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Abstract: The current study delivers a numerical investigation on the performance of heat transfer
and flow of micropolar fluid in porous Darcy structures with isothermal and isoflux walls (boundary
conditions) of a stretching sheet. The dynamics and mechanism of such fluid flows are modelled by
nonlinear partial differential equations that are reduced to a system of nonlinear ordinary differential
equations by utilizing the porosity of medium and similarity functions. Generally, the explicit or
analytical solutions for such nonlinear problems are hard to calculate. Therefore, we have designed
a computer or artificial intelligence-based numerical technique. The reliability of neural networks
using the machine learning (ML) approach is used with a local optimization technique to investigate
the behaviours of different material parameters such as the Prandtl number, micropolar parameters,
Reynolds number, heat index parameter, injection/suction parameter on the temperature profile, fluid
speed, and spin/rotational behaviour of the microstructures. The approximate solutions determined
by the efficient machine learning approach are compared with the classical Runge–Kutta fourth-order
method and generalized finite difference approximation on a quasi-uniform mesh. The accuracy of
the errors lies around 10−8 to 10−10 between the traditional analytical solutions and machine learning
strategy. ML-based techniques solve different problems without discretization or computational work,
and are not subject to the continuity or differentiability of the governing model. Moreover, the results
are illustrated briefly to help implement microfluids in drug administering, elegans immobilization,
and pH controlling processes.

Keywords: Darcian porous channel; micropolar fluid; nonlinear differential equation; numerical
computation; machine learning; supervised neural networks

MSC: 65KXX; 65YXX; 68WXX; 76DXX; 76-10

1. Introduction

A fluid with microstructure or liquids that retain rigid and arbitrarily sloped atoms
suspended in a viscous medium is known as a micropolar fluid. The dynamics of mi-
crofluidics have been extensively utilized due to their industrial significance, especially
in thermal transport, polymer indulgence, painting material, ornament evolving, wire
coatings, and drug administering [1]. The development of science and technology has
sparked a surge in interest in creating new fluid types and studying how they behave in
various practical geometries. Microstructured fluids react differently than conventional
fluids. The traditional theory of Newtonian fluid flows is insufficient to accurately char-
acterize the flow and heat transfer characteristics of these fluids. To explain the basic
nature of these fluids, various theories have been put forth; in particular, Eringen’s [2]
theory of micropolar fluids offers all the information needed to support the dynamics
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of such fluids. The phenomena of heat transfer are of immense importance in industrial
applications. The effectiveness of thermal and cooling systems depends on the ability of
fluids to transmit heat efficiently [3]. As a result, thermal enhancement has been researched
extensively in recent years. Heat transfer fluid (known as HTF) is an essential part of solar
thermal power plants, as it has a significant impact on the efficiency of the receiver, decides
the kind of thermodynamic cycle that can be used and the level of performance it is capable
of, and decides the type of thermal energy storage technology that required for implemen-
tation. H.Benoit [4] examined the liquid, gas, supercritical, two-phase, and particulate heat
transfer fluids that are currently in use as well as those to be developed in the future, and
presented the thermophysical properties amd correlations that can be used to determine
the receiver tube–HTF heat transfer coefficients.

The two-phase magnetohydrodynamic (MHD) heat transfer flow of Newtonian fluids
in MHD generators and pumps has been the subject of significant modeling work [5,6].
Many authors have contributed to these efforts. Findings have been reported for several
depth-to-viscosity ratios that were considered appropriate. A. M. Siddiqui [7] examined
the movement of heat that occurs between two layers of Phan–Thien–Tanner (PTT) flu-
ids as they pass through a cylindrical conduit. M. Modak [8] studied the properties and
characteristics of a stainless vertical foil of 0.15 mm thickness utilizing various fluids, such
as nanofluids (Al2O3) and pure water, along with an infrared imaging camera. The pro-
cess of heat transfer in an incompressible non-newtonian fluid under the conductance
of electric charges and uniform magnetic field in the rectangular duct was studied by
M. Ahmad [9]. The mathematical model of the heat transfer process in non-Newtonian
micropolar fluids with viscous dissipation and power-law fluid rheology model subjected
to the non-axisymmetric boundary conditions was recently studied by Ryoichi Chiba [10].

