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Abstract: It often takes a lot of time to conduct life-testing studies on products or components. Units
can be tested under more severe circumstances than usual, known as accelerated life tests, to reduce
the testing period. This study’s goal is to look into certain estimation issues related to point and
interval estimations for XLindley distribution under constant stress partially accelerated life tests with
progressive Type-II censored samples. The maximum likelihood approach is utilized to acquire the
point and interval estimates of the model parameters as well as the reliability function under normal
use conditions. The Bayesian estimation method using the Monte Carlo Markov Chain procedure
using the squared error loss function is also provided. Moreover, the Bayes credible intervals as
well as the highest posterior density credible intervals of the different parameters are considered. To
make comparisons between the proposed methods, a simulation study is conducted with various
sample sizes and different censoring schemes. The usefulness of the suggested methodologies is then
demonstrated by the analysis of two data sets. A summary of the major findings of the study can be
found in the conclusion.

Keywords: accelerated life test; XLindley distribution; maximum likelihood estimation; reliability
function; Bayesian estimation
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1. Introduction

Life testing under normal use conditions is definitely the most convenient way for
determining a product’s quality or comparing various manufacturing designs. A contin-
uous improvement in manufacturing design often leads to products with a significantly
longer lifespan and a high degree of reliability. In these circumstances, the conventional life
testing techniques may be time-consuming to gather the necessary failure data required to
draw the desired inference. In these situations, experimenters conduct the accelerated life
tests (ALTs), in which the test units are put under stress conditions that are more severe
than usual to ensure rapid failure and minimize the testing period. Although there are
various ALT models, the constant-stress and step-stress models are the two that are most
commonly utilized. A constant-stress ALT is used when placing each unit under test at
continuous stress until the test is complete or all units fail. Conversely, a step-stress ALT
gradually raises the stress after a prefixed number of failures or at predetermined times.
There are numerous studies that take into account different ALT models: for instance,
Mohie El-Din et al. [1], Samanta et al. [2], Wang [3], Cui et al. [4], Nassar et al. [5] and
Kumar et al. [6]. The ALTs assume that a product’s lifetime and stress conditions have
a known relationship; therefore, data obtained under accelerated settings can rely upon
under normal use conditions. The existence of life-stress models is not always known.
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Consequently, one method of assessing a product’s reliability in conditions of normal use
is through a partially accelerated life test (PALT). The constant-stress PALT (CSPALT) is
one of the PALT types on which this study focuses. All test unit groups in CSPALT are
independently placed in use conditions and accelerated conditions. The test procedure
and basic assumptions of CSPALT are discussed in the next section. The CSPALTs have
also been considered in numerous studies, for example Hyun and Lee [7], Mohamed [8],
Dey et al. [9], Eliwa and Ahmed [10] and Almarashi [11].

Even though the primary goal of the ALTs is to reduce the length of the experiment’s
test period, the researchers spend a lot of time waiting for all test units to fail. Dealing
with censored data is important for this. In reliability studies and life-testing experiments,
censoring is a relatively common scenario. Broadly speaking, censoring indicates that actual
failure durations are only known for a part of the study units where the units are withdrawn
from the test before failure due to time and expense constraints. In practice, many censoring
plans are available including one-stage and multi-stage censoring schemes. One of the most
widespread and flexible censoring strategies is the progressive Type-II censoring (PT-IIC)
scheme. Consider the PT-IIC scheme in which (S1, S2, . . . , Sm) is a prefixed censoring plan
and n units are subjected to a life test with a predetermined number of failures m. S1
units are at random taken away from the remaining surviving units after the first failure
occurs. Similarly, S2 units are randomly removed from the test when the second failure
happens, and so on. The test is run until the mth failure; then, all of the remaining units
Sm = n−m−∑m−1

i=1 Si are taken out of the test, and the experiment is over. It should be
emphasized that the PT-IIC scheme offers distinct advantages over traditional Type-I and
Type-II censoring schemes in that it enables experimenters to remove survival testing units
from the experiment at various testing stages. Numerous authors have explored the PT-IIC
scheme with various lifetime distributions; see for example Rastogi and Tripathi [12],
Sultan et al. [13], Wu and Gui [14], Alotaibi et al. [15] and Bedbur and Mies [16]. One may
refer to the in-depth review study by Balakrishnan [17].

The Lindley distribution, which was first postulated by Lindley [18], has been much
studied in a variety of scientific and technological fields. For the research of stress-strength
reliability modeling, it is a crucial statistical model. Recently, Chouia and Zeghdoudi [19]
introduced the XLindley (XL) distribution as a novel modification of the Lindley distribu-
tion that combines the exponential and Lindley distributions. Assume that the lifetime
random variable Y of the experimental unit follows the XL distribution with scale param-
eter β. In light of this, the relevant probability density function (PDF) and cumulative
distribution function (CDF) of Y are provided, respectively, by

f1(y; β) =
β2(β + y + 2)

(1 + β)2 e−βy, y > 0, β > 0, (1)

and

F1(y; β) = 1− e−βy

[
1 +

βy

(1 + β)2

]
. (2)

The ability of a component to perform as planned for a predetermined amount of time
is referred to as reliability. The reliability function (RF) and hazard rate function (HRF)
are the two reliability indices that are most frequently employed in practice. For the XL
distribution, the RF and HRF are given, respectively, as follows

R1(y; β) = e−βy

[
1 +

βy

(1 + β)2

]
(3)

and

h1(y; β) =
β2(β + y + 2)

