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Abstract: The metaheuristic algorithms and their hybridization have been utilized successfully in the
past to extract the parameters of photovoltaic (PV) cells and panels. The novelty of the paper consists
of proposing the black widow optimization algorithm (BWOA) for the first time to identify the
parameters of the two photovoltaic cells RTC France, amorphous silicon (aSi), and two photovoltaic
panels PWP201, PVM 752 GaAs. The single-diode model (SDM) and double-diode model (DDM) for
analyzing the PVs are considered. The performance of the BWOA is verified using four statistical
tests: the root mean square error, which is the primary tool, the mean relative error, the mean bias
error, and the coefficient of determination. The research results of this study are as follows: BWOA
gave the same results, or very slightly better, for RTC and PWP201 for SDM in comparison with the
best algorithms from the specialized literature; for all the other cases, BWOA has substantially better
results, especially for PVM 752 GaAs, where the improvements in RMSE are: 16.5%, for PWP201:
6.25%, and for aSi: 5.3%, all for the DDM; the computing time is around 2 s, which is one of the lowest
durations. A consistent study is made to optimize the accuracy and computational time in function
of the number of iterations and population.
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1. Introduction

The contemporary energetic crisis creates high pressure on power plants and energy
prices. This can be a very good opportunity for the development and increase in the
capacities of installed photovoltaics, similarly to the last crises, starting with the crisis in
the 1970s. Additionally, there is the European Union program for climate neutrality by
2050 [1]. This target can be reached if very good photovoltaic cells are used and connected
efficiently [2], alongside smart photovoltaic systems [3].

The best panels are obtained using the twin photovoltaic cells. This goal can be
obtained if the photovoltaic cells are measured accurately for the production process in a
very short time.

The extraction of the photovoltaic cell/panel parameters can be made using analytic
methods and metaheuristic algorithms. The current-voltage characteristic, and the mathe-
matical model based on the equivalent circuit are essential tools for analyzing photovoltaic
cells and panels. Cotfas et al. analyzed the pros and cons of 33 analytical methods [4].
Humada et al. have chosen and discussed five analytic methods for each group considered.
The first group is for five parameters, the next for four, three, two, and the last is for
one [5]. These methods have both advantages and disadvantages. One of the important
advantages is the very short time necessary for extraction, which is very useful for industry,
but it comes with a significant drawback, namely the reduction in accuracy, important for
research [6]. In recent years, after 2000, a new approach was taken using metaheuristic
algorithms, which are very useful for optimization problems, especially for multimodal
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issues, such as photovoltaic cells parameters extraction. Today, the number of metaheuristic
algorithms surpasses that of analytical methods, and in the near future, this will increase
due to a large number of algorithms developed for different purposes. These algorithms
can be applied to the photovoltaic parameters extraction problem. There are several re-
view papers that analyzed the articles where the metaheuristic algorithms are presented.
Yang et al. considered four groups for the metaheuristic algorithms: sociology algorithms,
mathematics algorithms, physics algorithms, and biology algorithms [7]. Li et al. analyzed
the metaheuristic algorithms from the point of view of computational time, resources, and
statistical tests [8].

The main statistical test to analyze the performance of the algorithms is the root mean
square error (RMSE) [7,9]. The algorithms with the lowest RMSE from each group are
chosen for comparison with the BWOA. This choice is made for the RTC photovoltaic
cell and PWP 201 photovoltaic panel, whose datasets are the most commonly used in the
specialized literature. In the cases when these metaheuristic algorithms are not applied to
extract parameters, they are replaced with others. These new algorithms must give very
good values for the RMSE, namely the lowest ones.

The biology group is the most populated; Yang et al. briefly described 14 algo-
rithms [7]. The algorithm chosen from this group is the improved whale optimization
algorithm (IWOA). This algorithm has the best RMSE results in comparison with the others
from the biology group for both models, which describe the photovoltaic cells using the one
diode model (SDM) and two diode model (DDM). It is the improved version of the whale
optimization algorithm that is based on the hunting mechanism of humpback whales [10].
From the physics group, the following algorithm is used for comparison—improved Lozi
map-based chaotic optimization algorithm (ILCOA). Its performance derives from its ability
to search the global optimum in the whole space [11]. The multiple learning backtracking
search algorithm (MLBSA) [12] is part of the sociology group. It is an improved version of
the backtracking search algorithm proposed by Civicioglu [13]. The performance is due to
finding the equilibrium between the exploration and exploitation abilities. This led to an
increase in the performance and the convergence speed. The improved shuffled complex
evolution algorithm (ISCE) is one of the chosen algorithms from the mathematic group.
The RMSE results are among the best for some PV devices, and it has an advantage in
comparison with other algorithms; it needs a small number of iterations [14,15]. The second
algorithm from the mathematic group is an improved version of the successive discretiza-
tion algorithm (SDA) [16]. HSDA is a hybrid algorithm that uses the SDA algorithm on the
vicinities created around the solutions given by one of the known algorithms [9]. The other
utilized algorithms are: barnacle mating optimizer algorithm (BMOA), which is based on
the mating behavior of barnacles and belongs to the biology group [17]; guaranteed conver-
gence particle swarm optimization algorithm (GCPSO), which pertains to the physics group
and has the very important advantage of avoiding premature convergence [18]; evaporation
rate-based water cycle algorithm (ER-WCA), from the physics group and based on the wa-
ter cycle process in nature [19], having an improved convergence for the global minimum
and high accuracy; supply-demand-based optimization algorithm (SDO) [20], based on
the economic cobweb model which makes the correspondence between the convergent
mode with the exploitation, the divergent mode with the exploitation, and the closed mode
with demarcation; enhanced Harris hawks optimization (EHHO), is an improved version
of the Harris hawks optimization using general opposition-based learning and orthogonal
learning [21].

