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Abstract: In this study, we introduce new generalizations of higher-order type-I functions and higher-
order pseudo-convexity type-I functions. The application of the notion of sublinear functionals to
these generalizations of higher-order type-I and higher-order pseudo-convexity type-I functions is
crucial to our main findings. Furthermore, under these generalizations of the higher-order type-I
and higher-order pseudo-convexity type-I functions, we established and studied six new types of
higher-order duality models and programs for multiple objective nonlinear programming problems.
In addition, we use these generalizations of higher-order type-I functions and higher-order pseudo-
convexity type-I functions, to formulate and prove the theorems of weak duality, strong duality, and
strict converse duality for these new six types of higher-order model programs.
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1. Introduction

In [1], the author investigated higher-order duality for multi-objective programming
problems. In [2–5], the authors studied second-order dual nonlinear programming prob-
lems. Reference [6] introduced the concept of invexity duality in programming prob-
lems. Reference [7] introduced invexity and nonconvex optimization and their appli-
cations to these programming problems. Reference [8] discussed v-invexity functions
in vector optimization problems. These programming problems under ρ-convexity are
presented [9,10]. [11], which was expanded to include (F,ρ)-convexity functions defined
by [12,13]. The dual Mond-Weir type of these programming problems involving (F,ρ,σ)-type
I functions was introduced by [14,15]. In [16–18], the authors discussed the higher-order
duality of these programming problems. The second-order (F,ρ,σ)-type-I functions for
nondifferentiable fractional programming problems were introduced by [19–23]. The
higher-order vector optimization problems involving cone-invexity functions are given
in [20]. In [24,25], they proposed a higher order for fractional programming problems.

In this work, we present new generalizations of higher-order type-I functions and
higher-order pseudo-convexity type-I functions for multiple objective nonlinear program-
ming (MONLP) problems. In addition, we establish and study of six new types of higher-
order duality models and programs for multiple objective nonlinear programming prob-
lems. Furthermore, we formulate and prove the results of duality theorems under these
generalizations of the higher-order type-I functions for these MONLP problems. Finally,
we discuss the first four types of these higher-order duality models and programs with
this condition α1

i (x, u) = α2
j (x, u) = α(x, u) and the other two types of higher-order duality

models and programs without this condition.
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2. Preliminaries and Definitions

Consider the MONLP problems that take the following form:

MONLP : min f (x) = ( f1(x), f2(x), . . . , fm(x))
subject to x ∈ X =

{
x ∈ Rn | gj(x) ≤ 0, j = 1, 2, . . . , k

}
where the functions f : X → Rm and g : X → Rk have continuous differentiability.

Proposition 1 ([26]). If the point x is weakly efficient for the MONLP problem, which satisfies the
constraint qualification. Then ∃λ ∈ Rm, y ∈ Rk satisfaction.

∑m
i=1∇(λi f)(x) + ∑k

j=1∇(yjgj)(x) = 0,

k

∑
j=1

yjgj(x) = 0,

λ ≥ 0, ∑m
i=1 λi = 1, y ≥ 0.

Definition 1 ([10]). A sublinear is a type of functional F : X× X× Rn → R that satisfies the
following conditions:

(i) F(x, u; a1 + a2) ≤ F(x, u; a1) + F(x, u; a2) ∀a1, a2 ∈ Rn,
(ii) F(x, u; αa) = αF(x, u; a) ∀α ∈ R, α > 0, a ∈ Rn

Let us define the functions fi : X → Rm, gj : X → Rk, Ki : X× Rm → R ,
Gj : X× Rk → R that are differentiable and also define the following real-valued functions:

d : X× X → R, α1, α2 : X× X → R+\{0}, ρ, σ ∈ R.

The higher-order (F, α, ρ, σ, d)—type-I, higher-order (F, α, ρ, σ, d)—pseudo-convexity
type-I, and higher-order strict (F, α, ρ, σ, d)—pseudo-convexity type-I functions are defined
in the new definitions that follow.

Definition 2. The MONLP problem functions fi(x) and gj(x) are higher-order (F, α, ρ, σ, d)—
type-I at the point u ∈ X with respect to (w. r. t.) the functions Ki, Gj ∀i, j and ρi, σj ∈ R,
α1

i , α2
j : X× X → R+\{0} if ∀x ∈ X we have

fi(x)− fi(u) ≥ F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + Ki(u, p)−

pT∇pKi(u, p) + ρid2(x, u),

and

− gj(u) ≥ F(x, u; α2
j (x, u)(∇gj(u) +∇qGj(u, q))) + Gj(u, q)− qT∇qGj(u, q) + σjd2(x, u).

We note that, if α1
i (x, u) = α2

j (x, u) = 1, the higher-order (F, α, ρ, σ, d)—type-I reduces
to the higher-order (F, ρ, σ)—type-I defined in [15].

Definition 3. The functions fi(x) and gj(x) of the MONLP problem are higher-order (F, α, ρ, σ, d)—
pseudo-convexity type-I at a given point u ∈ X w. r. t. the functions Ki, Gj ∀i, j and ρi, σj ∈ R, if
∀ x ∈ X, we have

F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + ρid2(x, u) ≥ 0⇒

fi(x)− fi(u) ≥ Ki(u, p)− pT∇pKi(u, p),
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and
F(x, u; α2

j (x, u)(∇gj(u) +∇qGj(u, q))) + σjd2(x, u) ≥ 0⇒
−gj(u) ≥ Gj(u, q)− qT∇qGj(u, q).

Definition 4. The functions fi(x) and gj(x) of the MONLP problem are higher-order strict
(F, α, ρ, σ, d)—pseudo-convexity type-I at the point u ∈ X where functions meet Ki, Gj if ∀x ∈
X, ρi,σj ∈ R, we have

F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + ρid2(x, u) ≥ 0⇒

fi(x)− fi(u) > Ki(u, p)− pT∇pKi(u, p),

and
F(x, u; α2

j (x, u)(∇gj(u) +∇qGj(u, q))) + σjd2(x, u) ≥ 0⇒
−gj(u) > Gj(u, q)− qT∇qGj(u, q).