(1 + β)2 + βy
. (4)
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We are motivated to do this work because of (1) the XL distribution’s flexibility in
modelling different kinds of data and (2) the efficiency of integrating CSPALTs with the
PT-IIC scheme in shortening the test period and extrapolating the product performance
under normal use conditions. Furthermore, there were no studies reported on estimating
the XL distribution’s parameters using CSPALTs with PT-IIC samples. Our main objective
in this study is to discuss the estimation of the unknown parameter of the XL distribution
as well as the acceleration factor under CSPALT with PT-IIC samples. The RF under normal
use conditions is also estimated. To achieve this, the maximum likelihood and Bayesian
estimation methods are considered. Based on the asymptotic properties of the maximum
likelihood estimates (MLEs), two approximate confidence intervals (ACIs) of the unknown
parameters are obtained, namely, ACIs using normal approximation (ACI-NA) and ACIs
using the normality of the log-transformed MLEs, which is denoted by ACI-NL. The Bayes
estimates are obtained through the Monte Carlo Markov Chain (MCMC) procedure using
the squared error (SE) loss function. The Bayes credible intervals (BCIs) as well as the
highest posterior density (HPD) credible intervals of the unknown parameters are also
investigated. A simulation study and two applications are provided to compare the various
techniques and show the applicability of the proposed methods.

The remainder of this article is structured as follows: The model description is discussed
in Section 2. The MLEs and ACIs for the unknown parameters are established in Section 3. The
Bayesian estimation is considered in Section 4. The effectiveness of the suggested methods
is investigated through an extensive simulation study in Section 5. Two applications are
presented in Section 6. Finally, Section 7 provides some concluding observations.

2. Model Description

The following is a description of the CSPALT procedure which uses the PT-IIC samples
along with its underlying assumptions.

2.1. Testing Procedure

In a CSPALT in the presence of PT-IIC samples, we have the following:

1. The experimenter divides the n test products into two sets: The first set contains n1
products that are randomly picked from the n test products and placed in normal
operating conditions. The second set contains n2 = n− n1 remaining products that
are placed in an accelerated situation.

2. Let nk, k = 1, 2 denote the number of products tested using PT-IIC with progressive
censoring plans Sk1, Sk2, . . . , Skmk

under normal and accelerated conditions, respec-
tively, and mk, k = 1, 2 denote the number of failures actually observed under normal
and accelerated configurations, respectively. In this case, one can observe the follow-
ing example

yk1:mk :nk
< yk2:mk :nk

< · · · < ykmk :mk :nk
, k = 1, 2.

2.2. Basic Assumptions

The following assumptions are required to allow us to deal with CSPALT:

1. The lifetime of the product under normal use follows the XL distribution, with PDF,
CDF, SF, and HRF as specified in (1)–(4).

2. The HRF of a product working under accelerated conditions is determined by the
following formula

h2(y; β) = δh1(y; β),

where h1(y; β) is specified by (4) and δ > 1 is an acceleration factor.

With the help of the aforementioned assumptions, the HRF under the accelerated
condition can be derived as shown below

h2(y; β, δ) =
δβ2(β + y + 2)

(1 + β)2 + βy
. (5)
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Making use of the link R2(y; β, δ) = exp
[
−
∫ y

0 h2(x; β, δ)dx
]
, the RF can be acquired

under the accelerated condition as

R2(y; β, δ) = e−βδy

[
1 +

βy

(1 + β)2

]δ

. (6)

The PDF and CDF corresponding to (6) are given, respectively, by

f2(y; β, δ) =
δβ2(β + x + 2)

(1 + β)2 e−βδy

[
1 +

βy

(1 + β)2

]δ−1

(7)

and

F2(y; β, δ) = 1− e−βδy

[
1 +

βy

(1 + β)2

]δ

. (8)

The joint likelihood function, devoid of the constant term, can be defined as follows
based on the realizations of the two PT-IIC samples with CSPALT

L(β, δ|y) =
2

∏
k=1

{
mk

∏
i=1

fk(yki)[1− Fk(yki)]
Ski

}
, (9)

where yki = yki:mk :nk
for simplicity and y = (yk1, . . . , ykmk

), k = 1, 2.

3. Maximum Likelihood Estimation

The point and interval estimations of the unknown parameters β and δ based on the PT-
IIC sample with CSPALT are obtained in this part using the maximum likelihood approach.
In addition, we obtain the MLE and ACI of the RF under normal use conditions. Let Y11 <
Y12 < . . . < Y1m1 be a PT-IIC sample with progressive censoring plan (S11, S12, . . . , S1m1)
selected from the XL population at normal use conditions with PDF and CDF given by
(1) and (2), respectively. On the other hand, suppose that Y21 < Y22 < . . . < Y2m2 is a
PT-IIC sample with progressive censoring scheme (S21, S22, . . . , S2m2) picked from the XL
population at accelerated condition with PDF and CDF provided by (7) and (8), respectively.
The likelihood function of the observed samples can then be written as follows from (9)

L(β, δ|y) =
δm2 β2m

(1 + β)2m exp

[
−β

2

∑
k=1

mk

∑
i=1

δk−1Qkiyki +
2

∑
k=1

mk

∑
i=1

log(β + yki + 2)

]

×
2

∏
k=1

mk

∏
i=1

[
1 +

βyki

(1 + β)2

]δk−1Qki−1

, (10)

where m = m1 + m2 and Qki = 1 + Ski. The natural logarithm corresponding to (10),
denoted by `(β, δ|y), can be written as