Table 1 presents a picture of the algorithms applied to extract the parameters of the
photovoltaic cells and panels with pros and cons. Additionally, new algorithms with high
and good results are added, such as: honey badger algorithm with oppositional-based
learning (HBA-OBL) [22], African vultures optimization algorithm (AVOA) [23], improved
slime mold optimizer (ImSMA) [24], genetic algorithm with convex combination crossover
(GACCC) [25], niche particle swarm optimization in parallel computing (NPSOPC) [26],
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enhanced adaptive differential evolution algorithm (EJADE) [27], neural network algorithm
with reinforcement learning (RLNNA) [28].

Table 1. Literature review of recent optimization algorithms.

Algorithm Pros Cons Statistical Tests Year

IWOA [10]
• Fast convergence; good robustness
• Avoid trapping into local minimum and

find the global minimum; good accuracy

• Sensitive parameter
setting RMSE; SIAE; Wilcoxon’s test 2018

ILCOA [11]
• High accuracy
• High convergence rate

• Poor stability and
robustness

• Possibility to remain in
the local minimum

RMSE; MAE; NMAE; MBE 2019

MLBSA
[7,12]

• High accuracy: the speed of convergence
• A proper balance between local and

global exploitation

• Poor search accuracy
and reliability in the
absence of an elite
mechanism based on
chaotic local search

• High computational
time

RMSE 2018

ISCE [14]
• Finding global minimum
• High accuracy; good robustness
• The number of iterations is small

• Few statistical tests RMSE 2018

HSDA [9]
• High accuracy
• Strong global searching capacity

• High computational
time

RMSE; MAE; t-statistic;
MBE; R2 2021

BMOA [17]
• Good accuracy and reliability
• The number of iterations is small

• Medium
computational time

RMSE; MSE; MAPE; MBE;
MAE; MRE 2022

GCPSO [18]
• Avoids premature convergence
• Few adjustable parameters
• High convergence performance

• Convergence is
guaranteed, but this
can be local or global
minimum

RMSE; MAE; SSE; ξ 2018

ER-WCA
[19]

• Fast convergence
• A proper balance between local and

global exploration

• Medium solution
quality RMSE; MAE; MRE 2017

SDO [20]

• Ability to balance exploration and
exploitation

• Good accuracy for SDM model; good
convergence

• Medium solution
quality RMSE; SIAE; Wilcoxon’s test 2019

EHHO [21] • Good accuracy and reliability
• Medium solution

quality, especially for
DDM

RMSE; RE 2020

HBA-OBL
[22]

• Good accuracy
• High convergence • Few statistical tests RMSE; RE 2022
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Table 1. Cont.

Algorithm Pros Cons Statistical Tests Year

AVOA [23]
• Low computational complexity
• Prevents premature convergence

• Medium execution
time Wilcoxon rank-sum test 2021

ImSMA [24]
• Good balance between the exploration

and exploitation

• Medium solution
quality

• Few statistical tests
RMSE 2021

GACCC
[25]

• A proper balance between finding good
solutions and diversification of the search
space

• Good accuracy

• Few statistical tests RMSE 2017

NPSOPC
[26]

• Good global optimal searchability.
• Medium solution

quality
• Few statistical tests

RMSE 2020

EJADE [27]
• Good convergence speed
• Good balance of exploration and

exploitation in the process of evolution

• The number of
iterations is high

• Medium execution
time

RMSE 2020

RLNNA
[28]

• Good accuracy
• High stability

• High execution time
• Medium

computational
complexity

RMSE; Wilcoxon test 2021

MAE—mean absolute error; SIAE—sum of individual absolute error; NMAE—normalized MAE; SSE—sum
squared error, ξ—weighted RMSE proposed; RE—relative error.

The paper aims to address several research questions, which are listed below:

• Why is the photovoltaic cell or panel parameter extraction needed?
• What are the limitations of analytic methods in extracting the photovoltaic cell param-

eters?
• Why are metaheuristic algorithms used for photovoltaic cell or panel parameter

extraction?
• Can the results previously obtained by other research be further improved using novel

algorithms?

New metaheuristic algorithms are developed by researchers to solve the global op-
timization problems for all groups previously mentioned. These new algorithms can be
adapted to solve the problem of photovoltaic cells and panels parameters determination
which is a multimodal one. Zamani et al. classified metaheuristic algorithms into single
solution and population-based ones. For the last group, the swarm algorithms are classified
according to the years and behaviors of diverse species in the following subgroups: insects,
terrestrial animals, birds, and aquatic animals, which include the new algorithms [29].
In addition, new metaheuristic algorithms are classified in [30], where the groups are:
physics—containing both physical and mathematical concepts in nature, swarm, and evo-
lutionary. For the evolutionary subgroup, the differential evolution algorithms are widely
discussed. From the new metaheuristic algorithms, the BWOA is chosen for usage to extract
the parameters of the photovoltaic cells and panels.

The main target of this paper is to improve the determination of the photovoltaic cells
and panels parameters and to reduce the computational time using the black widow opti-
mization algorithm. Two versions of the black widow optimization algorithm: pheromone
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value BWOA and cannibalism BWOA are used for RTC (both models) and PWP201 (both
models), but without very good results [31]. The novelty and contributions of this paper are:

• The black widow optimization algorithm is adapted and used for the first time in
order to estimate the parameters of the photovoltaic cells and panels (amorphous
silicon (aSi) and PVM 752 GaAs) for the single diode and double model;

• The results obtained for the photovoltaic cell and panels parameters using BWOA are
compared with the ones given by the best metaheuristic models from the specialized
literature, using four statistical tests, such as the root mean square error (RMSE), mean
relative error (MRE), the mean bias error (MBE), the coefficient of determination R2

and adjusted coefficient of determination Ra
2;

• Analyzing the RMSE when the number of the iterations and population vary so as to
identify the best solution;

• The results obtained by BWOA prove the superiority or equality in performance with
the best metaheuristic algorithms. The best improvement is by 16.5% for the PVM 752
GaAs in the case of the two diodes model;

• The accuracy in determining the photovoltaic cells and panels parameters and the
computational time are significantly improved.