Example 1. Consider the problem.

min f (x) =
x2 + x + 2

x + 1

subject to x ∈ X =
{

x ∈ R | g(x) = 1− x2, x ≥ 1
}

Let them F(x, u; a) = |a|(x− u)2, α1(x, u) = α2(x, u) = |x−u|
5 and ρ = −1, σ = −1,

d(x, u) = 0.2|x− u|, u = 1. And for each individual, as well as each family x ∈ X, K(u, p) =
p

u+1 , G(u, q) = q(u2 + 2), f (x)− f (u) ≥ F(x, u; α1(x, u)(∇ f (u) +∇pK(u, p)))− K(u, p) +
pT∇pK(u, p) + ρd2(x, u), −g(u) ≥ F(x, u; α2(x, u)(∇g(u) +∇qG(u, q)))−G(u, q) + qT∇q
G(u, q) + σd2(x, u).

As a result, f (x) and g(x) they are higher-order (F, α, ρ, σ, d)—type I.

Example 2. If α1
1(x, u) = α2

1(x, u) = 1 in Example 1 we define the functions K(u, p) =
1
2 pT∇2 f (u)p and G(u, q) = 1

2 qT∇2g(u)q then f (x), g(x) fail to be second-order (F, ρ, σ)—
type-I functions (see [13]), because if u = 1, x = 6, ρ = −1, σ = −0.5 we have

f (x)− f (u)− F(x, u; (∇ f (u) +∇2 f (u)p)) +
1
2

pT∇2 f (u)p− ρd2(x, u) < 0.

In addition,

− g(u)− F(x, u; (∇g(u) +∇2g(u)q)) +
1
2

qT∇2g(u)q− σd2(x, u) < 0.

Remark 1. If α1
i (x, u) = α2

j (x, u) = 1 the higher-order (F, α, ρ, σ, d)—type-I is related to the
following:

1. For example Ki(u, p) = 1
2 pT∇2 fi(u)p, Gj(u, q) = 1

2 qT∇2gj(u)q Definition 2 reduces to
the second-order (F, ρ, σ)—type-I that is defined by [13].

2. If F(x, u; a) = η(x, u)a, a ∈ Rn and η : X× X → Rn so, then the higher-order invexity
function becomes a special case of this higher-order (F, α, ρ, σ, d)—type-I.

3. For example ρi = σj = 0, if we have the following functions,

Ki(u, p) =
1
2

pT∇2 fi(u)p, Gj(u, q) =
1
2

qT∇2gj(u)q, η : X× X → Rn, a ∈ Rn, F(x, u; a) = η(x, u) a.

The higher-order (F, α, ρ, σ, d)—type-I functions are related to the second-order type-I
functions that are defined by [25].



Mathematics 2023, 11, 889 4 of 20

3. The Six New Types of Higher-Order Duality Models for the MONLP Problems
Are Described

In this section, we establish and study the new six types of higher-order duality model
programs for the MONLP problems. We also define and show the theorems of weak duality,
strong duality, and strict converse duality for these new six types of higher-order model
programs using generalizations of the higher-order (F, α, ρ, σ, d)—type-I and higher-order
(F, α, ρ, σ, d)—pseudo-convexity type-I functions.

3.1. The First Is in a Series of Six New Higher-Order Duality Models and Programs

Let us consider the first type of the new six types of higher-order duality model
programs for the MONLP problems in the form

MONLD1:
max ∑m

i=1 λi fi(u)
subject to

m

∑
i=1

λi
∂ fi(u)

∂u
+

k

∑
j=1

yj
∂gj(u)

∂u
+

m

∑
i=1

λi
∂Ki(u, p)

∂p
+

k

∑
j=1

yj
∂Gj(u, q)

∂q
= 0, (1)

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT∑k
j=1 yj

∂Gj(u, q)
∂q

≥ 0, (2)

∑m
i=1 λiKi(u, p)− pT∑m

i=1 λi
∂Ki(u, p)

∂p
≥ 0, (3)

yj ≥ 0, j = 1, 2, . . . , k, (4)

λi > 0, i = 1, 2, . . . , m;
m

∑
i=1

λi = 1. (5)

We examine the weak duality, strong duality, and strict converse duality theorems for
this first kind of duality model in this section.

Theorem 1 (Weak Duality). Assume that x is feasible for the MONLP problem and that
(u, λ, y, p, q) is feasible for the MONLD1 problem, let the conditions be

α1
i (x, u) = α2

j (x, u) = α(x, u),(
m

∑
i=1

λiρi +
k

∑
j=1

yjσj) ≥ 0

And choose one of the following:

(i) The functions fi(x) and gj(x) are higher-order (F, α, ρ, σ, d)—type-I at point u ∈ X w. r. t.
Ki, Gj
Or

(ii) The functions fi(x) and gj(x) are higher-order (F, α, ρ, σ, d)—pseudo-convexity type-I at
u ∈ X w. r. t. Ki, Gj

Then comes the
∑m

i=1 λi fi(x) ≥∑m
i=1 λi fi(u). (6)

Proof. Using the assumption (i): Because the functions fi(x) and gj(x) are higher-order
(F, α, ρ, σ, d)—type-I functions at u ∈ X w. r. t. Ki, Gj we have

fi(x)− fi(u) ≥ F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + Ki(u, p)−

pT∇pKi(u, p) + ρid2(x, u),
(7)
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and
−gj(u) ≥ F(x, u; α2

j (x, u)(∇gj(u) +∇qGj(u, q)))+
Gj(u, q)− qT∇qGj(u, q) + σjd2(x, u).

(8)

since that time yj ≥ 0, λi > 0, α1
i (x, u) = α2

j (x, u) = α(x, u).
Multiply (7) by λi taking summation over i from 1→ m , and multiply (8) by yj taking

summation over j from 1→ k , and we get

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u) ≥ F(x, u; α(x, u)(

m
∑

i=1
λi

∂ fi(u)
∂ u +

m
∑

i=1
λi

∂Ki(u,p)
∂ p ))+

m
∑

i=1
λiKi(u, p) − pT

m
∑

i=1
λi

∂Ki(u,p)
∂ p + d2(x, u)

m
∑

i=1
λiρi,

(9)

and

−
k
∑

j=1
yjgj(u) ≥ F(x, u; α(x, u)(

k
∑

j=1
yj

∂gj(u)
∂ u +

k
∑

j=1
yj

∂Gj(u,q)
∂ q ))+

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂ q + d2(x, u)

k
∑

j=1
yjσj.