`(β, δ|y) = m2 log(δ) + 2m log(β)− 2m log(β + 1)− β
2

∑
k=1

mk

∑
i=1

δk−1Qkiyki

+
2

∑
k=1

mk

∑
i=1

log(β + yki + 2) +
2

∑
k=1

mk

∑
i=1

(δk−1Qki − 1) log

[
1 +

βyki

(1 + β)2

]
. (11)
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The simultaneous solution of the following normal equations yields the MLEs of β
and δ, represented by β̂ and δ̂,

∂`(β, δ|y)
∂β

=
2m
β
− 2m

β + 1
−

2

∑
k=1

mk

∑
i=1

δk−1Qkiyki +
2

∑
k=1

mk

∑
i=1

1
β + yki + 2

− β− 1
β + 1

2

∑
k=1

mk

∑
i=1

(δk−1Qki − 1)yki
1 + β(β + yki + 2)

= 0 (12)

and

∂`(β, δ|y)
∂δ

=
m2

δ
− β

m2

∑
i=1

Q2iy2i +
m2

∑
i=1

Q2i log

[
1 +

βy2i

(1 + β)2

]
= 0. (13)

Using (13) and for fixed β, one can obtain the MLE of the unknown parameter δ as a
function of the parameter β as shown below

δ̂(β) =
m2

β ∑m2
i=1 Q2iy2i −∑m2

i=1 Q2i log
[

1 + βy2i

(1+β)2

] . (14)

By substituting δ̂(β) in the normal equation given by (12), the MLE of β can be obtained
by solving the following non-linear equation

∂`(β, δ|y)
∂β

=
2m
β
− 2m

β + 1
−

2

∑
k=1

mk

∑
i=1

[δ̂(β)]k−1Qkiyki +
2

∑
k=1

mk

∑
i=1

1
β + yki + 2

− β− 1
β + 1

2

∑
k=1

mk

∑
i=1

([δ̂(β)]k−1Qki − 1)yki
1 + β(β + yki + 2)

= 0 (15)

It is worth highlighting that Equation (15) is analytically impossible to solve. There-
fore, acquiring the MLE β̂ in explicit form is challenging. The requisite estimate can be
obtained using some numerical approaches, such as the Newton–Raphson method. An-
other approach to obtain the MLE of β is to use the iterative process as mentioned by
Pareek et al. [20]. Since the profile log-likelihood function of β is unimodal as displayed in
Figure 1, we can write h(β) = β, where

h(β) =
2m

2m
β+1 + ∑2

k=1 ∑mk
i=1[δ̂(β)]k−1Qkiyki −∑2

k=1 ∑mk
i=1

1
β+yki+2 + β−1

β+1 ∑2
k=1 ∑mk

i=1
([δ̂(β)]k−1Qki−1)yki

1+β(β+yki+2)

. (16)

Then, the MLE of β can be acquired by performing the following steps:

Step 1. Set the initial value of β, say β(0).

Step 2. Put k = 1.

Step 3. Compute β(k) = h(β(k−1)).

Step 4. Proceed in this way to obtain β(k+1) = h(β(k)).

Step 5. Stop the iteration at |β(k+1) − β(k)| < ς, where ς is a pre-assigned tolerance bound.

Step 6. Put β̂ = β(k+1).

After obtaining the MLE β̂, the MLE δ̂ = δ̂(β) can be determined from (14) by replacing
β by its MLE. Using the MLEs’ invariance property, it is possible to obtain from (3) the MLE
of the RF under normal operating conditions at time t, indicated by R̂1(t), as shown below

R̂1(t) = e−β̂t

[
1 +

β̂t(
1 + β̂

)2

]
. (17)
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It is observed from (14) that δ̂ can be obtained in an explicit form as a function of the
MLE of the parameter β. As a result, the MLE of δ exists and is unique if the MLE of β exists
and is unique. In our case, it is not easy to show the existence and uniqueness of β due to the
complicated expression of its normal equation. To overcome this difficulty, we try to prove
these properties numerically by simulating two PT-IIC samples with progressive censoring
plan Ski = (119, 11), k = 1, 2, i = 1, . . . , 20 and 119 means that 1 is repeated 19 times, using
β = 3 and δ = 2. The MLEs of β and δ are 2.925011 and 1.816687, respectively. For fixed
δ̂ = 1.816687, the log-likelihood function given by (11) and the normal equation of β given
by (12) are drawn for a given sequence of β; see Figure 1. It shows that the vertical line
which is the MLE of β intersects the log-likelihood curve at its peak and intersects with the
first derivative at zero. Consequently, one can conclude that the ML of the parameter β
exists and is unique.
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Figure 1. The log-likelihood function and the associated first derivative of β.

It is particularly hard to identify the exact distributions of the MLEs because they
do not exist in closed form. Accordingly, based on the asymptotic normality of the MLEs
which essentially implies that as the sample size increases, the MLEs estimators are asymp-
totically distributed with Gaussian behavior, we propose utilizing the ACIs of the unknown
parameters β and δ as well as the RF under normal operating conditions. The observed
Fisher information matrix is needed for this procedure, where its inverse is the asymptotic
variance–covariance matrix, denoted by I−1(β̂, δ̂), and given as follows

I−1(β̂, δ̂) =

 − ∂2`(β,δ|y)
∂β2 − ∂2`(β,δ|y)

∂β∂δ

− ∂2`(β,δ|y)
∂δ∂β − ∂2`(β,δ|y)

∂δ2

−1

β=β̂,δ=δ̂

=

(
σ̂2

11 σ̂12
σ̂2

22

)
, (18)

where

∂2`(β, δ|y)
∂β2 = −2m

β2 +
2m

(β + 1)2 −
2

∑
k=1

mk

∑
i=1

1
(β + yki + 2)2

− 1
(β + 1)2

2

∑
k=1

mk

∑
i=1

(δk−1Qki − 1)yki[4 + yki + β(2yki − βyki − 2β2 + 6)]
[1 + β(β + yki + 2)]2

,

∂2`(β, δ|y)
∂δ2 = −m2

δ2
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and

∂2`(β, δ|y)
∂β∂δ

= −
m2

∑
i=1

Q2iy2i −
β− 1
β + 1

m2

∑
i=1

Q2iy2i
1 + β(β + y2i + 2)

.