The paper is structured as follows: models of the photovoltaic cells and panels and
statistical tests are given in Section 2, the results and discussions are presented in Section 3,
and in Section 4, the conclusions and the future work are presented.

2. Methods

The current-voltage characteristic is the tool used to extract the photovoltaic cells
and panels parameters [4]. The short circuit current, open circuit voltage, and maximum
power can be obtained directly from the current-voltage characteristic. Other parameters:
Iph—the photogenerated current, I0—the reverse saturation current, Rs and Rsh, the parasitic
resistance series and shunt, and n—the ideality factor of the diode can be obtained using
the different methods and algorithms discussed before. All current-voltage characteristics
used in the paper as datasets are measured. There are more techniques for this, such as
the capacitor, the potentiometer, and MOSFET techniques [32]. The BWOA is proposed to
extract the parameters of two photovoltaic cells and two photovoltaic panels, using both
models SDM and DDM.

2.1. Models

The behavior of the photovoltaic cells and panels is described using equivalent circuits
and mathematical models. Equation (1) represents the mathematical DDM model of the
photovoltaic panel with Ns cells connected in series [27]. The first bracket multiplied with
I01 is the Id1, and the second multiplied with I02 is Id2. The model for the photovoltaic cell
is obtained using Equation (1), Ns equal to 1. The SDM model is obtained from Equation (1)
if the second bracket is 0. For the DDM model, index 1 and 2 represent the diffusion
mechanism and generation-recombination mechanism, respectively.

I = Iph − I01

(
e

V+Ns IRs
n1 NsVT − 1

)
− I02

(
e

V+Ns IRs
n2 NsVT − 1

)
− V + Ns IRs

NsRsh
(1)

The thermal voltage VT = kT/q is calculated for all photovoltaic cells and panels,
using the following values for Boltzmann constant—k = 1.3806503 × 10−23 J/K and for the
elementary electrical charge—q = 1.6021766 × 10−19 C.

The equivalent circuit of the photovoltaic cell for the SDM model is presented in
Figure 1a, where the diode, Rsh and the current source are bound in parallel. DDM model
is presented in Figure 1b, in this case the current source, two diodes and Rsh are in parallel.
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2.2. Statistical Tests

Five statistical tests are used to analyze the performance of the BWOA. These tests
are the root mean square error, Equation (2), the mean relative error, Equation (3), the
mean bias error, Equation (4), the coefficient of determination, Equation (5), and adjusted
coefficient of determination, Equation (6).

RMSE(I,V) =

√√√√√ p
∑

i=1
(Iic − Iim)

2

p
(2)

MRE(I,V) =

p
∑

i=1

∣∣∣ (Iic−Iim)

Iim

∣∣∣
p

(3)

MBE(I,V) =

p
∑

i=1
(Iic − Iim)

p
(4)

R2 = 1−

p
∑

i=1
(Iic − Iim)

2

p
∑

i=1

(
Iim − Iim

)2
(5)

R2
a = 1− p− 1

p− k− 1

(
1− R2

)
(6)

where p represents the number of measurement points, Iic is the computed current, Iim is
the measured current, Iim is the average of the measured current, and k represents the
number of parameters.

The objective function in this study is to minimize the root mean square error RMSE(x), where
x represents the five or seven parameters used for the SDM model and DDM model, respectively.
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2.3. Black Widow Optimization Algorithm

Hayyolalam and Kazem [33] developed a black widow optimization algorithm, based
on inspiration from black widow spider mating behavior. Peña-Delgado et al. [34] used
the black widow optimization algorithm in a three-phase eleven-level inverter for selective
harmonic elimination. The male of the black widow spider actively assists the female in
sexual cannibalism. Devotion during mating has increased the likelihood of more eggs
being fertilized. Cannibalism is commonly associated with demography and has significant
population-level implications. Cannibalism is a unique stage in this approach. In this stage,
entities with insufficient fitness are excluded from the circle, causing rapid convergence.
BWOA can inspect a vast region to find the optimum global solution, providing stellar
performance in the exploitation and exploration processes; this gives the ability to avoid
local optima difficulties and quick convergence speed. This BWOA begins with a search
agent (population) of spiders, with each spider denoting a viable candidate. These first
spiders endeavor to spawn a new generation as couples. The movement and pheromone
are the key elements of the proposed BWOA.

The mathematical modeling of the BWOA is described as follows:
Movement: as indicated in Equation (7), the spider’s moves inside the web were

characterized as linear and spiral.

→
p i(n + 1) =

{→
p best(n)− q

→
p r1

(n) i f rand() ≤ 0.3
→
p best(n)− cos(2πδ)

→
p i(n) f or other circumstance

(7)

where,
→
p i(n + 1) is the new position of a search agent,

→
p best(n) is the previous iteration

best search agent, q represents the randomly generated float number between [0.4, 0.9], r1
varies between 1 and the maximum size of search agents generated by a random integer
number,

→
p r1

(n)- position of the r1 search agent, with i 6= r1, δ is the randomly generated

float number in the interval [−1.0, 1.0],
→
p i(n) is the position of the current search agent.