(10)

By adding inequalities (9) and (10), we get

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u)−

k
∑

j=1
yjgj(u) ≥ F(x, u; α(x, u)(

m
∑

i=1
λi

∂ fi(u)
∂ u +

m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yj

∂gj(u)
∂ u +

k
∑

j=1
yj

∂Gj(u,q)
∂ q )) +

m
∑

i=1
λiKi(u, p) −

pT
m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂ q +

d2(x, u) (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj)

(11)

We obtained the following: By applying the constraints (1)–(3) and applying the

condition (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0,

m
∑

i=1
λi fi(x) ≥

m
∑

i=1
λi fi(u).

Also, using the assumption (ii), the functions fi(x) and gj(x) are higher-order
(F, α, ρ, σ, d)—pseudo-convexity type-I functions at u ∈ X w. r. t. Ki and Gj we have

F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + ρid2(x, u) ≥ 0⇒

fi(x)− fi(u) ≥ Ki(u, p)− pT∇pKi(u, p),
(12)

and
F(x, u; α2

j (x, u)(∇gj(u) +∇qGj(u, q))) + σjd2(x, u) ≥ 0⇒
−gj(u) ≥ Gj(u, q)− qT∇qGj(u, q).

(13)

Using constraints (4) and (5) and conditions yj ≥ 0,λi > 0,α1
i (x, u) = α2

j (x, u) =

α(x, u).
Multiply (12) by λi taking summation over i from 1→ m , and multiply (13) by yj

taking summation over j from 1→ k . We got

F(x, u; α(x, u)(
m
∑

i=1
λi

∂ fi(u)
∂ u +

m
∑

i=1
λi

∂Ki(u,p)
∂ p )) + d2(x, u)

m
∑

i=1
λiρi ≥ 0⇒

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u) ≥

m
∑

i=1
λiKi(u, p)− pT

m
∑

i=1
λi

∂Ki(u,p)
∂p ,

(14)
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In addition,

F(x, u; α(x, u)(
k
∑

j=1
yj

∂gj(u)
∂ u +

k
∑

j=1
yj

∂Gj(u,q)
∂ q )) + d2(x, u)

k
∑

j=1
yjσj ≥ 0⇒

−
k
∑

j=1
yjgj(u) ≥

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂ q .

(15)

By adding inequalities (14) and (15), we get

F(x, u; α(x, u)(
m
∑

i=1
λi

∂ fi(u)
∂ u +

m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yj

∂gj(u)
∂u +

k
∑

j=1
yj

∂Gj(u,q)
∂q ))+

d2(x, u)(
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0⇒

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u)−

k
∑

j=1
yjgj(u) ≥

m
∑

i=1
λiKi(u, p)−

pT
m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂q .

(16)

Use the constraints (1)–(3) that we have
m
∑

i=1
λi fi(x) ≥

m
∑

i=1
λi fi(u).

Then, the proof end. �

Theorem 2 (Strong Duality). Allow for the existence of x a weakly efficient solution to the MONLP
problem that meets the constraint qualification, and the functions K(u, 0) = 0, G(u, 0) = 0 then
∃λ ∈ Rm, y ∈ Rk
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Therefore, it (𝑥̄, 𝜆ሜ, 𝑦̄, 𝑝̄ = 0, 𝑞̄ = 0)is feasible for the MONLD1 problem, and the cor-
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௝ୀଵ  

And we assume that either 

(i) At 𝑢̄ ∈ 𝑋 w. r. t. 𝐾௜, 𝐺௝ , the functions )(xfi and )(xg j are of higher-order strict 

(𝐹, 𝛼, 𝜌, 𝜎, 𝑑) −type I. 

Or 

(
x, λ, y, p = 0, q = 0

)
is feasible to solve the MONLD1 problem and the

corresponding values of objective functions for the MONLP and MONLD1 problems are equal. If
the hypotheses of Theorem 1 hold, then that point

(
x, λ, y, p = 0, q = 0

)
is weakly efficient for the

MONLD1 problem.

Proof. We are λ ∈ Rm, y ∈ Rk satisfied with the following: As the MONLP problem has x a
weakly efficient solution that meets the constraint qualification,

∑m
i=1∇

(
λi fi

)
(x) + ∑k

j=1∇
(

yjgj

)
(x) = 0,

∑k
j=1 yjgj(x) = 0,

λ ≥ 0, ∑m
i=1 λi = 1, y ≥ 0.

Therefore, it
(
x, λ, y, p = 0, q = 0

)
is feasible for the MONLD1 problem, and the corre-

sponding values of the objective functions for the MONLP and MONLD1 problems are
equal. If the hypotheses of Theorem 1 hold, then the point

(
x, λ, y, p = 0, q = 0

)
is weakly

efficient for the MONLD1 problem. �

Theorem 3 (Strict Converse Duality). Let’s x be efficient for the MONLP problem and
(
u, λ, y, p, q

)
optimal for the MONLD1 problem, respectively. Let the conditions be

α1
i (x, u) = α2

j (x, u) = α(x, u), (
m

∑
i=1

λiρi +
k

∑
j=1

yj σj) ≥ 0

And we assume that either

(i) At u ∈ X w. r. t. Ki, Gj, the functions fi(x) and gj(x) are of higher-order strict (F, α, ρ, σ, d)−
type I.
Or
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(ii) At u ∈ X w. r. t. Ki,Gj the functions fi(x) and gj(x) are higher-order strict (F, α, ρ, σ, d)—
pseudo-convexity type-I.

Then u = x.
That is u an efficient solution to the MONLP problem.

Proof. Consider the polar opposite, namely, u 6= x since x is efficient for the MONLP
problem and (u, λ, y, p, q) optimal for the MONLD1 problem. Theorem 1 entails a

m

∑
i=1

λi fi(x) ≤
m

∑
i=1

λi fi(u) (17)

Because functions fi(x) and gj(x) are higher-order strict (F, α, ρ, σ, d)—type-I at u ∈ X
w. r. t. Ki, Gj assumption (i) =⇒

fi(x)− fi(u) > F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + Ki(u, p)−

pT∇pKi(u, p) + ρid2(x, u),
(18)

and
−gj(u) > F(x, u; α2

j (x, u)(∇gj(u) +∇qGj(u, q))) + Gj(u, q)−
qT∇qGj(u, q) + σjd2(x, u).

(19)

From constraints (4) and (5) and since yj ≥ 0, λi > 0, α1
i (x, u) = α2

j (x, u) = α(x, u).