Generally, in mathematics, fluid problems are mathematically modeled as nonlinear
differential equations. Because the fluids are affected by different variables, therefore,
the nonlinear modeling shows the complex synergetic effects [11,12]. As has been stated
in numerous studies, nonlinear models are harder to solve; therefore, various numerical,
exact, and analytical approaches have been adopted by the research community [13]. N. T.
El-dabe [14] investigated the changes in a chemical reaction, heat transfer, and magnetic
field on the flow of a non-Newtonian fluid over the vertical cylinder using the homotopy
perturbation method (HPM). M.N. Smirnova [15,16] studied the exact solution for the
problem of a condensed material surface burning in a flow of oxidant in the case of
the steady flame over fuel layer. Further, he utilized numerical computational methods
to investigate the numerical precision and stochastic error accumulation when solving
problems of detonation or deflagration combustion of gas mixtures in rocket engines [17,18].
Additionally, I. C. Liu [19] used the same method to examine how the flow and heat transfer
in a thin layer on a horizontal sheet in the presence of thermal radiation are affected by
varying heat flux and internal heat generation. The transfer matrix method (TMM) and
variational iteration method (VIM) were applied by T.A.El-Sayed [20] to study the stability
and dynamic behavior of the critical velocity by varying different parameters of a fluid
flowing in a multi-span pipe. The heat transfer of a non-Newtonian fluid in an internal
duct was studied by J. K. Grabski [21]. In order to achieve the general solution, the method
of fundamental solutions was utilized, and radial basis function approximations were
utilized in order to obtain the general solution through two different feasible methods.
K. R. Raghunatha [22] implemented the Laguerre wavelet method (LWM) for numerical
investigation of coupled nonlinear ordinary differential equations reduced from partial
differential equations (PDEs) using Berman’s similarity transformation to represent the
two-dimensional flow of a rotating micropolar fluid in a permeable channel with high
mass transfer. Other techniques include the Galerkin finite element method (GFEM) [23],
finite difference lattice Boltzmann method (FDLBM) [24], multi-block finite difference
method [25], quadrature-based moment methods (QBMM) [26], and reproducing kernel
algorithm [27].
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In the recent past, researchers have focused on implementing optimization algorithms
for finding solutions to nonlinear differential equations. The use of systematic procedures,
strategies, disciplines, and tactics for the purpose of improving a particular process within
the parameters of a project or initiative is what we mean when we talk about optimization.
Adjusting a procedure in such a way that it performs more effectively than it did in the
past can be achieved in a number of different ways. Simplistic examples that can assist in
streamlining a workflow include deleting a step from the process, adding a step, or revising
a phase that already exists in the process. Recently, optimization algorithms have been used
to optimize the weights in neural networks [28–30]. Artificial neural networks, known as
ANNs, are computational networks inspired by biological neural networks. The late nine-
teenth century and early twentieth century saw the beginning of the foundational research
that would later become the field of artificial neural networks (ANNs). Inter-disciplinary
work in the fields of physics, psychology, and neurophysiology was the primary focus of
this study. This early work focused on basic theories of learning, perception, and condition-
ing, among other topics; nevertheless, it did not include explicit mathematical models of
how neurons functioned. The study of neural networks received a new lease on life as a
result of these recent advancements. Over the course of the previous two decades, a large
number of academic articles have been published, and researchers have looked into a wide
variety of ANN types [31,32]. The ANNs that are utilized most frequently for a wide range
of issues are those that are predicated on a supervised method and consist of three layers:
an input layer, a hidden layer, and an output layer. An example is shown in Figure 1. Recent
applications of different types of neural networks with optimization algorithms have been
widely used to solve a wide variety of problems, including heat transfer investigation
of magneto-hydrodynamic fluids with equilibrium conditions using Elman neural net-
works [33,34], mathematical models for flow and heat-transfer analysis of a non-Newtonian
fluid with axisymmetric channels and porous walls using Legendre polynomial-based
neural networks [35,36], solving partial differential equations for condensation of fluid
flow in a spinning cylinder using a nonlinear autoregressive exogenous model [37,38],
and implementation of a feed-forward architecture neural network for thermal analysis
of nanofluid flowing in a rotating system with fixed horizontal plates and subjected to
external forces such as magnetic fields [39,40]. These important studies have encouraged
us to incorporate and expand upon the concept of a supervised machine learning algorithm
for the solutions and performance of heat transfer in micropolar fluid with isothermal and
isoflux boundary conditions. Important features of the proposed study are as follows:

• In the designed scheme, a novel machine learning process is conducted by a computer
that is not subject to or affected by the continuity and singularity of the differen-
tial equations.

• The machine learning techniques are applicable to multidimensional data. They
can supervise the given data in an efficient manner by employing the Levenberg–
Marquardt algorithm for local search optimization.

• The smooth convergence of the optimization of an objective function in terms of mean
square error highlights the stability and efficiency of the designed technique.
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Figure 1. Simple architecture of artificial neural network comprising multiple layers (input, hidden,
and output layers).

2. Governing Model of the Problem

In the classical theory of micropolar fluids, six principles are considered: three for
micro-rotation and three for translation. The idea of micropolar fluid flow can be summed
up as the generalization of Newtonian fluid constitutive equations such that complex
microstructures such as colloidal fluids, animal blood, lubricants, muddy water, and sus-
pension of chemicals can be briefly studied. Therefore, the mathematical structure of
micropolar fluids is constructed by utilizing the principles of conservations of mass and
momentum along with conservations of local angular momentum [2]. The equations are
provided by

∇ · (ρU) +
∂ρ

∂t
= 0, (1)

∇(∇ ·U)(λc + κc + 2µc) + κc∇×W + ρfb = ρ
DU
Dt

+ (κc + µc)[∇×∇×U] +∇P, (2)

∇(∇ ·W)(αc + βc + γc) + κc∇×UW + ρ1 = ρj
DW
Dt

+ [∇×∇×W]γc + 2κc; (3)

here, W, U, fb, ρ, P, 1 and j are the vectors of the micro-rotation, velocity vector, force of a
body, fluids density, pressure, body couple per unit of mass, and micro-inertia, respectively.
Moreover, µc, λc, γc and κc denote the dynamic viscosity, Stokes viscosity, spin gradient
viscosity, and vortex viscosity, respectively, while αc and βc are the material constants.