Pheromones: pheromone is a significant phenomenon in the mating of spiders. A female
spider with low pheromone rates indicates a hungry cannibal spider. Male spiders typically
do not prefer female spiders with low pheromone rates. For low pheromone rates, scores of
0.3 or below, it would be substituted by another female spider. Based on Equation (8), the
spider updates its position and moves towards an option to avoid the female spiders with low
pheromone rates. The equation represents the pheromone rate value.

pheromone (i) =
( f itnessworst − f itness(i))
( f itnessworst − f itnessbest)

(8)

where, f itnessworst is the current generation worst fitness value, f itnessbest is the current
generation best fitness value, f itness(i) is the ith search agent’s current fitness value.

Updating of search agent:

→
p i(n) =

→
p best(n) +

1
2

[→
p r1

(n)− (−1)γ ∗→p r2
(n)
]

(9)

where
→
p i(n) is the low pheromone rate search agent is going to be modified, r1 and r2

are random integer numbers derived between 1 and the maximum size of search agents,
provided r1 6= r2,

→
p r1

(n),
→
p r2

(n)- r1, r2 chosen search agents,
→
p best(n) is best past iterations

best search agent, γ is a randomly generated binary number, γ∈ {0, 1}.
The proposed algorithm updates the low pheromone rate search agent instead of the

whole search agent updating before the next iteration, enhancing the fitness quality and
leading to better equilibrium between the exploitation and exploration processes.

Strengths of the BWOA:

• Easy to implement;
• Better convergence speed;
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• Significantly avoids the entrapment of local optima;
• Satisfactory accuracy;
• Reduced complexity.

Weakness of the BWOA: BWOA belongs to the metaheuristic algorithm; hence it
cannot ensure that it will discover the best result.

Procedures of the black widow optimization algorithm:
The following procedures are incurred in the proposed BWOA.
Procedure 1: start
Procedure 2: perform the initialization of variable and search agents
Procedure 3: carry out the computation of the spider movements using Equation (6),

for each iteration, the q and δ varies between the range −1.0 ≤ δ ≤ 1.0 and 0.4 ≤ q ≤ 0.9
randomly. The value of q and δ responsible for the linear and spiral movement, respectively.

Procedure 4: using Equation (7), calculate each search agent’s pheromone rate.
Procedure 5: using Equation (8), update the search agent.
Procedure 6: compute the new fitness value (

→
p new(n)) new search agent. If

→
p new(n) <

→
p best(n) then

→
p new(n) =

→
p best(n).

Procedure 7: increment the iteration (i.e., Iteration = iteration +1).
Procedure 8: record the best optimal value

→
p best(n).

Procedure 9: terminate.
The flowchart of the proposed algorithm based on solar cell/panel parameter extraction

is shown in Figure 2. The PV cell/panels parameters extraction is considered as the single
objective optimization problem with the objective function of minimization of error (RMSE).
The proposed BWOA set parameters are dimension: 5 (SDM) and 7 (DDM), number of search
agents (populations): 250, and number of iterations: 1500.
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3. Results and Discussions

Four photovoltaic devices, two photovoltaic cells RTC France and amorphous silicon,
and two photovoltaic panels PWP201 and PVM 752 GaAs are considered to verify the
performance of the BWOA. The comparison with the algorithms is made by analyzing the
results for root mean square error, mean relative error, mean bias error, the coefficient of
determination, and adjusted coefficient of determination. First, the algorithm was applied
to extract the parameters using 1500 iterations and 250 populations.

The current-voltage characteristic from RTC silicon photovoltaic cell is measured at
1000 W/m2 and 33 ◦C temperature. The dataset [35], the values for current calculated
using the BWOA for both models SDM and DDM, and the errors are presented in Table S1.
The extracted parameters for both models SDM and DDM using the BWOA are presented
in Table 2, where Iph is the photogenerated current, I0 is the reverse saturation current, n
represents the ideality factor of the diode, Rs is series resistance, and Rsh is shunt resistance.

Table 2. The parameters of RTC photovoltaic cell.

Model Iph [A] Io1 [µA] n1 Rs [Ω] Rsh [Ω] Io2 [µA] n2

SDM 0.760775530434 0.323020844639 1.48118360077909 0.03637709229298 53.71852777362 - -

DDM 0.760788874901 0.231811940424 1.45130774253217 0.03686252219760 56.97316671933 2.843617195413 2.4133546221726

The results for the five statistical tests obtained using the extracted parameter from the
BWOA and the best metaheuristic algorithms are given in Table 3. It can be observed that
BWOA gives the best results for all statistical tests, for both analysis models. MRE and MBE
have the best improvements. The adjusted coefficient of determination shows that all five
parameters are significant. Whereas the RMSE value given by the considered algorithms
is very good for the SDM model, it becomes less good for the DDM models, apart from
the HSDA algorithm. The genetic algorithm and particle swarm optimization have poor
results for RMSE. The problem with the genetic algorithm is that it falls within the local
minimum. The algorithms from the particle swarm optimization (PSO) family have some
advantages in comparison with the genetic algorithm, but the results can be improved.
The RMSE for the genetic algorithm is 0.01908 and for PSO it is 0.001386 in the case of the
SDM model. Using hybridization, the performance of both algorithms is improved. The
genetic algorithm with convex combination crossover has better RMSE for both models
in comparison with the niche particle swarm optimization in parallel computing, and the
RMSE of both algorithms are very close to the ones given by BWOA. RMSE obtained using
the black widow optimization algorithm version is poor. RMSE is 0.0026 for pheromone
value BWOA and 0.0071 for cannibalism BWOA in the case of the SDM model, and 0.0033
and 0.0075, in the case of the DDM model, respectively [31].

Table 3. Statistical tests of the RTC photovoltaic cell for different algorithms.