Multiply (18) by λi taking summation over i from 1 to m, and multiply (19) by yj
taking summation over j from 1 to k, and we get

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u) > F(x, u; α(x, u)(

m
∑

i=1
λi

∂ fi(u)
∂u +

m
∑

i=1
λi

∂Ki(u,p)
∂ p ))+

m
∑

i=1
λiKi(u, p)− pT

m
∑

i=1
λi

∂Ki(u,p)
∂p + d2(x, u)

m
∑

i=1
λiρi,

(20)

and

−
k
∑

j=1
yjgj(u) > F(x, u; α(x, u)(

k
∑

j=1
yj

∂gj(u)
∂u +

k
∑

j=1
yj

∂Gj(u,q)
∂q ))+

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂q + d2(x, u)

k
∑

j=1
yjσj.

(21)

By adding (20) and (21), we obtain

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u)−

k
∑

j=1
yjgj(u) > F(x, u; α(x, u)(

m
∑

i=1
λi

∂ fi(u)
∂ u +

m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yj

∂gj(u)
∂ u +

k
∑

j=1
yj

∂Gj(u,q)
∂ q )) +

m
∑

i=1
λiKi(u, p) −

pT
m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yjGj(u, q )− qT

k
∑

j=1
yj

∂Gj(u,q)
∂ q +

d2(x, u) (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj).

(22)

By using constraints (1)–(3) as well as the condition, (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0 we get

m

∑
i=1

λi fi(x) >
m

∑
i=1

λi fi(u)

That contradicts (17). Then u = x.
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We can deduce from assumption (ii) that since the functions fi(x) and gj(x) are higher-
order strict (F, α, ρ, σ, d)—pseudo-convexity-type-I at u ∈ X w. r. t. Ki, Gj

F
(

x, u; α1
i (x, u)

(
∇ fi(u) +∇pKi(u, p)

))
+ ρid2(x, u) ≥ 0⇒

fi(x)− fi(u) > Ki(u, p)− pT∇pKi(u, p),
(23)

and
F(x, u; α2

j (x, u)(∇gj(u) +∇qGj(u, q))) + σjd2(x, u) ≥ 0⇒
−gj(u) > Gj(u, q)− qT∇qGj(u, q).

(24)

Using constraints (4)–(5) and the conditions yj ≥ 0, λi > 0, α1
i (x, u) = α2

j (x, u) =

α(x, u).
Furthermore, multiply (23) by λi taking summation over i from 1→ m , and multiply

(24) by yj taking summation over j from 1→ k where we get

F(x, u; α (x, u)(∑m
i=1 λi

∂ fi(u)
∂u + ∑m

i=1 λi
∂Ki(u,p)

∂p )) + d2(x, u)∑m
i=1 λiρi ≥ 0⇒

∑m
i=1 λi fi(x)−∑m

i=1 λi fi(u) > ∑m
i=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u,p)

∂p

(25)

In addition,

F(x, u; α(x, u)(∑k
j=1 yj

∂gj(u)
∂u + ∑k

j=1 yj
∂Gj(u,q)

∂q )) + d2(x, u)∑k
j=1 yjσj ≥ 0⇒

−∑k
j=1 yjgj(u) > ∑k

j=1 yjGj(u, q)− qT ∑k
j=1 yj

∂Gj(u,q)
∂q .

(26)

By adding the inequalities (25) and (26), we get

F(x, u; α(x, u)(
m
∑

i=1
λi

∂ fi(u)
∂ u +

m
∑

i=1
λi

∂Ki(u,p)
∂ p +

k
∑

j=1
yj

∂gj(u)
∂ u +

k
∑

j=1
yj

∂Gj(u,q)
∂ q ))+

d2(x, u)(
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0⇒

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u)−

k
∑

j=1
yjgj(u) >

m
∑

i=1
λiKi(u, p)−

pT
m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂ q .

(27)

Using the constraints (1)–(3) and the conditions
(

∑m
i=1 λiρi + ∑k

j=1 yjσj

)
≥ 0, we

obtain
∑m

i=1 λi fi(x) > ∑m
i=1 λi fi(u)

That contradicts (17). After that u = x, the proof is complete. �

3.2. The Second of Six New Higher-Order Duality Models and Programs

Let us consider the second type of the new six types of higher-order duality model
programs for the MONLP problems in the form:

MONLD2:
max ∑m

i=1 λi fi(u) + ∑k
j=1 yjgj(u)

subject to

m

∑
i=1

λi
∂ fi(u)

∂u
+

k

∑
j=1

yj
∂gj(u)

∂u
+

m

∑
i=1

λi
∂Ki(u, p)

∂p
+

k

∑
j=1

yj
∂Gj(u, q)

∂q
= 0, (28)

∑m
i=1 λiKi(u, p)− pT∑m

i=1 λi
∂Ki(u, p)

∂p
≥ 0, (29)

yj ≥ 0, j = 1, 2, . . . , k, (30)
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λi > 0, i = 1, 2, . . . , m;
m

∑
i=1

λi = 1. (31)

The duality theorems are covered for the second kind type in this section.

Theorem 4 (Weak Duality). Assume that x is feasible for the MONLP problem and that
(u, λ, y, p, q) is feasible for the MONLD2 problem. Let the following conditions be met:

α1
i (x, u) = α2

j (x, u) = α(x, u), (
m

∑
i=1

λiρi +
k

∑
j=1

yjσj) ≥ 0 (32)

k

∑
j=1

yjGj(u, q) ≥ qT
k

∑
j=1

yj
∂Gj(u, q)

∂q
. (33)

Additionally, we assume that either

(i) The functions fi(x), gj(x) are higher-order (F, α, ρ, σ, d)− type-I at point u ∈ X w. r. t.
Ki, Gj
Alternatively,

(ii) At u ∈ X w. r. t. Ki and Gj the functions fi(x), gj(x) are higher-order (F, α, ρ, σ, d)—
pseudo-convexity type-I functions.

After that

∑m
i=1 λi fi(x) ≥∑m

i=1 λi fi(u) + ∑k
j=1 yjgj(u).