Consider a micropolar fluid flow in a homogenous, permeable, and porous material
with permeability K over a porous stretched sheet, as schematized in Figure 2. The flow is
assumed to be two-dimensional (2D), incompressible, and independent of time, while the
body force and body couple are neglected. The flow of the fluid is caused by a sheet that is
permeable, has a length of L, and is expanding linearly along the x-axis. The y-axis runs in
a direction that is orthogonal to the sheet. The expression uw = u0x/L describes the linear
velocity profile of the flow along the sheet. Using the above assumption, Equations (1)–(3)
are reduced to [41]

∂u
∂x

+
∂v
∂y

= 0, (4)

(µc + κc)

(
∂2u
∂x2 +

∂2u
∂y2

)
+ κc

∂ω3

∂y
− µc

K
u = ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
, (5)
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γc
∂2ω3

∂y2 − 2κcω3 + κc
∂u
∂x

= ρjv
∂ω3

∂y
, (6)

where u and v are the vertical and orthogonal components of the fluid velocity along the
x and y axis, respectively, and ω3 denotes the component of the micro-rotation that is
perpendicular to the xy-plane. If T denotes the temperature of the fluid, then the energy
equation is stated as [41] follows:

u
∂T
∂x

+ v
∂T
∂y

= αeff
∂2T
∂y2 , (7)

where αeff highlights the effectiveness of thermal diffusivity. The corresponding hydrody-
namic boundary conditions are then

u(x∗, 0) = U0x∗, u(x∗, ∞) = 0

v(x∗, 0) = vw,

ω3(x∗, 0) = −m
∂u
∂y

, ω3(x∗, ∞) = 0,

where vw is the rate of mass transfer at the edge of a sheet, U0 is a constant representing
the coefficient of the wall velocity, and m ∈ [0, 1]. Different cases and types of flows based
on values of m have been suggested in various studies [42,43]. Furthermore, x∗ = x

L is a
non-dimensional x-coordinate based on the length L of the permeable sheet. The scenario
m = 1 is used to model the turbulent boundary layer flows [44]. These thermal boundary
conditions for power law temperature and heat flux are taken into account as follows:

T(x∗, 0) = T∞ + T0(x∗)s, T(x∗, ∞) = T∞, (8)

−τ
∂T
∂y

∣∣∣∣
(x∗ ,0)

= q0(x∗)s, T(x∗, ∞) = T∞ (9)

where the coefficient of wall temperature is shown by T0, T∞ denotes the temperature
far away from the sheet, q0 is the coefficient of heat flux at the edge of the sheet, τ is the
thermal conductivity of the medium, and s is the index of the power law. Furthermore, in
order to transform the partial differential equations into the system of ordinary differential
equations, the following similarity functions are defined:

η =
y√
K

, ψ = U0x∗
√

K f (η),

u = U0x∗ f ′(η), v = −U0

L

√
K f (η), ω3 =

U0x∗√
K

H(η).

where v = −∂ψ/∂x, u = ∂ψ/∂y, ψ is stream function, and f ′ = d f /dη. Then, using the
above assumptions in Equation (5), (7) can be reduced to the following system of ODEs:

(c1 + 1) f ′′′ +
(

f ′′ f − f ′2
)

Re − f ′ + c1H′ = 0, (10)

H′′ − c1c2
(

f ′′ − 2H
)
− c3

(
f ′H − f H′

)
= 0, (11)

θ′′ + PrRe
(

f θ′ − s f ′θ
)
= 0, (12)
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where Pr is the Prandtl number and Re, c1, c2, and c3 are the Reynolds number and non-
dimensionless material constants, respectively, which are defined as

Re =
ρU0K
Lµc

, c1 =
κc

µc
, c2 =

κcµc

γc
, c3 =

ρjκcµc

γc
.

Now, the corresponding boundary conditions for the governing model of the micropo-
lar fluid are defined as follows:

f ′(0) = 1, f (0) = λ, f ′(∞) = 0, H(0) = 0, H(∞) = 0 (13)

θ = 1, at η = 0, θ = 0 at η → ∞, (14)

θ′ = −1 at η = 0, θ′ = 0 at η → ∞. (15)

The isothermal and isoflux conditions are shown by Equations (14) and (15). Moreover,
λ = −vwL/U0

√
K is an injection/suction parameter.

 
Porous Medium 

𝒙 

𝒚 

𝑶 
𝒖𝒘 = 𝒖𝟎𝒙

∗ 

𝒗𝒘 

Figure 2. A schematic view of the physical problem.

3. Method of Solution

This section provides a description of the methods and materials utilised in this work
for the purpose of predicting numerical solutions for a micropolar fluid flowing over a
stretched sheet with isothermal and isoflux boundary conditions.

