68% 81.05% 2.08% 82.47% 1.80% 54.43% 2.35% 83.88% 1.60% 79.62% 1.07% 69.83% - -
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Table 7. Cont.

Factory J_M Time (s)

Algorithms

EA DDE DABC IGR ES mIG0 mIG

Avg ARPI Avg ARPI Avg ARPI Avg ARPI Avg ARPI Avg ARPI Avg ARPI

100_5 2.5 1632 5.14 1637 5.41 1587 2.26 1636 5.42 1632 5.11 1593 2.64 1564 0.75
100_8 4 1851 3.84 1851 3.87 1811 1.61 1858 4.21 1861 4.38 1818 2.01 1795 0.75

100_10 5 2036 4.32 2053 5.22 1997 2.34 2047 4.90 2048 4.93 2005 2.75 1970 1.01
200_5 5 3223 3.23 3081 3.46 3049 2.32 3091 3.84 3072 3.23 3046 2.21 2998 0.62
200_8 8 3434 3.60 3456 4.24 3401 2.58 3477 4.87 3447 3.97 3403 2.55 3352 1.06

200_10 10 3638 2.92 3659 3.58 3598 1.79 3670 3.89 3650 3.29 3609 2.10 3553 0.51
300_5 7.5 4458 2.95 4473 3.28 4446 2.62 4489 3.65 4442 2.56 4427 2.18 4363 0.63

F = 6 300_8 12 5033 2.44 5051 2.89 5025 2.27 5063 3.11 5033 2.43 5012 1.94 4937 0.45
300_10 15 5242 2.03 5267 2.46 5233 1.83 5290 2.92 5248 2.12 5228 1.69 5166 0.52
400_5 10 5908 2.52 5928 2.89 5929 2.76 5939 3.10 5892 2.19 5855 1.57 5811 0.70
400_8 16 6600 2.19 6615 2.42 6575 1.78 6636 2.74 6580 1.84 6567 1.65 6498 0.49

400_10 20 6917 2.21 6945 2.68 6915 2.18 6953 2.80 6904 2.00 6873 1.55 6809 0.56
500_5 12.5 7300 2.19 7302 2.21 7393 3.36 7326 2.53 7291 2.01 7260 1.53 7198 0.59
500_8 20 8144 1.94 8155 2.09 8184 2.37 8172 2.31 8125 1.68 8096 1.29 8040 0.50

500_10 25 8487 2.05 8519 2.48 8502 2.19 8526 2.55 8444 1.51 8421 1.25 8353 0.37
Mean - 4927 2.90 4933 3.28 4910 2.28 4945 3.52 4911 2.88 4881 1.93 4827 0.63

Percentage - 2.02% 78.28% 2.15% 80.79% 1.69% 72.37% 2.39% 82.10% 1.71% 78.13% 1.10% 67.36% - -

100_5 2.5 1406 4.28 1409 4.44 1381 2.39 1413 4.80 1418 5.17 1375 1.98 1359 0.83
100_8 4 1630 4.50 1642 5.28 1591 2.03 1636 4.91 1631 4.63 1594 2.19 1572 0.82

100_10 5 1781 3.89 1795 4.69 1743 1.71 1785 4.10 1790 4.43 1746 1.90 1728 0.89
200_5 5 2670 3.50 2672 3.65 2640 2.26 2685 4.08 2655 3.02 2639 2.29 2601 0.81
200_8 8 3001 3.29 3012 3.72 2972 2.27 3020 3.99 3015 3.76 2972 2.24 2924 0.64

200_10 10 3201 2.93 3212 3.33 3153 1.42 3208 3.17 3206 3.08 3168 1.84 3126 0.54
300_5 7.5 3868 2.64 3880 2.94 3861 2.43 3899 3.45 3877 2.88 3842 1.94 3789 0.50