As a result, the 100(1− ε)% ACIs-NA of β and δ can be computed, respectively, as

β̂± zε/2 σ̂11, and δ̂± zε/2 σ̂22,

where zε/2 is the upper (ε/2)th percentile point of the standard normal distribution. On
the other hand, building the RF’s ACI-NA at normal use conditions is essential. In this
situation, we need first to determine the variance of its estimator R̂(t). In this scenario,
we consider approximating the necessary variance using the delta approach. According
to the delta method, if the random variable is asymptotically normal, we can reasonably
approximate the asymptotic behavior of any function over it. Following this approach,
the estimated variance of R̂(t) can be approximated as σ̂2

R = [∆I−1(β̂, δ̂)∆>], with ∆ =
(dR1(t)/∂β, 0)|β=β̂, where

dR1(t)
∂β

=
tβe−βt[4 + t + β(3 + t + β)]

(1 + β)3 .

Now, the 100(1− ε) ACI-NA for R1(t) is

R̂1(t)± zε/2 σ̂R.

There are some drawbacks to the ACIs-NA discussed above. When the sample size is
small, for example, they give a low coverage probability. For positive parameters, it occa-
sionally provides negative lower bounds; see for more detail Maiti et al. [21]. To improve
on the unsatisfactory performance of the ACIs-NA, we can use the normal approximation
of the log-transformed MLEs to obtain the 100(1− ε) ACIs-NL of β, δ and R1(t) as follows

β̂ exp
[
± zε/2σ̂11

β̂

]
, δ̂ exp

[
± zε/2σ̂22

δ̂

]
and R̂1(t) exp

[
± zε/2σ̂R

R̂1(t)

]
.

4. Bayesian Estimation

The Bayesian estimation of the unknown parameters β and δ as well as the RF under
normal use settings are the key topic of this section. It should be mentioned that the loss
functions and prior distributions are crucial when studying estimation problems from
a Bayesian perspective. The symmetric SE loss function is used in our analysis, but the
findings can be applied to any other loss function as well. Following the same approach by
Nassar and Elshahhat [22], we consider that the two parameters are independent, where
the random variable β follows the gamma distribution (G), i.e., β ∼ G(a1, b1). On the other
hand, the random variable δ is assumed to follow the three-parameter G distribution with
a location parameter equal to one, i.e., δ ∼ G(a2, b2, 1). Utilizing these assumptions, we can
formulate the joint prior distribution of β and δ as follows

π(β, δ) ∝ βa1−1(δ− 1)a2−1e−[b1β+b2(δ−1)], β > 0, δ > 1, (19)

where aj > 0 and bj > 0, j = 1, 2 are the hyper-parameters. The joint posterior distribution
of β and δ can be expressed by combining the likelihood function provided by (10) with the
joint prior distribution as shown in (19) as
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g(β, δ|y) =
β2m+a1−1

A(1 + β)2m exp

{
−β

[
2

∑
k=1

mk

∑
i=1

(δ− 1)k−1Qkiyki + b1

]
+

2

∑
k=1

mk

∑
i=1

log(β + yki + 2)

}

× (δ− 1)m2+a2−1e−b2(δ−1)
2

∏
k=1

mk

∏
i=1

[
1 +

βyki

(1 + β)2

](δ−1)k−1Qki−1

, (20)

where A stands for the normalized constant and is defined as

A =
∫ ∞

1

∫ ∞

0
L(β, δ|y)π(β, δ) dβdδ.

In light of this, the Bayes estimate of any function of β and δ, say ψ(β, δ), under SE
loss function can be obtained directly from the posterior distribution in (20) as follows

ψ̃(β, δ) = Eβ,δ|y[ψ(β, δ)]

=
∫ ∞

1

∫ ∞

0
ψ(β, δ)g(β, δ|y)dβdδ (21)

It is clear that for general ψ(β, δ), an analytical evaluation of (21) will not be possible. We
propose to directly produce samples from the joint posterior distribution in (20) using
the MCMC approach, and then, using the samples that were generated, we present a
simulation-consistent estimate of (21) along with the related BCI and HPD interval. It is
necessary to determine the full conditional distributions of β and δ in order to use the
MCMC process. For β and δ, respectively, the necessary conditional distributions can be
constructed from (20) as follows

g(β|δ, y) ∝
β2m+a1−1

(1 + β)2m exp

{
−β

[
2

∑
k=1

mk

∑
i=1

(δ− 1)k−1Qkiyki + b1

]
+

2

∑
k=1

mk

∑
i=1

log(β + yki + 2)

}

×
2

∏
k=1

mk

∏
i=1

[
1 +

βyki

(1 + β)2

](δ−1)k−1Qki−1

, (22)

and

g(δ|β, y) = (δ− 1)m2+a2−1 exp

{
−(δ− 1)

[
β

m2

∑
i=1

Q2iy2i −
m2

∑
i=1

Q2i log

[
1 +

βy2i

(1 + β)2

]
+ b2

]}
. (23)

Any of the gamma-generating routines can be used to easily create samples of δ
because it is evident that its conditional distribution shown in (23) is a three-parameter G
distribution with location parameter equal to one, shape parameter a∗ = m2 + a2 and scale
parameter given by

b∗ = β
m2

∑
i=1

Q2iy2i −
m2

∑
i=1

Q2i log

[
1 +

βy2i

(1 + β)2

]
+ b2.