3.1. Artificial Neural Networks

ANN is an abbreviation for an architecture that is parallel in nature, and is inspired
by the method in which central nervous system processing occurs. A neural network is a
collection of computing devices that are coupled to provide a computer with the ability to
learn and behave in a manner similar to that of a brain. Neuroscientists researching neurons
in the brains of individuals and animals developed the concept of neural networks while
conducting related their research. The field of artificial intelligence is an ongoing effort
to endow computing devices with the ability to interpret data and arrive at conclusions
in a manner that is comparable to that of human beings. An advanced concept within
this field is known as an artificial neural network, and it is part of the field of artificial
intelligence. Although there are many other kinds of ANN designs, the one that is used
the most frequently is called a multi-layer feed-forward neural network, or MLP [45].
Mathematically, the structure of ANN can be defined as

W(η) =
N

∑
j=1

α̂j f
(

b̂jη + ĉj

)
, (16)
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where α̂j, b̂j, and ĉj are the weights or neurons that are optimized during the optimization
process; in this study, tangent sigmoid is used as an activation function, which is denoted
by f and defined as follows:

f (η) =
eη − e−η

eη + e−η . (17)

The hyperbolic tangent activation function is referred to simply as the Tanh (sometimes
“tanh” or “TanH“) function. It is comparable to the sigmoid activation function, to the point
where of even having an identical S-shaped curve. Any real value can be used as an input
for the function, and it returns values in the range from −1 to 1.

3.2. Dataset

In this section, we discuss the dataset used for supervised learning of the solutions to
the micropolar fluid problem with isothermal and isoflux conditions. Different cases were
examined in this work to study the influential performance of the velocity, acceleration,
temperature, and micro-rotation. The different cases studied in this paper are provided in
Table 1. For the supervised learning, the dataset was generated for all these cases using
the numerical solver “ND-Solve” in Mathematica running the Runge–Kutta algorithm of
order 4.

Table 1. The detailed overview of the cases studied in this paper.

Fixed Parameters Variations

c1 c2 c3 λ Pr Re c1 λ Pr Re s

0.5 0.1 0.5 0.0 1.0 1.0 0.5 −0.2 0.5 0.0 0.0
1.0 −0.1 1.0 1.0 1.0
1.5 0.0 5.0 2.0 2.0
2.0 0.1 10.0 3.0 3.0
2.5 0.2 15.0 4.0 4.0

3.3. ANN with Levenberg–Marquardt Algorithm

The field of artificial intelligence that studies how machines can be taught to learn from
the data provided to them is known as machine learning. Machine learning algorithms
are computing methods that “learn” information directly from data without depending
on a preconceived equation as a model. These algorithms are used in artificial intelligence
(AI). When there are more data points available for learning, these algorithms are able to
make dynamic improvements to their performance. Furthermore, the operational phases
of the method (FFNN-BLMA) that is being proposed here is discussed below and shown in
Figure 3.

• The initial dataset is generated by a numerical solver such as the Runge–Kutta method
for the supervised procedure of the machine learning algorithm. This step is used to
determine how well the model performs on real-world datasets.

• Further, the neural network model is constructed using the NFTOOL in MATLAB to
contrive the feed-forward architecture of an artificial neural network (FFNN) with
60 neurons in the hidden layer, as shown in Figure 4. The dataset of 1001 points
obtained in the first step is provided to the FFNN as targeted data. In the FFNN
model, the dataset is partitioned into training, testing, and validation with respective
weightings of 75% and 15%.

• The mean squared error (MSE) is often used as the objective function in feed-forward
neural network (FFNN) models. The MSE measures the average difference between the
predicted output and the actual output. The objective is to minimize this error during



Mathematics 2023, 11, 1173 8 of 19

the training process to improve the model’s accuracy. Mathematically, the fitness
function (E) can be written as

E =
1
m

m

∑
i=1

(ŷi − yi)
2, (18)

where yi refers to the predicted value of the target variable based on the input variables
for the ith sample in a dataset.

• The Levenberg–Marquardt algorithm is an optimization method used to minimize
a non-linear least-squares function. It is a combination of the gradient descent and
the Gauss–Newton method, and uses a damping parameter to control the trade-off
between exploration and exploitation. It is widely used in applications such as curve
fitting, training artificial neural networks, and solving nonlinear systems of equations.
It is an efficient method for finding the optimal weights associated with the predicted
solution in Equation (18). This algorithm adjusts the weights until the error between
the predicted and actual solution is minimized. The detailed mathematical operational
work of LM algorithm can be found in [46].

Figure 3. The algorithm was designed according to the following operational phases.
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Figure 4. The feed-forward structure of the neural network used supervised learning of the targeted
data on micro-polar fluids.