F = 7 300_8 12 4329 2.78 4340 3.02 4315 2.35 4352 3.31 4315 2.40 4294 1.89 4232 0.41
300_10 15 4573 2.43 4592 2.93 4552 1.93 4603 3.13 4559 2.15 4540 1.67 4483 0.38
400_5 10 5120 2.65 5131 2.88 5135 2.82 5136 2.99 5091 2.05 5072 1.64 5024 0.59
400_8 16 5725 2.43 5745 2.80 5716 2.19 5753 2.94 5706 2.07 5684 1.67 5615 0.36

400_10 20 5970 2.24 5982 2.44 5963 2.10 5990 2.57 5959 2.05 5930 1.53 5872 0.50
500_5 12.5 6323 2.31 6359 2.83 6362 2.83 6368 3.00 6285 1.69 6273 1.46 6213 0.39
500_8 20 6986 1.88 7005 2.17 7009 2.15 7029 2.49 6965 1.53 6951 1.31 6888 0.34

500_10 25 7369 1.90 7411 2.53 7382 2.07 7418 2.61 7344 1.53 7322 1.23 7264 0.37
Mean - 4263 2.91 4279 3.31 4252 2.20 4286 3.44 4254 2.83 4227 1.79 4179 0.56

Percentage - 1.97% 80.76% 2.34% 83.08% 1.72% 74.55% 2.50% 83.72% 1.76% 80.21% 1.14% 68.72% - -

Best values are indicated in bold.
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According to Table 7, (1) for most instances, the average makespan and RPI values
obtained by mIG0 are smaller than those of EA, DDE, DABC, IGR, and ES, regardless of
the number of factories being 2, 3, 4, 5, 6, and 7, respectively. The results demonstrate that
the mIG0 is effective and has the ability to generate makespan. The advantages of mIG0
can be attributed to the fact that the proposed strategies, i.e., Refresh_NEH_en, mVND, and
the two iterative processes, are designed based on the distributed multi-factories character
of DBFSP. (2) For all the instances, the average makespan and RPI values obtained by mIG0
are better than those of mIG0, EA, DDE, DABC, IGR, and ES, regardless of the number of
factories being 2, 3, 4, 5, 6, and 7, respectively. The results demonstrate that the mIG with
refresh accelerated calculation has low time complexity and can have more opportunities
to search potential solutions. Therefore, mIG shows superior performance compared with
all the other algorithms. The main advantage of mIG relative to mIG0 can be attributed to
the fact that the proposed refresh accelerated calculation based on job insertion can speed
up the calculation of the objective and reduce the time complexity of the algorithm.

4.6. Evolutionary Curves and Interactions for the Compared Algorithms

This section further verifies the convergence of the algorithms by selecting two differ-
ent scales, i.e., 100_6_10 and 400_7_10. The evolution curves of the mIG, ES, DABC, IGR,
EA, and DDE algorithms are plotted as shown in Figure 6. The termination times for the
two scales are Timelimit = 10× J ×M and Timelimit = 50× J ×M, respectively. Different
colors and symbols represent the six convergence curves obtained by six algorithms, respec-
tively. The abscissa is the execution time of the algorithm (in milliseconds), and ordinate
refers to the values of makespan.
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From Figure 6a, we can observe that ES and DDE have the fastest convergence speed,
but their solutions tend toward convergence as time increases. The evolutionary process
of DABC and EA lasts for a long time, and the final results obtained are mediocre. The
convergence speed of IGR is slightly faster than EA, and its solution is only better than
ES and DDE. Obviously, mIG has good convergence and is constantly converging as time
increases, and it is superior to other algorithms. Similarly, for the large-scale instance, mIG
still has the best convergence, as shown in Figure 6b. The reason why the convergence curve
of mIG is lower than those of compared algorithms may be that the proposed strategies,
i.e., Refresh_NEH_en, mVND, and two iterative processes, can generate excellent solutions
and effectively improve the convergence.