Proof. Using Theorem 1, we get:
By assuming (i) and the relations (28), (29), (32), and (33) in (16), we arrive at the

following:

∑m
i=1 λi fi(x) ≥∑m

i=1 λi fi(u) + ∑k
j=1 yjgj(u)

Using the assumption (ii) and the relations (28), (29), (32) and (33) in (16), we get

∑m
i=1 λi fi(x) ≥∑m

i=1 λi fi(u) + ∑k
j=1 yjgj(u)

The proof is complete. �

Theorem 5 (Strong Duality). Let the point x satisfy the constraint qualification with the functions
K(u, 0) = 0, G(u, 0) = 0 and be weakly efficient for the MONLP problem. Then ∃ λ ∈ Rm, y ∈ Rk

a point that (x, λ, y, p = 0, q = 0) is feasible for the MONLD2 problem, and the corresponding
values of the objective functions for the MONLP and MONLD2 problems are equal. If the hy-
potheses of Theorem 4 are true, then the point (x, λ, y, p = 0, q = 0) is weakly efficient for the
MONLD2 problem.

The proof is analogous to Theorem 2.

Theorem 6 (Strict Converse Duality). If x is efficient for the MONLP problem and
(
u, λ, y, p, q

)
is optimal for the MONLD2 problem, let the following conditions be met:

α1
i (x, u) = α2

j (x, u) = α(x, u), (∑m
i=1 λiρi + ∑k

j=1 yjσj) ≥ 0 (34)

k

∑
j=1

yjGj(u, q) ≥ qT
k

∑
j=1

yj
∂Gj(u, q)

∂q
(35)

And we assume that either
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(i) At u ∈ X w. r. t. Ki, Gj, the functions fi(x), gj(x) are higher-order strict (F, α, ρ, σ, d)−type-
I.
Or

(ii) At u ∈ X w. r. t. Ki and Gj the functions fi(x), gj(x) are higher-order strict (F, α, ρ, σ, d)−
pseudo-convexity type-I.

Then u = x.
That is u an efficient solution to the MONLP problem.

Proof. Take a look at the polar opposite. That is u 6= x since x is efficient for the MONLP
problem and (u, λ, y, p, q) optimal for the MONLD2 problem, we get the following inequal-
ity from Theorem 4:

∑m
i=1 λi fi(x) ≤∑m

i=1 λi fi(u) + ∑k
j=1 yjgj(u). (36)

Assumptions (i) and the relations (28), (29), (34), and (35) are used in imports (22).
∑m

i=1 λi fi(x) > ∑m
i=1 λi fi(u) + ∑k

j=1 yjgj(u) That contradicts (36). Hence, we get u = x.
We get the following by substituting the assumptions (ii) and the inequalities (28), (29),

(34), and (35) in the relation (27):
∑m

i=1 λi fi(x) > ∑m
i=1 λi fi(u) + ∑k

j=1 yjgj(u) That contradicts (36).
Hence, the results follow. �

3.3. The Third Type of the New Six Types of Higher-Order Duality Model Programs

Let us consider the third type of the new six types of higher-order duality models
programs for the MONLP problem in the form:

MONLD3:

max ∑m
i=1 λi fi(u) + ∑m

j=1 λiKi(u, p)− pT ∑m
i=1 λi

∂Ki(u, p)
∂p

subject to

m

∑
i=1

λi
∂ fi(u)

∂u
+

k

∑
j=1

yj
∂gj(u)

∂u
+

m

∑
i=1

λi
∂Ki(u, p)

∂p
+

k

∑
j=1

yj
∂Gj(u, q)

∂q
= 0, (37)

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT∑k
j=1 yj

∂Gj(u, q)
∂q

≥ 0, (38)

yj ≥ 0, j = 1, 2, . . . , k, (39)

λi > 0, i = 1, 2, . . . , m;
m

∑
i=1

λi = 1. (40)

The duality theorems for the third model type are covered in this section.

Theorem 7 (Weak Duality). Assume that x is feasible for the MONLP problem and that
(u, λ, y, p, q) is feasible for the MONLD3 problem, let the following conditions be met:

α1
i (x, u) = α2

j (x, u) = α(x, u), (
m

∑
i=1

λiρi +
k

∑
j=1

yjσj) ≥ 0 (41)

And we assume that either

(i) At u ∈ X w. r. t. Ki, Gj, the functions fi(x), gj(x) are of higher-order (F, α, ρ, σ, d)−type-I.
Or

(ii) At u ∈ X w. r. t. Ki, Gj the functions fi(x), gj(x) are higher-order (F, α, ρ, σ, d)—pseudo-
convexity type-I.
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After that

∑m
i=1 λi fi(x) ≥∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p

Proof. Using Theorem 1, we have:
Using the assumption (i), substituting (37), (38), and (41) in (11), we get

∑m
i=1 λi fi(x) ≥∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p

Using assumption (ii), if we substitute (37), (38), and (41) into (16), we get

∑m
i=1 λi fi(x) ≥∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p

The proof is complete. �

Theorem 8 (Strong Duality). If there is x a weakly efficient solution to the MONLP problem that
satisfies the constraint qualification with the functions, K(u, 0) = 0, G(u, 0) = 0, then we have
λ ∈ Rm, y ∈ Rk =⇒ ∃(x, λ, y, p = 0, q = 0) a feasible solution to the MONLD3 problem as well,
and the corresponding values of the objective functions for the MONLP and MONLD3 problems
are equal. If the hypotheses of Theorem 7 are true, then that point (x, λ, y, p = 0, q = 0) is weakly
efficient for the MONLD3 problem.

The proof is similar to Theorem 2.

Theorem 9 (Strict Converse Duality). If x is efficient for the MONLP problem and (u, λ, y, p, q)
is optimal for the MONLD3 problem, let the following conditions be met:

α1
i (x, u) = α2

j (x, u) = α(x, u), (
m

∑
i=1

λiρi +
k

∑
j=1

yjσj) ≥ 0. (42)

And we assume that either

(i) At u ∈ X w. r. t. Ki, Gj, the functions fi(x), gj(x)are of higher-order strict (F, α, ρ, σ, d)−type-I.
Or

(ii) At u ∈ X w. r. t. Ki, Gj the functions fi(x), gj(x) are higher-order strict (F, α, ρ, σ, d)—
pseudo-convexity type-I functions.

Then u = x.
That is u an efficient solution to the (MONLP) problem.

Proof. Consider the inverse; that is, u 6= x we have from Theorem 7 that x and (u, λ, y, p, q)
are efficient and optimal for the MONLP and MONLD3 problems, respectively.

∑m
i=1 λi fi(x) ≤∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p
(43)

We get the following from (22) by using the assumption (i) and the relations (37), (38),
and (42).