4. Results and Discussion

In this paper, we investigate the fluid flow, heat transfer, and micro-rotation of a
micro-fluid by incorporating a machine learning strategy. The results of the proposed
technique are disclosed in Tables. The values for the flow speed and acceleration of the mi-
cropolar fluid with isothermal and isoflux boundary conditions are presented in Tables 2–5,
respectively. The validation of the predicted solution is demonstrated by a comparison
with the most recent methods, such as the RK method and generalized finite difference
approximation [41]. The minimum absolute errors between the predicted solution with
supervised machine learning are observed in comparison to the latest methodologies avail-
able in the literature. The targeted values or supervised data overlap to 7 to 9 decimal
places. Furthermore, the absolute difference between the predicted values of the velocity
and acceleration with isothermal and isoflux boundary conditions are shown in Figure 5.
It can be observed that the mean values of the absolute errors lie between 10−7 to 10−8.
Moreover, around 95% of the datapoints from a total of 3001 points are less than 10−8,
which reflects the estimation power as well as the precision of the methods of machine
learning. The error estimation in the predicted values of the targeted data, validation data,
and testing data are illustrated in Figure 6. An adaptive training algorithm based on the
Levenberg–Marquardt method was used to train a neural network, with the convergence
analysis shown in Figure 7. After each iteration of training, the objective function value
obtained by backpropagation was compared to the value generated by the initial network.
Each time a new iteration began and a weight update was performed, a new weight matrix
was derived from either the step-by-step learning or from calculation of the local optima.
The blue, green, and red lines show the MSE for the test, validation, and training sets,
respectively. In this study, we were able to implement an adaptive learning algorithm for
our neural networks as well as to show that these networks can learn quickly and accurately
when provided with a set of data.

Table 2. Examination of the absolute errors and the predicted solutions calculated by the designed
framework for the fluid speed with isothermal boundary conditions.

RKM NSFDA FFDNN-BLMA NSFDA FFDNN-BLMA

0.00 0.0000000 0.0000000 0.0000008 0.0000000 7.587883× 10−07

0.50 0.3803383 0.3803700 0.3803385 3.165134× 10−05 1.432999× 10−07

1.00 0.5943089 0.5943500 0.5943088 4.111222× 10−05 1.299534× 10−07

1.50 0.7144438 0.7145000 0.7144438 5.617930× 10−05 1.189993× 10−09

2.00 0.7816255 0.7816900 0.7816256 6.454517× 10−05 9.794322× 10−08

2.50 0.8189137 0.8189800 0.8189139 6.634720× 10−05 2.040021× 10−07

3.00 0.8393279 0.8393900 0.8393275 6.212871× 10−05 4.188753× 10−07
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Table 3. Depiction and statistical evaluation of the proposed solutions with recent techniques and
overview of the absolute errors of the acceleration with isothermal boundary conditions.

RKM NSFDA FFDNN-BLMA NSFDA FFDNN-BLMA

0.0 1.0000000 1.0000000 0.9999994 0.0000000 6.156236× 10−07

0.5 0.5628819 0.5628700 0.5628819 1.192400× 10−05 5.782647× 10−08

1.0 0.3163963 0.3163900 0.3163969 6.297000× 10−06 6.152475× 10−07

1.5 0.1773311 0.1773200 0.1773308 1.108800× 10−05 2.928017× 10−07

2.0 0.0988346 0.0988300 0.0988342 4.581000× 10−06 4.153778× 10−07

2.5 0.0545187 0.0545100 0.0545193 8.738000× 10−06 5.406642× 10−07

3.0 0.0295128 0.0295000 0.0295164 1.283600× 10−05 3.535229× 10−06

Table 4. Evaluation of the error values of the approximate solutions estimated by the designed
method for the fluid speed with isoflux boundary conditions.

RKM NSFDA FFDNN-BLMA NSFDA FFDNN-BLMA

0.0 0.0000000 0.0000000 0.0000008 0.00000000 7.602287× 10−07

0.5 0.3802468 0.3802400 0.3802469 6.792000× 10−06 1.430769× 10−07

1.0 0.5940108 0.5939800 0.5940107 3.079400× 10−05 1.294432× 10−07

1.5 0.7139011 0.7138400 0.7139011 6.106700× 10−05 3.144573× 10−09

2.0 0.7808526 0.7807800 0.7808527 7.259700× 10−05 1.002245× 10−07

2.5 0.8179594 0.8178900 0.8179596 6.943800× 10−05 2.029088× 10−07

3.0 0.8382604 0.8382200 0.8382600 4.038600× 10−05 4.193764× 10−07

Table 5. Evaluation of the error values of the approximate solutions estimated by the designed
method for the acceleration of fluid flow with isoflux boundary conditions.

RKM NSFDA FFDNN-BLMA NSFDA FFDNN-BLMA

0.0 1.0000000 1.0000000 0.9999995 0.00000000 5.331604× 10−07

0.5 0.5625532 0.5625100 0.5625531 4.321144× 10−05 7.240753× 10−08

1.0 0.3159240 0.3158700 0.3159246 5.400470× 10−05 5.942010× 10−07

1.5 0.1768421 0.1767900 0.1768416 5.209980× 10−05 4.668274× 10−07

2.0 0.0984144 0.0983900 0.0984139 2.440139× 10−05 5.325018× 10−07

2.5 0.0542198 0.0542200 0.0542204 2.136859× 10−07 5.898603× 10−07

3.0 0.0293613 0.0294000 0.0293629 3.873600× 10−05 1.598029× 10−06

(a) (b)

Figure 5. Comparison between the targeted solution and the predicted solution at 3001 datapoints
for the fluid velocity and acceleration with (a) isothermal and (b) isoflux boundary conditions.
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Figure 6. Estimated errors from histogram for validation, testing, and training data along with
minimum or zero error for the velocity and acceleration of the micro-polar fluid with different sets of
boundary conditions: (a,b) isothermal and (c,d) isoflux.