Although the above experiments have shown the superiority and competitiveness of
the proposed mIG, it is necessary to verify whether its superiority is statistically significant.
In view of this, a multifactor ANOVA analysis is done and uses different algorithms and
the numbers of factories, jobs, and machines as influencing factors, respectively. From
Figure 7a, the overall RPI values of all the compared algorithms are significantly different, in
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which the proposed mIG algorithm remarkably outperforms the other algorithms, followed
by mIG0, EA and ES, DABC, DDE, and IGR. Figure 7c,d shows that the values of RPI
obtained by mIG are better than those of compared algorithms, and the mIG can remain
stable when the numbers of factories, jobs, and machines increase. The ANOVA analysis
plotted is illustrated in Figure 7 and shows the significant difference between mIG and
other algorithms.
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4.7. Friedman Tests

The Friedman test can verify whether multiple overall distributions are significantly
different. Its original assumption is that all the algorithms involved in the comparison
are not significantly different from each other. When a probability p-value is smaller than
the given 0.05, the original assumption is rejected, and all algorithms are considered to be
significantly different. Conversely, the original assumption cannot be rejected. It can be
concluded that there are no significant differences between compared algorithms.

Table 8 gives the values of rank (Ranks), the number of test instances (CN), mean
of RPI, standard deviation (Std. Deviation), minimum value (Min), and maximum value
(Max) of makespan, respectively. The p-value obtained by the Friedman test is equal to
0.000, and its confidence level α = 0.050. The values of Ranks, Mean, Std. Deviation, Min,
and Max obtained by mIG are 1.04, 0.578, 0.2708, 0.11, and 1.53, and they are the smallest
among all the compared algorithms. The proposed mIG performs very well in solving the
DBFSP_SDST problem in general.
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Table 8. Friedman test results (confidence level α = 0.050).

Algorithms Ranks CN Mean Std.
Deviation Min Max

EA 3.96 270 2.934 1.1850 0.49 6.39
DDE 5.36 270 3.469 1.3126 0.74 7.38

DABC 4.49 270 3.254 1.2517 1.13 11.29
IGR 6.49 270 3.789 1.2246 1.18 7.21
ES 4.24 270 3.014 1.3478 0.61 6.93

mIG0 2.41 270 2.160 0.8912 0.28 4.93
mIG 1.04 270 0.578 0.2708 0.11 1.53

p-value 0.000
Best values are indicated in bold.

5. Conclusions and Future Research

There is very little literature about DBFSP_SDST. A MILP model is first constructed
for DBFSP_SDST, and this paper uses the Gurobi solver to confirm its accuracy. Then,
an efficient mIG algorithm is designed to optimize the above formulated model. For the
proposed mIG algorithm, this article has done the following modifications.

1. A refresh acceleration calculation is proposed to reduce the complexity of the algo-
rithm from O

(
mn2) to O(mn).

2. A rapid evaluation mechanism, Refresh_NEH_en, is designed to reduce the computa-
tional complexity of the initialization process.

3. Iterative process I and II strategies are designed, and each iterative process is adopted
by a certain probability to enhance the diversity of solutions from a global perspective.

4. According to characteristics of the distributed pattern, cross-factory and inner-factory
strategies are presented to allocate the appropriate number and sequence of jobs for
each factory, which balance the exploration and exploitation of the proposed mIG
algorithm.

5. The proposed mIG algorithm obtains best solutions for a total of 270 instances when
comparing to five state-of-the-art algorithms. The average makespan and RPI values
of mIG are 1.93% and 78.35% better than the five comparison algorithms on average,
respectively. The comprehensive results prove that the proposed mIG contains dual
advantages of high quality and efficient solutions, which are more suitable for solving
the DBFSP_SDST.

For future research, many issues of SDST-DBFSP need to be addressed urgently.
First, multiple objectives should be considered, i.e., makespan, energy consumption, total
flowtime, tardiness time [43] and earliness time, and so on. Second, from a practical
production perspective, many uncertain factors should be considered, such as machine
breakdowns, uncertain processing time, wrong operations, changes in due date, and so on.
Last but not least, problem-specific operators or strategies should be designed according to
the constraints and characteristics of problems.
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