(43) contradicts this. Hence, u = x.
Use (ii), (37), (38), and (42) in (27) and we get

∑m
i=1 λi fi(x) > ∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p

(43) contradicts this. Hence, the results follow. �
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3.4. The Fourth of Six New Higher-Order Duality Model Programs

Let us consider the fourth type of the new six types of higher-order duality model
programs for the MONLP problems in the form:

MONLD4:
max ∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u,p)

∂p +

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT ∑k
j=1 yj

∂Gj(u,q)
∂q

subject to

m

∑
i=1

λi
∂ fi(u)

∂u
+

k

∑
j=1

yj
∂gj(u)

∂u
+

m

∑
i=1

λi
∂Ki(u, p)

∂p
+

k

∑
j=1

yj
∂Gj(u, q)

∂q
= 0, (44)

yj ≥ 0, j = 1, 2, . . . , k, (45)

λi > 0, i = 1, 2, . . . , m;
m

∑
i=1

λi = 1. (46)

These duality theorems for the fourth type are covered in this section.

Theorem 10 (Weak Duality). If x is feasible for the MONLP problem and (u, λ, y, p, q) is feasible
for the MONLD4 problem, let the following conditions be met:

α1
i (x, u) = α2

j (x, u) = α(x, u), (
m

∑
i=1

λiρi +
k

∑
j=1

yjσj) ≥ 0 (47)

And we assume that either

(i) At u ∈ X w. r. t. Ki, Gj, the functions fi(x), gj(x) are of higher-order (F, α, ρ, σ, d)−type I.
Or

(ii) Atu ∈ X w. r. t. Ki, Gj the functions fi(x), gj(x) are higher-order (F, α, ρ, σ, d)−pseudo-
convexity type-I.

Then

∑m
i=1 λi fi(x) ≥ ∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u,p)

∂p +

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT ∑k
j=1 yj

∂Gj(u,q)
∂q .

Proof. From Theorem 1, we have:
Substitute (44) and (47) in (11) based on the assumption (i) to obtain

∑m
i=1 λi fi(x) ≥ ∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u,p)

∂p +

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT ∑k
j=1 yj

∂Gj(u,q)
∂q

Using assumption (ii), substituting the relations (44) and (47) in (16), we get

∑m
i=1 λi fi(x) ≥ ∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u,p)

∂p +

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT ∑k
j=1 yj

∂Gj(u,q)
∂q

The proof is complete. �

Theorem 11 (Strong Duality). If there is x a weakly efficient solution to the MONLP problem
that satisfies the constraint qualification with the functions, K(u, 0) = 0, G(u, 0) = 0 then the
point (x, λ, y, p = 0, q = 0) is feasible for the MONLD4 problem as well, and the corresponding
values of the objective functions for the two problems, MONLP and MONLD4, are equal. If the
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hypotheses of Theorem 10 are true, then the point (x, λ, y, p = 0, q = 0) is weakly efficient for the
MONLD4 problem.

The proof is similar to Theorem 2.

Theorem 12 (Strict Converse Duality). If it x is efficient for the MONLP problem and (u, λ, y, p, q)
optimal for the MONLD4 problem, let the conditions be:

α1
i (x, u) = α2

j (x, u) = α(x, u), (
m

∑
i=1

λiρi +
k

∑
j=1

yjσj) ≥ 0 (48)

And we assume that either

(i) At u ∈ X w. r. t. Ki, Gj, the functions fi(x) and gj(x) are of higher-order strict (F, α, ρ, σ, d)—
type I.
Or

(ii) At u ∈ X w. r. t. Ki, Gj the functions fi(x) and gj(x) are higher-order strict (F, α, ρ, σ, d)—
pseudo-convexity type-I.

That is, there is u an efficient solution to the MONLP problem.

Proof. Assume the reverse, for example u 6= x. Since the point x is efficient for the MONLP
problem and the point (u, λ, y, p, q) is optimal for the MONLD4 problem, Theorem 10
deduces the following relationship:

∑m
i=1 λi fi(x) ≤ ∑m

i=1 λi fi(u) + ∑m
j=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u,p)

∂p

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT ∑k
j=1 yj

∂Gj(u,q)
∂q

(49)

From assumption (i), using (44) and (48) in (22) to obtain

m
∑

i=1
λi fi(x) >

m
∑

i=1
λi fi(u) +

m
∑

j=1
λiKi(u, p)− pT

m
∑

i=1
λi

∂Ki(u,p)
∂p +

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT ∑k
j=1 yj

∂Gj(u,q)
∂q

This is contrary to (49). Hence, u = x From assumption (ii), if we use (44) and (48) in
(27), we get

m
∑

i=1
λi fi(x) >

m
∑

i=1
λi fi(u) +

m
∑

j=1
λiKi(u, p)− pT

m
∑

i=1
λi

∂Ki(u,p)
∂p +

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT ∑k
j=1 yj

∂Gj(u,q)
∂q

This is contrary to (49). Hence, u = x then the proof end. �

3.5. The Fifth of Six New Types of Higher-Order Duality Model Programs

Let us consider the fifth type of the new six types of higher-order duality model
programs for the MONLP problems in the form:

MONLD5:
max ∑m

i=1 λi fi(u)
subject to

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT∑k
j=1 yj

∂Gj(u, q)
∂q

≥ 0, (50)

∑m
i=1 λiKi(u, p)− pT∑m

i=1 λi
∂Ki(u, p)

∂p
≥ 0, (51)
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yj ≥ 0, j = 1, 2, . . . , k, (52)

λi > 0, i = 1, 2, . . . , m;
m

∑
i=1

λi = 1. (53)

This section deals with the fifth kind type category for duality theorems.

Theorem 13 (Weak Duality). Assume that x is feasible for the MONLP problem and that
(u, λ, y, p, q) is feasible for the MONLD5 problem, let the conditions be

(
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0,∇u fi(u) = −∇pKi(u, p)∀i,

∇ugj(u) = −∇qGj(u, q)∀j
(54)

Additionally, we assume that either

(i) At u ∈ X w. r. t. Ki, Gj, the functions fi(x), gj(x) are higher-order (F, α, ρ, σ, d)−type-I.
Or

(ii) At u ∈ X w. r. t. Ki, Gj the functions fi(x),gj(x) are higher-order (F, α, ρ, σ, d)—pseudo-
convexity type-I.

Then ∑m
i=1 λi fi(x) ≥ ∑m

i−1 λi fi(u).