The mathematical model of a microfluid was analyzed in detail, with an emphasis on
the changes in different parameters, i.e., 0.5 ≤ c1 ≤ 2.5, −0.2 ≤ λ ≤ 0.2, 0.5 ≤ Pr ≤ 15.0,
0 ≤ Re ≤ 4, and 0 ≤ s ≤ 4.0, on the velocity, temperature, micro-rotations of the fluid.
In order to analyze the detailed changes taking place in the mathematical model of the
microfluid, graphical analysis was used extensively. The effects of the injection/suction
parameter on the velocity and microrotation of the micropolar fluid with different boundary
conditions can be seen in Figure 8. In the figure, λ > 0 refers to suction, while λ < 0
indicates injection and λ = 0 means no suction/injection in the flow domain. It can be
seen that when λ increases, f ′(η) decreases; this is due to the fact the temperature of a
fluid decreases that when fluid particles are injected into a porous medium, which causes
the weakening of the convection current, in turn decreasing the moments of the particles.
Moreover, the increase in λ causes a decrease in the micro-rotation of the fluid, as depicted
in Figure 8b,d. It can be seen that the effect of the boundaries on velocity is almost negligible,
while there are significant changes in micro-rotation.

The changes in Reynolds number (Re) between the different profiles of the micro-polar
fluid are demonstrated in Figure 9. The Reynolds number is a dimensionless number that
relates the inertial forces and viscous forces. The Reynolds number defines the ratio of
viscosity to inertia, and is used to categorize fluid systems in which viscosity is important
for controlling the flow volume or velocity of a fluid. Thus, an increase in the value of this
parameter decreases the value of the flow speed, while boundary layer thickness is reduced
with an increasing value of (Re) under isothermal and isoflux boundary conditions, as
shown in Figure 9. The effect on the micro-rotation H(η) is shown in Figure 9b,d for
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isothermal and isoflux boundary conditions. In both cases, the micro-rotation is increased
near the boundary and gradually decreases when the distance between fluid particles and
the wall or edge of the sheet increases.
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Figure 7. Convergence of the objective function with regard to the mean square error for distinct
boundary conditions.

The influence that the Prandtl number (Pr) and the heat index parameter have on the
temperature profile of the micropolar fluid can be seen in Figure 10. The Prandtl number is
a dimensionless number that determines the intrinsic property of a fluid, and is defined as
the ratio of the momentum diffusivity (or kinematic viscosity) to the thermal diffusivity
of the fluid. As the Pr value increases, the temperature continues to drop. The thickness
of the thermal boundary layer is decreased whenever the Prandtl number is increased.
In problems involving heat transfer, Pr is the variable that determines the relative thickness
of the momentum and thermal boundary layers. When Pr is low, heat diffuses swiftly in
comparison to the velocity, which implies that for liquid metals the thickness of the thermal
boundary layer is much greater than that of the momentum boundary layer. When Pr is
high, heat diffuses slowly in comparison to the momentum. Fluids with lower Prandtl
values have greater thermal conductivities (and thicker thermal boundary layer structures),
which means that heat can diffuse out from the sheet more quickly than it does for fluids
with higher Pr (thinner boundary layers). Therefore, the Prandtl number may be used to
ascertain the rate of cooling that takes place in conducting flows. Similarly, an increase
in heat index parameters causes the temperature of the micropolar fluid to decrease for
different conditions, as depicted in Figure 10b,d. This comparison shows that the intensity
of declination in the temperature profile of the fluid is higher with the isothermal boundary
condition than the isoflux boundary condition. Figure 11a,c illustrates the relationship
between an increase in the value of the micropolar parameter c1 and a corresponding rise in
the boundary layer thickness of the fluid flow. The fluid’s velocity increases with the same
ratio and intensity for both isothermal and isoflux conditions. At the same time, a decline
is observed in the temperature profile of the fluid.
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Figure 8. Graphical study of the influence of variations in the suction/injection parameter on the
velocity and micro-rotation of the fluid: (a,b) isothermal boundary conditions and (c,d) isoflux
boundary conditions.
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Figure 9. Effect of an increase in the Reynolds number on f ′ and H of the fluid with (a,b) isothermal
boundary conditions and (c,d) isoflux boundary conditions.