The conditional distribution of the parameter β, which is provided by Equation (22),
on the other hand, is unknown, but its plot shows that it has the same behavior as the
normal distribution; see Figure 2. As a result, we consider creating samples from this
distribution based on the Metropolis–Hastings (M-H) method.
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To obtain samples of β and δ, utilize the following M-H-within-Gibbs sampling proce-
dures.

Step 1. Set j = 1 and put the initial guesses of β and δ as (β(0), δ(0)) = (β̂, δ̂).

Step 2. Generate δ(j) from G(a∗, b∗, 1) using β(j−1).

Step 3. Generate β(j) using the M-H procedure from (22) with N(β(j−1), σ̂11).

Step 4. Use δ(j) and β(j) to compute R(j)
1 (t).

Step 5. Set j = j + 1.

Step 6. Repeat steps 2 to 5, M times to acquire [β(j), δ(j), R(j)
1 (t)], j = 1, . . . , M.

1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

β

g
(β

)

Figure 2. The full conditional distribution of β.

The first B generated variates are discarded in order to ensure convergence and remove
the influence of the choice of beginning values. We currently have [β(j), δ(j), R(j)

1 (t)], j =
B + 1, . . . , M. Based on large M, we can use the created samples to calculate the Bayes
estimates, BCIs and HPD credible intervals. Using the SE loss function, the Bayes estimates
of β, δ and R1(t) are as follows

β̃ =
∑M

j=B+1 β(j)

M∗
, δ̃ =

∑M
j=B+1 δ(j)

M∗
and R̃1(t) =

∑M
j=B+1 R(j)

1 (t)

M∗
,

where M∗ = M − B. To compute the BCIs or HPD credible intervals, we first order
[β(j), δ(j), R(j)

1 (t)], j = B + 1, . . . , M. Then, the 100(1− ε)% BCIs of β, δ and R1(t) can be
determined as shown below[

β(L∗), β(U∗)
]
,
[
δ(L∗), δ(U

∗)
]

and
[

R(L∗)
1 (t), R(U∗)

1 (t)
]
,

where L∗ = εM∗/2 and U∗ = M∗(1− ε/2). On the other hand, the 100(1− ε)% two-sided
HPD credible intervals of β, δ and R1(t) are given by[

β(j∗), β(j∗+U?)
]
,
[
δ(j∗), δ(j∗+U?)

]
and

[
R(j∗)

1 (t), R(j∗+U?)
1 (t)

]
,

where U? = (1− ε)M∗ and j∗ = B + 1, B + 2, . . . , M is determined, for any parameter say
λ, to satisfy

λ(j∗+[U? ]) − λ(j∗) = min
16j6ε(M∗)

[
λ(j+[U? ]) − λ(j))

]
,

where [v] stands for the maximum integer that is less than or equal to v.
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5. Monte Carlo Simulations

In this section, an evaluation of the performance of the proposed estimators for the
XL parameter β and the acceleration factor δ is carried out by means of a simulation study
based on two sets of (β, δ) namely; Set-1:(0.5,1.5) and Set-2:(1.5,2.5). We generate 1000 PT-
IIC samples based on various choices of nk (group size), mk (effective sample size) and
(Sk1, . . . , Skmk

), k = 1, 2 (progressive censoring mechanism). Since the experiment stops
when the number of failed items reaches (or exceeds) a certain value mk, k = 1, 2, by taking
nk(=40, 80) for k = 1, 2, the failure percentages (FPs) mk

nr
× 100% for k = 1, 2 are used as

50% and 75% to specific mk. For both use and accelerated stress stages, without loss of
generality, we set n1 = n2 = n, m1 = m2 = m and Ski = Si, i = 1, 2, . . . , m for the sake of
brevity. In addition, different censoring mechanisms are considered as follows:

Scheme-1 : S1 = n−m, Si = 0 for i 6= 1;

Scheme-2 : S m
2
= n−m, Si = 0 for i 6= m

2
;

Scheme-3 : Sm = n−m, Si = 0 for i 6= m.

Another objective of this numerical analysis is to evaluate the derived estimators of
the reliability function under normal use conditions R1(t). Thus, the actual values of R1(t)
based on sets 1 and 2 at mission time t = 0.5 are 0.8653 and 0.5291, respectively. Then, the
required computations of the suggested point and interval estimates of R1(t) via maximum
likelihood and Bayes MCMC approaches are obtained. Once the required samples are
gathered, using the ’maxLik’ package proposed by Henningsen and Toomet [23] in R 4.2.2
software, the MLEs of β and δ as well as their 95% ACIs (from NL and NA methods) are
calculated. On the other hand, the acquired Bayes MCMC estimates as well as their 95%
credible intervals (from BCI and HPD interval methods) of β and δ are evaluated using
several choices of (a1, a2, b1, b2) as:

• For Set-1: Prior-1=(1.5,1.5,3,3) and Prior-2=(3,3,6,6);
• For Set-2: Prior-1=(7.5,7.5,5,5) and Prior-2=(15,15,10,10).

The selected values of ak and bk for k = 1, 2 are chosen in such a way that the
prior average indicates the sample mean of the interested parameter. From the joint
posterior density of β and δ, utilizing the “coda” package proposed by Plummer et al. [24],
12,000 MCMC samples are obtained, and then, the first 2000 variates are eliminated. The
simulation study is performed according to the following steps:

Step 1 Set the values of β and δ.