Algorithms Model RMSE MRE MBE R2 Ra
2 Computing

Time [s]

BWOA SDM 0.00098602187 0.00150107 9.6050008 ×
10−11 0.999989306 0.999986632 1.965546

HDSA SDM 0.00098602189 0.00739214 1.42971 × 10−8 0.999989306 0.999986632 22.12423

ISCE SDM 0.00098602189 0.0074567 −8.61057 ×
10−9 0.9999893 0.999986625 -

IWOA SDM 0.000986022 0.00645125 6.71469 × 10−5 0.99998911 0.999986388 -

ILCOA SDM 0.000986022 0.0081267 2.2791 × 10−7 0.99998923 0.999986537 -
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Table 3. Cont.

Algorithms Model RMSE MRE MBE R2 Ra
2 Computing

Time [s]

MLBSA SDM 0.000986022 0.0081209 2.3011 × 10−7 0.99998923 0.999986537 44.1

ImSMA SDM 0.001166644 0.124608 −6.44794 ×
10−2 0.99978923 0.999986537 -

GACCC SDM 0.0009860298 0.0073618 2.14019 × 10−6 0.999989306 0.999986632 -

NPSOPC SDM 0.00098856 0.005509 9.414449 ×
10−5 0.99997123 0.999964037 -

EJADE SDM 0.000986022 0.00739214 1.42971 × 10−8 0.999989306 0.999986632 11.82

BWOA DDM 0.0009773823 0.00761577 2.61366 ×
10−8 0.999989493 0.999985407 2.166910

HDSA DDM 0.000982174 0.00801231 −3.30237 ×
10−6 0.99998939 0.999985264 24.21267

ISCE DDM 0.000982485 0.00800123 −9.32695 ×
10−10 0.99998938 0.99998525 -

IWOA DDM 0.00098255 0.00832156 2.03269 × 10−8 0.99998939 0.999985264 -

ILCOA DDM 0.00098257 0.00832123 −4.5227 ×
10−7 0.99998939 0.999985264 -

MLBSA DDM 0.00098249 0.00801432 1.03269 × 10−9 0.99998938 0.99998525 39.2

GACCC DDM 0.00098249 0.00775781 1.49564 × 10−6 0.999989382 0.999985253 -

NPSOPC DDM 0.00098294 0.00773652 6.02285 × 10−6 0.999989372 0.999985239 -

EJADE DDM 0.00098363 0.00783214 5.41871 × 10−6 0.999989388 0.999985243 23.16

The best results are highlighted in bold.

The current-voltage characteristic for the silicon amorphous photovoltaic cell is mea-
sured at 1000 W/m2 irradiance and 25 ◦C temperature. The calculated values for the
current of the aSi photovoltaic cell, the data set [9], and the errors are presented in Table S2.

The five and seven extracted parameters for both models SDM and DDM of the aSi
photovoltaic cell using the BWOA are presented in Table 4.

Table 4. The parameters of aSi photovoltaic cell.

Model Iph [A] Io1 [µA] n1 Rs [Ω] Rsh [Ω] Io2 [µA] n2

SDM 0.011344722027 0.734937259184 3.3684179763920 0.01 523.1534162533 - -

DDM 0.011343901356 3.499752108404 4.9992795225461 0.3800093610916 554.6414716819 0.156114790404 2.9571967602922

The results for the five statistical tests obtained using the extracted parameters from
the BWOA and the best metaheuristic algorithms are given in Table 5. There are very few
algorithms that are currently applied to extract the parameters of aSi photovoltaic cell. The
BMOA is used instead of IWOA algorithm for the biology group. The five-parameters
method is also used to extract parameters for the SDM model [4]. BWOA is by far the best,
especially for the DDM model. RMSE obtained using HSDA is very close for the SDM
model. The computational time for BWOA is two times lower than the following algorithm.

Table 5. Statistical tests of the aSi photovoltaic cell for different algorithms.

Algorithms Model RMSE MRE MBE R2 Ra
2 Computing

Time [s]

BWOA SDM 4.6123219 × 10−5 0.004161571 2.159066442 × 10−12 0.9999702 0.999966475 2.094126

HDSA SDM 4.619456 × 10−5 0.0042345 4.13577 × 10−7 0.999665 0.999623125 18.1212

BMOA SDM 8.2115 × 10−5 0.0073431 −1.6201 × 10−6 0.997365 0.997035625 4.746904



Mathematics 2023, 11, 967 11 of 24

Table 5. Cont.

Algorithms Model RMSE MRE MBE R2 Ra
2 Computing

Time [s]

5P SDM 2.08631 4 × 10−4 0.0153567 −0.000144047 0.993170 0.99231625 -

BWOA DDM 4.2586126 × 10−5 0.0037876085 −9.393959725 × 10−9 0.999977 0.999972763 2.338393

HDSA DDM 4.4973518 × 10−5 0.00801231 2.63015 × 10−8 0.999683 0.999624605 19.23451

BMOA DDM 5.3511 × 10−5 0.0046531 3.7606 × 10−7 0.999467 0.999368816 5.520116

Best results are highlighted in bold.

The PWP201 photovoltaic panel has 36 polycrystalline silicon photovoltaic cells. These
cells are connected in series. The current-voltage characteristic for the PWP201 photovoltaic
panel is measured at 1000 W/m2 irradiance and 45 ◦C temperature [35]. The calculated
values for the current of the PWP201 photovoltaic panel using the BWOA for both models
SDM and DDM, the data set, and the errors are presented in Table S3.

The extracted parameters of the PWP201 photovoltaic panel in both cases using the
BWOA are shown in Table 6.

Table 6. The parameters of the PWP201 photovoltaic panel.