Mathematics 2023, 11, 1173 14 of 19

0 1 2 3 4 5 6
-0.2

0

0.2

0.4

0.6

0.8

1

 (
)

P
r
 = 0.5

P
r
 = 1

P
r
 = 5

P
r
 = 10

P
r
 = 15

(a)

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 (
)

P
r
 = 1

P
r
 = 2

P
r
 = 3

P
r
 = 4

P
r
 = 5

(b)

0 1 2 3 4 5 6
-0.2

0

0.2

0.4

0.6

0.8

1

 (
)

s = 0
s = 1
s = 2
s = 3
s = 4

(c)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 (
)

s = 1
s = 2
s = 3
s = 4

(d)

Figure 10. Graphical study of the influences of alterations in the temperature profile of the fluid
brought about by variations in both the Prandtl number and the heat index: (a,b) with isothermal
boundary conditions and (c,d) with isoflux boundary conditions.
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Figure 11. Graphical study of the influences of variations in micropolar material constants on the
velocity and temperature of the fluid: (a,b) with isothermal boundary conditions and (c,d) with
isoflux boundary conditions.
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5. Performance Indices and Statistical Evaluation

The main objective of this paper is to propose FFDNN-BLMA for solving nonlinear
complex problems such as heat transfer in micropolar fluids with isothermal and isoflux
boundary conditions. This algorithm is available as part of MATLAB, and has been used
by many researchers for solving different types of problems. In this study, high-quality
solutions have been obtained, as presented in the previous section, and have been compared
with those of two other algorithms. In this section, the stability, consistency, and accuracy
measures are established and the performance of the proposed algorithm is analyzed by
incorporating the proposed technique for multiple runs on the same dataset for different
cases. Different measures are defined to validate the quality of the predicted solutions.
The formulation of these measures is as follows:

[
TIC f , TICH , TICθ

]
=



√
1
Ω ∑Ω

i=1( f (η)− f̂ (η))
2√

1
Ω ∑Ω

i=1( f (η))2+
√

1
Ω ∑Ω

i=1( f̂ (η))
2 ,

√
1
Ω ∑Ω

i=1(H(η)−Ĥ(η))
2√

1
M ∑Ω

i=1(H(η))2+
√

1
Ω ∑Ω

i=1(Ĥ(η))
2 ,

√
1
Ω ∑M

i=1(θ(η)−θ̂(η))
2√

1
Ω ∑Ω

i=1(θ(η))
2+
√

1
Ω ∑Ω

i=1(θ̂(η))
2 ,



t

, (19)

[
MAD f , MADH , MADθ

]
=


1
Ω ∑Ω

i=1

∣∣∣ f (η)− f̂ (η)
∣∣∣,

1
Ω ∑Ω

i=1
∣∣H(η)− Ĥ(η)

∣∣,
1
Ω ∑Ω

i=1
∣∣θ(η)− θ̂(η)

∣∣,



t

(20)

[
RMSE f , RMSEH , RMSEθ

]
=



√
∑Ω

i=1( f (η)− f̂ (η))
2

M ,

√
∑Ω

i=1(H(η)−Ĥ(η))
2

Ω ,

√
∑Ω

i=1(θ(η)−θ̂(η))
2

Ω ,



t

(21)

[
ENSE f , ENSEH , ENSEθ

]
=
[

1− NSE f , 1− NSEH , 1− NSEθ

]
, (22)

where NSE is defined as

[
NSE f , NSEH , NSEθ

]
=



1− ∑Ω
i=1( f (η)− f̂ (η))

2

∑Ω
i=1( f (η)− f̄ (η))

2 ,

f̄ (η) = 1
Ω ∑Ω

i=1 f (η),

1− ∑Ω
i=1(H(η)−Ĥ(η))

2

∑Ω
i=1(H(η)−H̄(η))2 ,

H̄(η) = 1
Ω ∑Ω

i=1 H(η),

1− ∑Ω
i=1(θ(η)−θ̂(η))

2

∑Ω
i=1(θ(η)−θ̄(η))

2 ,

θ̄(η) = 1
Ω ∑Ω

i=1 θ(η),



t

(23)
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where Ω shows the number of mesh points and ENSE, RMSE, TIC, and MAD are de-
fined as the error in terms of the Nash–Sutcliffe efficiency, root mean square error, Theil’s
inequality coefficient, and mean absolute deviation. These performance measures have
been previously used by many different researchers in order to validate their studies [47].
In this study, the initial generated datasets were utilized, and the proposed technique was
implemented for ten independent runs in order to determine the minimum, average, and
standard deviations of the predicted solutions.

The behavior of the validation data, testing data, training data, relative error (RE),
RMSE, ENSE, MAD, and TIC in the predicted solutions for velocity and acceleration of the
micropolar fluid in each individual run is shown in Figures 12 and 13 for the isothermal
and isoflux conditions, respectively. The streamlined values for each run reflect the stability
of the predicted solutions. The mean values as shown in Tables 6 and 7 for the training data,
testing data, and validation data are 3.28× 10−12, 2.34× 10−12, 4.38× 10−12, 4.38× 10−12,
4.01× 10−12, 2.82× 10−12, 5.44× 10−12, 2.92× 10−12, 3.93× 10−12, 2.94× 10−12, 5.72×
10−12 and 2.97× 10−12, respectively. It must be noted that these values were computed to
within an average time of 0.001 s. The standard deviations and minimum values are quite
near to zero, which demonstrates how well the approximate solutions have been modelled.
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Figure 12. Detailed study of each execution of the proposed technique for the behavioral study of
different performance indicators for calculating the solutions for (a) velocity and (b) acceleration of
the fluid with isothermal boundary conditions.
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Figure 13. Detailed study of each execution of the proposed technique for the behavioral study of
different performance indicators for calculating the solutions for (a) velocity and (b) acceleration of
the fluid with isoflux boundary conditions.
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Table 6. Statistical analysis of the values of the validation, testing, and training data along with
performance measures computed for the error in the solutions of velocity and acceleration for the
micropolar fluid flow with isothermal boundary conditions.