Step 2 Set the values of nk, mk and (Sk1, . . . , Skmk
).

Step 3 Generate two PT-IIC samples using the same approach of Balakrishnan and Cramer [25].

Step 4 Obtain the observations (yk1:mk :nk
, yk2:mk :nk

, . . . , ykmk :mk :nk
) with (Sk1, . . . , Skmk

).

Step 5 Generate random samples of β and δ from G(a1, b1) and G(a2, b2, 1) distributions,
respectively.

Step 6 Redo Steps 2–5 1000 times and use them to simulate 12,000 MCMC samples and
ignore the first 2000 variates as burn-in.

Step 7 Compute the MLEs and Bayes estimates of the unknown parameters.

Step 8 Compute the two bounds of ACI (from NA and NL methods) and of credible
interval (from BCI and HPD methods) of each parameter.

Step 9 Compute the root mean square error (RMSE) and mean relative absolute bias
(MRAB) as:

RMSE =

√√√√ 1
1000

1000

∑
i=1

(
Θ̆(i)

ρ −Θρ

)2
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and

MRAB =
1

1000

1000

∑
i=1

1
Θρ

∣∣∣Θ̆(i)
ρ −vρ

∣∣∣, ρ = 1, 2, 3,

respectively, where Θ̆(i)
ρ is the calculated estimate at the ith sample of Θρ such Θ1 = β,

Θ2 = δ and Θ3 = R1(t).

Step 10 Compute the average confidence length (ACL) and coverage probability (CP) as:

ACL(1−ε)%(Θρ) =
1

1000

1000

∑
i=1

(
UΘ̆ρ(i) −LΘ̆ρ(i)

)
,

and

CP(1−ε)%(Θρ) =
1

1000

1000

∑
i=1

1(
L

Θ̆ρ(i)
;U

Θ̆ρ(i)

)(Θρ), ρ = 1, 2, 3,

respectively, where 1(·) is the indicator function, and (L(·),U (·)) is the two-sided
interval estimate.

Step 11 Redo Steps 1–10 for various choices of β, δ, nk, mk and Ski, i = 1, 2, . . . , mk.

Graphically, by a heat-map tool, which is one of the best data visualization techniques,
all simulation results (RMSE, MRAB, ACL and CP) of β, δ and R1(t) are displayed in
Figures 3–5, respectively, while all simulation tables of the same unknown parameters are
reported in the Supplementary File. Specifically, for Prior-1 (say P1) as an example, in
Figures 3–5, the Bayes estimates are mentioned as “BE-P1”; the BCI estimates are mentioned
as “BCI-P1”; and the HPD interval estimates are mentioned as “HPD-P1”. Furthermore, in
Figures 3–5; ACI estimates based on NA are mentioned as “ACI-NA” and ACI estimates
based on NL are mentioned as “ACI-NL”. The colors in each heat-map range from yellow
to red. For instance, when the color seems to be yellow as in the case of the RMSE of β in
Figure 3, it suggests that the RMSE has a low value, but the red color denotes a high RMSE.
From Figures 3–5, in terms of the lowest values of RMSE, MRAB, and ACL as well as the
highest CP values, we report the following observations:

• The proposed point (or interval) estimates of β, δ and R1(t), for both given sets 1 and
2 perform well.

• As nk (or mk) increases, all estimates operate effectively, produce superior outcomes
and hold the consistency property. Equivalent behavior is also observed when the
total of Ski, i = 1, 2, . . . , mk decreases.

• As β and δ increase, the RMSEs and MRABs of all estimates of β, δ and R1(t) increase
except for the Bayes estimates of δ.

• As β and δ increase, the ACLs of all estimates of β, δ and R1(t) increase, but their
CPs decrease.

• Since the Bayes point/interval estimates included more priority information on the
unknown parameters, for each setting, the Bayes estimates of β, δ or R1(t) provide
more accurate results compared to those obtained from the maximum likelihood
estimation method.

• Since the variance of Prior-1 is higher than that of Prior-2, as anticipated, the estimates
from Prior-2 are more accurate than those based on Prior-1.

• Comparing the proposed interval estimation approaches, for both sets 1 and 2, the
estimates of β and δ derived from the ACI-NA and HPD interval methods behave
preferably to the others, while the estimates of R1(t) derived from the ACI-NL and
BCI methods behave better than others.

• Comparing the proposed censoring plans 1, 2 and 3, for both sets 1 and 2, it is observed
that (i) the point estimates of β and R1(t) perform better based on Scheme-2 (middle
censoring) while those associated with the acceleration factor δ perform better based
on Scheme-3 (right censoring) than others; and (ii) the interval estimates of β perform
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better based on Scheme-3 (right censoring) while those associated with δ and R1(t)
perform better based on Scheme-2 (middle censoring) than others.

• Based on the Markov chain Monte Carlo algorithm, the Bayes estimation approach
is the best choice for estimating the XL distribution parameter, its acceleration factor,
and its reliability function under normal use conditions for CSPALT in the presence of
PT-IIC data.
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Figure 3. Heat-map for the Monte Carlo results of β.
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(a) β = 0.5 (b) β = 1.5

Figure 4. Heat-map for the Monte Carlo results of δ.
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Figure 5. Heat-map for the Monte Carlo results of R1(t).

6. Applications

To show how our proposed model works in practice and for illustrative reasons, this
section offers the analysis of two different accelerated data sets.