Proof. Using assumption (i), we can conclude that the functions fi(x) and gj(x) are higher-
order (F, α, ρ, σ, d)—type-I at u ∈ X w. r. t. Ki, Gj

fi(x)− fi(u) ≥ F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + Ki(u, p)−

pT∇pKi(u, p) + ρid2(x, u),
(55)

and
−gj(u) ≥ F(x, u; α2

j (x, u)(∇gj(u) +∇qGj(u, q)))+
Gj(u, q)− qT∇qGj(u, q) + σjd2(x, u).

(56)

This is accomplished by combining (54) with the functional property F in relations (55)
and (56).

fi(x)− fi(u) ≥ Ki(u, p)− pT∇pKi(u, p) + ρid2(x, u), (57)

and
− gj(u) ≥ Gj(u, q)− qT∇qGj(u, q) + σjd2(x, u). (58)

The restrictions (52) and (53), yj ≥ 0, λi > 0.

Multiplying (57) by λi taking summation over i from 1→ m also multiplying (58) by
yj taking summation over j from 1→ k then adding the results yields

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u)−

k
∑

j=1
yjgj(u) ≥

m
∑

i=1
λiKi(u, p)− piT

m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂q + d2(x, u)(

m
∑

i=1
λiρi +

k
∑

j=1
yjσj)

(59)

We get the following by using (50), (51), and the condition (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0

in (59).
∑m

i=1 λi fi(x) ≥∑m
i−1 λi fi(u).
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We get the following because the functions fi(x) and gj(x) are higher-order (F, α, ρ, σ, d)
—pseudo-convexity-type-I at the point u ∈ X w. r. t. Ki, Gj to assumption (ii):

F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + ρid2(x, u) ≥ 0⇒

fi(x)− fi(u) ≥ Ki(u, p)− pT∇pKi(u, p),
(60)

and
F(x, u; α2

j (x, u)(∇gj(u) +∇qGj(u, q))) + σjd2(x, u) ≥ 0⇒
−gj(u) ≥ Gj(u, q)− qT∇qGj(u, q).

(61)

When we combine (54) with the functional property in (60) and (61), we get

ρid2(x, u) ≥ 0 ⇒ fi(x)− fi(u) ≥ Ki(u, p)− pT∇pKi(u, p), (62)

and
σjd2(x, u) ≥ 0 ⇒−gj(u) ≥ Gj(u, q)− qT∇qGj(u, q). (63)

We get by multiplying (62) by λi taking summation over i from 1→ m and also
multiplying (63) by yj taking summation over j from 1→ k and adding the results with

use constraints (52)–(53), yj ≥ 0, λi > 0.

d2(x, u)
m
∑

i=1
λiρi ≥ 0⇒

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u) ≥

m
∑

i=1
λiKi(u, p)− pT

m
∑

i=1
λi

∂Ki(u,p)
∂p ,

(64)

and

d2(x, u)
k
∑

j=1
yjσj ≥ 0⇒

−
k
∑

j=1
yjgj(u) ≥

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂q .

(65)

The following is obtained by applying the condition (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0 to rela-

tions (64) and (65):

d2(x, u)(
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0⇒

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u)−

k
∑

j=1
yjgj(u) ≥

m
∑

i=1
λiKi(u, p)− pT

m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂q .

(66)

We can use the constraints (50) and (51) as well as the conditions (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥

0 in (66) to obtain
∑m

i=1 λi fi(x) ≥∑m
i−1 λi fi(u).

Hence, the proof is complete. �

Theorem 14 (Strong Duality). If x is weakly efficient for the MONLP problem and satisfies the
constraint qualification with the functions, K(u, 0) = 0, G(u, 0) = 0 then the point (x, λ, y, p =
0, q = 0) is feasible for the MONLD5 problem, and the corresponding values of objective functions
for the MONLP and MONLD5 problems are equal. If the hypotheses of Theorem 13 are true, then
the point (x, λ, y, p = 0, q = 0) is weakly efficient for the MONLD5 problem.

The proof is similar to Theorem 2.
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Theorem 15 (Strict Converse Duality). Let us proceed with that condition (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥

0 and assume that it x is efficient for the MONLP problem and (u, λ, y, p, q) optimal for the
MONLD5 problem.

In addition, we assume either one of the following:

(i) At u ∈ X w. r. t. Ki, Gj, the functions fi(x) and gj(x) are of higher-order strict
(F, α, ρ, σ, d)−type I.
Or

(ii) At u ∈ X w. r. t. Ki and Gj the functions fi(x) and gj(x) are higher-order strict
(F, α, ρ, σ, d)− pseudo-convexity type-I.

Then u = x.
That is u an efficient solution to the MONLP problem.

Proof. Assume the inverse. For example, u 6= x, since x and (u, λ, y, p, q) are efficient
and optimal for the MONLP and MONLD4 problems, respectively, we get the following
relation from Theorem 13:

∑m
i=1 λi fi(x) ≤∑m

i=1 λi fi(u). (67)

Because the functions fi(x) and gj(x) are higher-order strict (F, α, ρ, σ, d)—type-I at
u ∈ X w. r. t. Ki, Gj, we get the following relations from assumption (i):

fi(x)− fi(u) > F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + Ki(u, p)−

pT∇pKi(u, p) + ρid
2(x, u),

(68)

and
−gj(u) > F(x, u; α2

j (x, u)(∇gj(u) +∇qGj(u, q̂)))+
Gj(u, q)− qT∇qGj(u, q) + σjd2(x, u).

(69)

When we combine (54) with the properties F in relations (68) and (69), we get

fi(x)− fi(u) > Ki(u, p)− pT∇pKi(u, p) + ρid
2(x, u), (70)

and
− gj(u) > Gj(u, q)− qT∇qGj(u, q) + σjd2(x, u). (71)

The restrictions (52) and (53) apply as well yj ≥ 0, λi > 0.

Multiply (70) by λi taking the summation over i from 1→ m also multiply (71) by yj
taking the summation over j from 1→ k and adding the results.