Model Iph [A] Io1 [µA] n1 Rs [Ω] Rsh [Ω] Io2 [µA] n2

SDM 1.030514298911 3.482262763248 48.6428346965937 1.20127101509370 981.9822671055 - -

DDM 1.030467877304 0.509349656031 49.7918122619372 1.20084582205427 990.1811809837 3.007105049127 48.523613004943

The results for the five statistical tests obtained using the extracted parameter from
the BWOA and the best metaheuristic algorithms are presented in Table 7. The dataset of
PWP201 photovoltaic panel is the most used after the one for the RTC cell. RMSE, R2, Ra

2

for the SDM model are almost equal for BWOA, HSDA, ISCE, MLBSA, GACCC, NPSOPC,
and EJADE. The BWOA has better results for MRE and MBE. BWOA shows its superiority
for the five statistical tests for the DDM model. The computing time is the smallest one.
The RMSE obtained using the black widow optimization algorithm versions is poor. The
RMSE is 0.0035 for pheromone value BWOA and 0.0059 for cannibalism BWOA in the case
of the SDM model, and 0.005 and 0.0051, respectively, in the case of the DDM model [31].

Table 7. Statistical tests of the PWP201 photovoltaic panel for different algorithms.

Algorithms Model RMSE MRE MBE R2 Ra
2 Computing

Time [s]

BWOA SDM 0.0024250748 0.003048773 1.670003 × 10−10 0.999970116 0.999962252 2.003670

HDSA SDM 0.0024250748 0.00599652 −9.49346× 10−10 0.999970116 0.999962252 21.32178

ISCE SDM 0.002425075 0.00599652 −9.49475 × 10−9 0.999970116 0.999962252 -

EHHO SDM 0.00242508 0.00599744 −9.43245 × 10−9 0.999970116 0.999962252 -

IWOA SDM 0.0024251 0.00846125 5.21469 × 10−5 0.999970511 0.999962751 -

ER-WCA SDM 0.0024378989 0.00511445 1.23842 × 10−4 0.999969799 0.999961851 -

MLBSA SDM 0.002425075 0.00612177 1.83197 × 10−5 0.999970115 0.999962251 43.44

GACCC SDM 0.0024250748 0.00599767 2.52888 × 10−7 0.999970116 0.999962252 -

NPSOPC SDM 0.0024250762 0.00601738 1.61452 × 10−6 0.999970116 0.999962252 -

EJADE SDM 0.0024251 0.00846125 5.40469 × 10−5 0.999970511 0.999962751 11.85
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Table 7. Cont.

Algorithms Model RMSE MRE MBE R2 Ra
2 Computing

Time [s]

BWOA DDM 0.0024260068 0.003052412 5.1019716 × 10−6 0.999970091 0.999957776 2.163120

HDSA DDM 0.002587754 0.0107405 −5.3062 × 10−5 0.999965972 0.99995196 22.32145

BMOA DDM 0.0041767 0.0056796 5.3913 × 10−4 0.999923401 0.99989186 7.59144

GCPSO DDM 0.0026313 0.0137405 −3.64427 × 10−5 0.999965991 0.99995198 -

The best results are highlighted in bold.

The dataset of the PVM 752 GaAs thin-film photovoltaic panel is measured at the
national renewable energy laboratory (NREL) [36], the values obtained using the BWOA for
both models SDM and DDM, and the errors are presented in Table S4. The current-voltage
characteristic for PVM 752 GaAs thin-film photovoltaic panel is measured at 1000 W/m2

irradiance and 25 ◦C temperature.
The extracted five and seven parameters of the PVM 752 GaAs photovoltaic panel

using the BWOA are given in Table 8.

Table 8. The parameters of PVM 752 GaAs thin-film photovoltaic panel.

Model Iph [A] Io1 [µA] n1 Rs [Ω] Rsh [Ω] Io2 [µA] n2

SDM 0.100066825796 3.7788963 × 10−12 1.6156728332454 0.6605088752480 608.0099343761 - -

DDM 0.100010673592 9.988550426791 7.17885667016653 0.67249614174253 983.1116498983 1.5226865 × 10−12 1.5577162075783

The results for the five statistical tests obtained using the extracted parameter from
the BWOA and the best metaheuristic algorithms are given in Table 9. BWOA shows its
performance for the PVM 752 GaAs thin-film photovoltaic panel for both SDM and DDM
models. RMSE obtained by BWOA is improved (decreasing) by 3% in comparison with
HSDA algorithm, which is the second in the case of the SDM model, and with 16.5% in the
case of the DDM model. Additionally, the computing time for BWOA is very low, ten times
lower than HSDA.

Table 9. Statistical tests of PVM 752 GaAs thin-film photovoltaic panel for different algorithms.

Algorithms Model RMSE MRE MBE R2 Ra
2 Computing

Time [s]

BWOA SDM 0.00022780382 0.002452525 3.827646 × 10−12 0.999960795 0.999955636 2.054059

HDSA SDM 0.0002346967 0.00739214 4.21357 × 10−9 0.999960057 0.999954801 20.23141

EHHO SDM 0.0023910170 0.0545125 5.64302 × 10−6 0.9961378 0.995629616 -

SDO SDM 0.0002369980 0.0034367 3.2839 × 10−5 0.9999576 0.999952021 -

MLBSA SDM 0.002384 0.621396 1.26592 × 10−3 0.996444355 0.995976507 -

BWOA DDM 0.0001778193 0.00761577 −1.6920782 × 10−6 0.999976112 0.999971467 2.351128

HDSA DDM 0.0002130617 0.00801231 −1.77149 × 10−7 0.999965734 0.999959071 21.32567

EHHO DDM 0.0022610170 0.00832156 5.64302 × 10−6 0.9961378 0.995386817 -

SDO DDM 0.0002231310 0.00345623 −6.18891 × 10−5 0.9999624 0.999955089 -

MLBSA DDM 0.00352 0.7234 1.2749 × 10−3 0.99645635 0.995767307 -

The best results are highlighted in bold.