6.1. Insulating Fluid

This application offers an analysis of the time-to-breakdown (in seconds) of an insulat-
ing fluid from a voltage endurance test against different stress levels. From Nelson [26],
two stress levels each containing twelve observations are considered: namely, 40 Kilovolt
(normal use) and 45 Kilovolt (accelerated stress). For computational convenience, for both
sets, each time point is divided by ten. In Table 1, the newly transformed insulating fluid
data sets are presented.
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Table 1. Times to breakdown of insulating fluid.

Normal Use (40 kV)

0.1 0.1 0.2 0.3 1.2 2.5 4.5 5.6 6.8 10.9 32.3 41.7

Accelerated Stress (45 kV)

0.1 0.1 0.1 0.2 0.2 0.3 0.9 1.3 4.7 5.0 5.5 7.1

To check whether or not the XL distribution provides a proper fit to the insulating fluid
data, the Kolmogorov–Smirnov (KS) statistic along with its p-value are considered. Briefly,
using negative log-likelihood (NL), Akaike (A), consistent Akaike (CA), Bayesian (B) and
Hannan–Quinn (HQ) information criteria, we compare the applicability of XL distribution
with Lindley (L) distribution. From Table 1, to make this comparison, the MLE (standard
error (St.E)) of XL (or L) parameter β under normal use and accelerated stress data are
calculated and reported in Table 2. It shows that the XL distribution has the smallest values
of NL, A, CA, B, HQ, KS statistics and the highest p-value. As a result, the XL distribution
provides a better fit than the L distribution for both given normal use and accelerated stress
data sets. It is also indicates that the XL distribution fits the insulating fluid data well
for both stress levels. Using the two data sets, in Figure 6, the fitted/empirical reliability
functions and probability–probability (PP) plots for XL and L lifetime models are displayed.
It shows that the proposed XL model offers a good fit to the insulating fluid data sets and
supports the same goodness-of-fit findings.

Table 2. Summary fit of the XL and L distributions from insulating fluid data.

Model Estimate(St.E) NL A CA B HQ KS(p-Value)

Normal Use Data

XL 0.1942(0.0401) 41.954 85.908 86.308 86.393 85.728 0.3382(0.1284)
L 0.2066(0.0425) 43.983 89.966 90.366 90.451 89.787 0.3574(0.0931)

Stress Use Data

XL 0.6507(0.1431) 21.675 45.351 45.751 45.836 45.172 0.3815(0.0607)
L 0.7408(0.1586) 22.859 47.719 48.119 48.204 47.540 0.4029(0.0406)
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Figure 6. Fitted reliability (top) and PP (bottom) plots from insulating fluid data.
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Now, to demonstrate the feasibility of the proposed methodologies, several PT-IIC
samples from the insulating fluid data sets are created. From Table 1, taking m1 = m2 = 6,
three artificial samples based on various progressive censoring patterns Ski = Ski, i =
1, 2, . . . , mk, k = 1, 2 are obtained and listed in Table 3. Here, for brevity, the scheme
(6, 0, 0, 0, 0, 0) is referred to as (6, 05). So, for each generated sample, the classical estimates
(with their ACIs through NA and NL approaches) as well as the Bayes estimates (with
their interval estimates through BCI and HPD interval approaches) of β, δ and R1(t) (at
distinct time t = 0.5) are calculated and displayed in Tables 4 and 5, respectively. Due to
there being no available prior information about β or δ, we set ak and bk for k = 1, 2 as
0.001 which implies that the prior densities are almost improper. According to the MCMC
methodology, we repeat the procedure 50,000 times and discard the first 10,000 iterations
as burn-in. The starting values of β and δ used to run the MCMC sampler are assumed
to be their MLEs. As we anticipated, from Table 4, the acquired estimates β, δ, or R1(t)
exhibit similar performance that appears to be close to each other. Similar behavior is
also observed in the case of interval estimates of the unknown parameters. Comparing
the proposed estimation methods in terms of their lowest St.Es, it can be seen that the
Bayes estimates perform better than the estimates derived from the likelihood method. On
the other hand, comparing the proposed estimation methods in terms of shortest interval
lengths, it is noted that the ACI-NA (in the classical point of view) and HPD intervals (in
the Bayes point of view) behave superior when compared to others.

Table 3. Various PC-T-II samples from insulating fluid data.

Sample {S1i; S2i} Censored Data

1 (6, 05) 0.1, 0.2, 0.3, 1.2, 4.5, 6.8
(6, 05) 0.1, 0.2, 0.3, 0.9, 1.3, 5.0

2 (02, 3, 3, 02) 0.1, 0.1, 0.2, 0.3, 2.5, 10.9
(02, 3, 3, 02) 0.1, 0.1, 0.1, 0.2, 0.9, 5.0

3 (05, 6) 0.1, 0.1, 0.2, 0.3, 1.2, 2.5
(05, 6) 0.1, 0.1, 0.1, 0.2, 0.2, 0.3

Table 4. Point estimates of β, δ and R1(t) from insulating fluid data.

Sample Par.
MLE MCMC

Est. St.E Est. St.E

1 β 0.6285 0.1904 0.5658 0.0991
δ 1.5970 0.9144 1.4849 0.1506

R1(0.5) 0.8169 0.0718 0.8405 0.0373

2 β 0.2316 0.0613 0.2179 0.0379
δ 2.2039 1.2641 2.1514 0.0869

R1(0.5) 0.9586 0.0181 0.9622 0.0108

3 β 0.4988 0.1420 0.4635 0.0656
δ 7.5727 4.4921 7.5226 0.0856

R1(0.5) 0.8658 0.0532 0.8788 0.0243

One of the main issues when using the MCMC procedure is how to prove the conver-
gence of Markovian chains. For this purpose, from the remaining 40,000 MCMC variates in
each generated sample, a trace plot (which furnishes an essential tool for evaluating the
mixing of a chain) and density plot (which provides a smoothed histogram of outputs)
are shown in Figure 7. For each plot in Figure 7, the Bayes estimate of β, δ or R1(t) is
represented by a solid (–) line. Additionally, the HPD interval bounds of the unknown
quantities are represented by dashed (- - -) lines. We see, from Figure 7, that (i) the simulated
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MCMC estimates converged well, (ii) the burn-in sample has sufficient size to eliminate the
effect of the initial points, and (iii) the density distribution of β, δ or R1(t) is almost fairly
symmetrical, except the density of R1(t) from Sample 2 is negatively-skewed.