Training Validation Testing MAD TIC RMSE RE ENSE

Minimum 2.26× 10−14 2.51× 10−14 2.56× 10−14 1.35× 10−07 4.38× 10−09 1.53× 10−07 1.97× 10−07 1.10× 10−09

Mean 3.28× 10−12 3.93× 10−12 4.01× 10−12 1.29× 10−06 4.32× 10−08 1.51× 10−06 1.96× 10−06 1.53× 10−07

Stand. Dev. 3.37× 10−12 4.09× 10−12 4.18× 10−12 9.85× 10−07 3.33× 10−08 1.16× 10−06 1.51× 10−06 1.56× 10−07

Minimum 2.72× 10−13 3.18× 10−13 3.21× 10−13 4.55× 10−07 3.41× 10−08 5.36× 10−07 8.28× 10−07 9.36× 10−09

Mean 2.34× 10−12 2.94× 10−12 2.82× 10−12 1.22× 10−06 8.99× 10−08 1.41× 10−06 2.04× 10−06 8.50× 10−08

Stand. Dev. 1.90× 10−12 2.47× 10−12 2.34× 10−12 6.52× 10−07 4.78× 10−08 7.51× 10−07 1.02× 10−06 6.92× 10−08

Table 7. Statistical analysis of the values of the validation, testing, and training data along with
performance measures computed for the error in the solutions of velocity and acceleration for the
micropolar fluid flow with isoflux boundary conditions.

Training Validation Testing MAD TIC RMSE RE ENSE

Minimum 2.26× 10−14 2.51× 10−14 2.56× 10−14 1.35× 10−07 4.39× 10−09 1.53× 10−07 1.97× 10−07 1.10× 10−09

Mean 4.38× 10−12 5.72× 10−12 5.44× 10−12 1.61× 10−06 5.45× 10−08 1.90× 10−06 2.45× 10−06 2.06× 10−07

Stand. Dev. 3.14× 10−12 4.18× 10−12 3.89× 10−12 9.46× 10−07 3.22× 10−08 1.12× 10−06 1.45× 10−06 1.46× 10−07

Minimum 2.61× 10−13 2.73× 10−13 2.81× 10−13 4.46× 10−07 3.32× 10−08 5.21× 10−07 8.29× 10−07 8.96× 10−09

Mean 2.46× 10−12 2.97× 10−12 2.92× 10−12 1.29× 10−06 9.44× 10−08 1.48× 10−06 2.16× 10−06 8.95× 10−08

Stand. Dev. 1.68× 10−12 2.09× 10−12 2.02× 10−12 5.91× 10−07 4.30× 10−08 6.75× 10−07 9.20× 10−07 6.11× 10−08

6. Conclusions

In this paper, we have examined the heat transfer of a micropolar fluid with different
boundary conditions by developing and employing a novel supervised machine learning
approach. A machine learning algorithm, which is a type of artificial intelligence (AI),
uses an assortment of accurate, probabilistic, and upgraded optimization techniques to
update the weights in a neural network model to predict approximate solutions. In this
work, we successfully employed the designed methodology to study a micropolar fluid’s
velocity, micro-rotation, and temperature by incorporating isothermal and isoflux boundary
conditions. The results were compared with the latest analytical solutions available in the
literature. The solutions estimated using our proposed machine learning technique are com-
petitive when compared to the most advanced methods currently available. Furthermore,
we can conclude that the boundary layer thickness of the fluid increases with an increase in
the suction/injection parameters and micropolar material parameter, while it decreases
with an increase in the Prandtl number and Reynolds number. Lastly, we adopted several
statistical measures to study the errors in the solution, and the values of these measures
approach zero, which highlights the near-perfect modeling of the predicted solutions.
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Nomenclature

W Vector of micro-rotation U Velocity vector
fb Force of body ρ Fluid density
P Pressure 1 Body couple per unit of mass
j Micro-inertia µc Dynamic viscosity
λc Stokes viscosity γc Spin gradient viscosity
κc Vortex viscosity αc, βc Material constants
K Permeability L Length of Sheet
uw Linear velocity profile u Vertical component of velocity
v Orthogonal component of velocity ω3 Micro-rotation perpendicular to xy-plane
T Fluid temperature αe f f Effectiveness of thermal diffusivity
vw Rate of mass transfer at the edge U0 Coefficient of wall velocity
x Non-dimensional x coordinate T0 Coefficient of wall temperature
T∞ Temperature far away from sheet q0 Coefficient of heat flux
τ Thermal conductivity of medium s Index of power law
Pr Prandtl number Re Reynolds number
c1, c2, c3 Non-dimensionless material constants ψ Stream function
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