Comparing the results obtained using the BWOA for the RMSE, which is the most
important statistical test, with the ones obtained using the best algorithms which are in the
specialized literature from the four groups considered, the superiority of the BWOA can
easily be observed, see Table 10. The best improvements are obtained for the two-diode
model. For all four photovoltaic cells and panels, BWOA gives lower results in RMSE. The
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decrease is from 0.5% for RTC photovoltaic cell to 16.5% for the PVM 752 GaAs. The same
results in RMSE are obtained for the PWP 201 photovoltaic panel and very little lower for
the RTC photovoltaic panel when the one-diode model was considered.

Table 10. The improvements in RMSE.

Photovoltaic Cell or Panel Model Gain

RTC
SDM 0%

DDM 0.5%

aSi
SDM 0.5%

DDM 5.3%

PWP 201
SDM 0%

DDM 6.25%

PVM 752 GaAs
SDM 3%

DDM 16.5%

All the above results for the RTC photovoltaic cell, aSi photovoltaic cell, PWP 201 pho-
tovoltaic panel, and PVM 752 GaAs photovoltaic panel are obtained using 1500 iterations
and 250 population numbers. The number of iterations and the population were varied
to optimize the extraction process as a value of RMSE and computing time. Table S5a–d
presents all the results for both models, two numbers of iterations, and several numbers
of populations.

A short computing time to extract the parameters is very important for manufacturers
in the production process. Taking into consideration this target, the population number was
varied from 15 to 250 (from 50 to 250 with step by 25) for two iterations numbers 500 and
1500. The convergence speed depends on the size of the population. A small population
leads to faster convergence but increases the possibility of falling into a local minimum,
while a large population can improve the exploration ability and avoid falling into a local
minimum, but the convergence speed decreases.

The population under 100 gives low results in RMSE, which shows that the algorithm
finds the local minimum, rather than the global one. The computing time is shorter, but
this seriously affects the performance of the algorithm.

When the SDM model is used, a good performance is obtained for a small population
rather than for the DDM model, but there is no model. For example, for the PWP201
photovoltaic panel, the best results are obtained for 175 populations in the SDM case and
125, respectively, for the DDM model. Unfortunately, the computing time is not lower if
the population number is smaller than 250, and the results in RMSE are very good. Still,
analyzing the results, the computing time can be reduced by more than 30% with a very
small increase in RMSE, which can be accepted for the manufacturing process.

The computing time for extracting the parameters with BWOA is far lower than for
the other algorithms, around 2 s. Still, it depends on the computer’s specifications to run
the algorithm. The features of the computers used are the following: BWOA runs on Intel
Core 9, 10 Core (s), 3.6 GHz 20 MB; GPU: NVIDIA GeForce RTX 3080Ti 12 GB; RAM: 32 GB;
HDSA runs on Intel Core 7, 8-thread, 1.9 GHz; MLBSA run on PC Intel Core 3 Duo 3.30 GHz
with a 4 GB RAM that runs on Windows 10 with MATLAB R2022a implementation.

By analyzing the results presented in Table S5, the best results for RMSE are included
in Table 11 for all four photovoltaic devices. The best results are obtained for 1500 iterations,
but not for the maximum population number 250. For the RTC photovoltaic cell the best
results are obtained using 175 populations in the case of the SDM model and 250 for the
DDM model. For aSi if 200 population is used for the SDM model and 225 population for
the DDM model, for the last cases, a very good improvement is observed, with RMSE being
lower by almost 4%. The best results are obtained for the PWP 201, if a 175 population
is used for the SDM model and a 125 population for the DDM model. The best results
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are obtained for PVM 752 GaAs, if a 250 population is used for the SDM model and a 225
population for the DDM model.

Table 11. The RMSE and computing time function of the iterations and population number.

Photovoltaic Cell
or Panel Model Search Agents Iterations RMSE Computing Time [s]

RTC
SDM

250 500 0.00098756008969 1.635081

175 1500 0.0009860218778915 2.889780

DDM
125 500 0.00110769738637 1.582938

250 1500 0.000977382318798 2.166910

aSi
SDM

200 500 0.00004612322475 1.687007

200 1500 0.00004612321932 1.959808

DDM
225 500 0.00004346987976 1.607626

225 1500 0.0000409439377149 2.749709

PWP 201
SDM

250 500 0.0024250748682 1.616498

175 1500 0.002425074868095 2.300761

DDM
250 500 0.0024393543586 1.735792

125 1500 0.0024250748681 1.992434

PVM 752 GaAs
SDM

175 500 0.00023029317714 1.647252

250 1500 0.000227803829 2.054059

DDM
100 500 0.00017114543330 1.496219

225 1500 0.0001677947841902 2.284357

The best results are highlighted in bold.

The matching between the current-voltage pairs from data sets and those calculated using
the BWOA is very good, this being proven by the high value of the coefficient of determination
and adjusted coefficient of determination. This can be seen for the RTC photovoltaic cell in
Figure 3 for the SDM model and in Figure 4 for the DDM model, and for both models, the
coefficient of determination is over 0.999989, and the adjusted coefficient of determination is
over 0.999985. Additionally, the individual absolute current error proves that the calculated
values for the current for the entire range of voltage measured present a high coincidence with
the ones measured. The individual absolute current error varies for the SDM model between
8.77037× 10−5 and 0.002507413. For the DDM model, the minimum is 9.20751× 10−5 and the
maximum for the individual absolute current error is 0.002555849.