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u)−

k
∑

j=1
yjgj(u) >

m
∑

i=1
λiKi(u, p)− pT

m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂q + d2(x, u)(

m
∑

i=1
λiρi +

k
∑

j=1
yjσj)

(72)

Combining (50) and (51) as well as the condition (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0 in (72) yields

∑m
i=1 λi fi(x) > ∑m

i=1 λi fi(u) that contradicts (67). Hence, u = x.
From assumption (ii), because the functions fi(x) and gj(x) are higher-order strict

(F, α, ρ, σ, d)—pseudo-convexity type-I at u ∈ X w. r. t. Ki, Gj

F(x, u; α1
i (x, u)(∇ fi(u) +∇pKi(u, p))) + ρid2(x, u) ≥ 0⇒

fi(x)− fi(u) > Ki(u, p)− pT∇pKi(u, p),
(73)
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and

F(x, u; α2
j (x, u)(∇gj(u) +∇qGj(u, q))) + σjd2(x, u) ≥ 0⇒

−gj(u) > Gj(u, q)− qT∇qGj(u, q).
(74)

Using the conditions (54) in the preceding relations (73) and (74) to get

ρid2(x, u) ≥ 0 ⇒ fi(x)− fi(u) > Ki(u, p)− pT∇pKi(u, p) (75)

and
σjd2(x, u) ≥ 0 ⇒−gj(u) > Gj(u, q)− qT∇qGj(u, q). (76)

So we multiply (75) by λi summation over i from 1→ m and multiply (76) by yj
summation over j from 1→ k , then add the results with constraints (52) and (53),yj ≥ 0,

λi > 0, (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0 and we get

d2(x, u)(
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0⇒

m
∑

i=1
λi fi(x)−

m
∑

i=1
λi fi(u)−

k
∑

j=1
yjgj(u) >

m
∑

i=1
λiKi(u, p)− pT

m
∑

i=1
λi

∂Ki(u,p)
∂p +

k
∑

j=1
yjGj(u, q)− qT

k
∑

j=1
yj

∂Gj(u,q)
∂q .

(77)

Using constraints (50) and (51) in (77), we get
∑m

i=1 λi fi(x) > ∑m
i=1 λi fi(u) that contradicts (67).

Hence, u = x the proof is complete. �

3.6. The Sixth of the Six New Types of Higher-Order Duality Model Programs

Let us consider the sixth type of the new six types of higher-order duality models
programs for the MONLP problem in the form:

MONLD6:
max ∑m

i=1 λi fi(u)+∑m
i=1 λiKi(u, p)− pT∑m

i=1 λi
∂Ki(u,p)

∂p
subject to

∑k
j=1 yjgj(u) + ∑k

j=1 yjGj(u, q)− qT∑k
j=1 yj

∂Gj(u, q)
∂q

≥ 0, (78)

yj ≥ 0, j = 1, 2, . . . , k, (79)

λi > 0, i = 1, 2, . . . , m;
m

∑
i=1

λi = 1. (80)

Finally, in this section, we look at the sixth kind for studying duality theorems.

Theorem 16 (Weak Duality). If x is feasible for the MONLP problem and (u, λ, y, p, q) is feasible
for the MONLD6 problem, let the functions:

∇u fi(u) = −∇pKi(u, p) ∀ i, ∇ugj(u) = −∇qGj(u, q)∀j. (81)

In addition, we assume

(i) The functions fi(x) and gj(x) are of higher-order (F, α, ρ, σ, d)−type I at this point u ∈ X
in terms of Ki, Gj.
Alternatively,

(ii) At u ∈ X w. r. t. Ki and Gj the functions fi(x) and gj(x) are higher-order (F, α, ρ, σ, d)—
pseudo-convexity type-I
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Then

∑m
i=1 λi fi(x) ≥∑m

i−1 λi fi(u) + ∑m
i=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p

Proof. According to Theorem 13, we have:

Using (78) and the condition (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0 in (59) for assumption (i), we get

∑m
i=1 λi fi(x) ≥∑m

i−1 λi fi(u) + ∑m
i=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p
.

Using constraints (78) and the condition (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0 in (66) for assumption

(ii), we get

∑m
i=1 λi fi(x) ≥∑m

i−1 λi fi(u) + ∑m
i=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p
.

Hence, the proof is complete. �

Theorem 17 (Strong Duality). If x is weakly efficient for the MONLP problem and satisfies the
constraint qualification with the functions, K(u, 0) = 0, G(u, 0) = 0 then we have λ ∈ Rm, y ∈ Rk

=⇒ (x, λ, y, p = 0, q = 0) is feasible for the MONLD6 problem, and the corresponding values of
objective functions for the MONLP and MONLD6 problems are equal. If the hypotheses of Theorem
16 are true, then that point (x, λ, y, p = 0, q = 0) is weakly efficient for the MONLD6 problem.

The proof is analogous to Theorem 2.

Theorem 18 (Strict Converse Duality). If it x is efficient for the MONLP problem and (u, λ, y, p, q)
optimal for the MONLD6 problem, let the condition be:

(
m

∑
i=1

λiρi +
k

∑
j=1

yjσj) ≥ 0

We assume either the

(i) At u ∈ X w. r. t. Ki and Gj the functions fi(x) and gj(x) are higher-order strict
(F, α, ρ, σ, d)−type-I.
Alternatively,

(ii) At u ∈ X w. r. t. Ki and Gj the functions fi(x) and gj(x) are higher-order strict
(F, α, ρ, σ, d)—pseudo-convexity type-I.

Then u = x.
That isuan efficient solution to the MONLP problem.

Proof. Assume the inverse. For the MONLP and MONLD4 problems, for example u 6= x,
Theorem 16 implies the following: because it is x efficient and (u, λ, y, p, q) optimal,

∑m
i=1 λi fi(x) ≤∑m

i−1 λi fi(u) + ∑m
i=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p
(82)
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We get from (78), and an assumption (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0 is substituted into (72)

for assumption (i).

∑m
i=1 λi fi(x) > ∑m

i−1 λi fi(u) + ∑m
i=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p

That contradicts (82). Hence, u = x.

For assumption (ii), using constraint (78) and the condition (
m
∑

i=1
λiρi +

k
∑

j=1
yjσj) ≥ 0

substitution in (77), we get an

∑m
i=1 λi fi(x) > ∑m

i−1 λi fi(u) + ∑m
i=1 λiKi(u, p)− pT ∑m

i=1 λi
∂Ki(u, p)

∂p

That contradicts (82). Hence, u = x the proof is complete. �

4. Conclusions

In this article, we established and studied six types of higher-order duality models and
programs for MONLP problems under the generalizations of higher-order type-I functions.
Furthermore, we formulated and proved the theorems of weak duality, strong duality,
and strict converse duality of these six new types to higher-order models and programs
for multiple objective nonlinear programming problems using these generalizations of
higher-order type-I functions and higher-order pseudoconvex type-I functions.
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