The aSi photovoltaic cell current-voltage characteristics, measured and calculated, are
presented in Figure 5 for the SDM model and in Figure 6 for the DDM model. The matching
between the characteristics is very good. This is proven by the high values, for both models,
of the coefficient of determination, which is over 0.99997, and the adjusted coefficient of
determination, which is over 0.999966. Additionally, the individual absolute current error
proves that the calculated values for the current for the entire range of voltage measured
present a high coincidence with the ones measured. The individual absolute current error
varies for the SDM model between 5.373148 × 10−7 and 9.221552 × 10−5, and for the DDM
model it varies between 3.361195 × 10−6 and 9.25594 × 10−5.
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Figure 6. The current-voltage characteristics of amorphous silicon photovoltaic cell (DDM).

PWP 201 photovoltaic panel current-voltage characteristics, measured and calculated,
are presented in Figure 7 for the SDM model and in Figure 8 for the DDM model. The
matching between the characteristics is very good. This is proven by the high values, for
both models, of the coefficient of determination over 0.99996, and the adjusted coefficient
of determination over 0.999957. Additionally, the individual absolute current error proves
that the calculated values for the current for the entire range of voltage measured greatly
coincide with the ones measured. The individual absolute current error varies for the SDM
model between 6.35175 × 10−5 and 0.004832828. For the DDM model, the minimum is
7.6442 × 10−5 and the maximum for the individual absolute current error is 0.004807512.
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The PVM 752 GaAs photovoltaic panel current-voltage characteristics, measured and
calculated, are presented in Figure 9 for the SDM model and in Figure 10 for the DDM
model. The matching between the characteristics is very good. This is proven by the
high values, for both models, of the coefficient of determination over 0.99997 and the
adjusted coefficient of determination over 0.999955. Additionally, the individual absolute
current error proves that the calculated values for the current for the entire range of voltage
measured present a high coincidence with the ones measured. The individual absolute
current error varies for the SDM model between 1.448386 × 10−7 and 0.000472985, and for
the DDM model varies between 9.06281 × 10−6 and 0.0005496.
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Figure 10. The current-voltage characteristics of PVM 752 GaAs photovoltaic panel for double diodes
(DDM).

The comparison between the errors in current for the two models shows an alternation,
Figure 11 for RTC photovoltaic cell, Figure 12 for aSi photovoltaic cell, Figure 13 PWP
201 photovoltaic panel, and Figure 14 for PVM 752 GaAs photovoltaic panel, there are
regions where the errors for SDM are higher than those for DDM, and inversely. Only for
the PWP 201 photovoltaic panel, Figure 13, they are almost equal. The ultimate aim of this
research work is to extract accurate PV cell and panel parameters with reduced complexity.
According to the experimentation results-based analysis, the proposed BWOA is effective,
as reduced complexity and computing time also proved the validity with better results to
identify the parameters of the photovoltaic cells and panels.
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The proposed BWOA-based PV cell and panels parameters extraction achieved better
results with reduced computing time for both SDM and DDM. For a better understanding,
Figure 15 illustrates BWOA computing time vs. the number of search agents for the RTC
cell, aSi cell, PWP 201 panel, and PVM 752 panel. The ultimate aim of this research work is
to extract PV cell and panel parameters accurately and with reduced complexity, computing
time, and optimal results. According to the experimentation results-based analysis, the
proposed BWOA is effective, presents reduced complexity and the computing time also
proved the validity with better results to identify the parameters of the photovoltaic cells
and panels.
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4. Conclusions

The main objective of this work is to improve the extraction of the two PV cells/panels
(RTC, aSi, PVM 752 GaAs, and PWP 201) parameters for the single diode and double diodes
models using the BWOA. Additionally, the proposed BWOA effectiveness is validated by
comparing its results to those of various earlier optimization methods described in the
literature.

The main conclusions are:

• BWOA yields lower values of statistical tests, such as RMSE, MRE, MBE, R2, and Ra
2,

in comparison with all algorithms considered;
• BWOA gives lower or the same results as RMSE. These vary from 0 to 3% for the SDM

model and from 0.5% to 16.5% for the DDM model. The highest decrease is 16.5% for
the PVM 752 GaAs in the DDM model;

• The proposed algorithm is accurate and rapidly extracts the PV cells/panels parame-
ters. The computing time is very low, around 2 s;

• The analysis of the behavior of the RMSE, when the number of iterations varies, shows
that the best results are obtained for 1500 iterations. In the case of the variation of the
population sizes, the best solutions are obtained for more than 100. As for the analysis
of the SDM and DDM models, when the population sizes vary, it does not show the
model that would be expected, according to which a lesser number of parameters
would mean it is possible to use a lesser population.

As a result, the suggested BWOA offers an alternative way for parameter extraction in
PV cell/panel models.

The future research directions are to improve the algorithm’s performance through
hybridization and to apply the algorithm to extract the parameters of the triple diode model
and multijunction photovoltaic cells for different conditions, such as different temperatures
and irradiations (natural sunlight and in concentrated light up to 400 suns).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11040967/s1, Table S1. Dataset for RTC silicon photovoltaic
cell and the results for the current using BWOA; Table S2. Dataset for aSi silicon photovoltaic cell and
the results for the current using BWOA; Table S3. Dataset for PWP201 photovoltaic panel and the
results for the current using BWOA; Table S4. Dataset for PVM 752 GaAs photovoltaic panel and the

https://www.mdpi.com/article/10.3390/math11040967/s1
https://www.mdpi.com/article/10.3390/math11040967/s1


Mathematics 2023, 11, 967 23 of 24

results for the current using BWOA.; Table S5. RMSE and computing time function of the number of
the search agents and iterations using the BWOA.
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