Table 5. Interval estimates of β, δ and R1(t) from insulating fluid data.

Sample Par.
ACI-NA BCI
ACI-NL HPD

Lower Upper Length Lower Upper Length

1 β 0.2553 1.0017 0.7463 0.4204 0.7208 0.3004
0.3471 1.1380 0.7909 0.4152 0.7137 0.2985

δ 0.0000 3.3892 3.3892 1.2884 1.6811 0.3927
0.5200 4.9053 4.3853 1.2961 1.6841 0.3881

R1(0.5) 0.6762 0.9576 0.2814 0.7823 0.8949 0.1126
0.6876 0.9704 0.2828 0.7849 0.8968 0.1118

2 β 0.1116 0.3517 0.2401 0.1532 0.2906 0.1374
0.1379 0.3890 0.2511 0.1506 0.2875 0.1369

δ 0.0000 4.6815 4.6815 2.0222 2.2885 0.2663
0.7161 6.7830 6.0669 2.0186 2.2839 0.2653

R1(0.5) 0.9231 0.9942 0.0711 0.9402 0.9796 0.0394
0.9237 0.9949 0.0711 0.9415 0.9805 0.0390

3 β 0.2204 0.7771 0.5567 0.3573 0.5742 0.2169
0.2854 0.8715 0.5860 0.3561 0.5717 0.2156

δ 0.0000 16.377 16.377 7.3921 7.6590 0.2669
2.3676 24.221 21.853 7.3874 7.6538 0.2664

R1(0.5) 0.7615 0.9702 0.2087 0.8373 0.9175 0.0801
0.7675 0.9767 0.2092 0.8403 0.9199 0.0796

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 7. Density (left) and Trace (right) plot of β, δ and R1(t) from insulating fluid data.

From 40,000 MCMC outputs simulated from each artificial sample reported in Table 3,
Table 6 presents useful characteristics of β, δ and R1(t): namely, mean, mode, quartiles
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(Qi, i = 1, 2, 3, standard deviation (St.D) and skewness. It is clear that the calculated
properties of β, δ and R1(t) listed in Table 6 support our findings in Figure 7.

Table 6. Characteristics of β, δ and R1(t) from insulating fluid data.

Sample Par. Mean Mode Q1 Q2 Q3 St.D Skewness

1 β 0.56582 0.50241 0.51437 0.56481 0.61539 0.07681 0.12627
δ 1.48493 1.20282 1.41684 1.48423 1.55349 0.10058 0.00933

R1(0.5) 0.84050 0.86443 0.82182 0.84093 0.85994 0.02883 –0.13522

2 β 0.21794 0.22567 0.19290 0.21625 0.24110 0.03536 0.25698
δ 2.15143 1.94905 2.10374 2.14982 2.19832 0.06928 0.06757

R1(0.5) 0.96221 0.96039 0.95581 0.96312 0.96960 0.01020 –0.49041

3 β 0.46348 0.38443 0.42646 0.46216 0.50003 0.05536 0.10422
δ 7.52261 7.37523 7.47489 7.52122 7.57016 0.06935 0.05224

R1(0.5) 0.87879 0.90788 0.86532 0.87946 0.89264 0.02049 –0.15533

To demonstrate the performance of the reliability parameter R1(y), at the full normal
use data points in Samples 1, 2 and 3, the MLEs and Bayes estimates of R1(y) are shown in
Figure 8, while its interval estimates developed by ACI-NA, ACI-NL, BCI and HPD interval
approaches are shown in Figure 9. Figure 8 showed that the estimates of R1(y) developed
from the MCMC method are greater than those developed from the maximum likelihood
method. In addition, Figure 9 indicated that the interval estimates of R1(y) developed from
the ACI-NA method have smaller interval lengths than its competitor ACI-NL method,
while those obtained from BCI and HPD interval methods are quite near to each other.
As a result, the detailed findings created from the insulating fluid data support the same
conclusions drawn in Section 5.
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Figure 8. Point estimates of R1(y) from insulating fluid data.
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Figure 9. Interval estimates of R1(y) from insulating fluid data.
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6.2. Light-Emitting Diode

A Light-Emitting Diode (or simply LED) is a semiconductor device that emits infrared
or visible light when charged with an electric current. Visible LEDs are used in many
electronic devices as indicator lamps, e.g., street lights, parking garage lighting, billboards,
signs, etc. Table 7 displays the failure time (at 1000 h) created under normal use and
accelerated stress conditions, each involving 58 time points. The LED data have been
discussed by Cheng and Wang [27] and recently analyzed by Dey et al. [9] and Nassar and
Elshahhat [22]. To examine if the XL distribution is an adequate model to fit the LED data
or not, the KS distance and its p-value at are considered. Firstly, from Table 7, the MLE
(standard error) of β from use and stress data sets are 0.9502 (0.0992) and 1.2852 (0.1393),
respectively. Then, utilizing Table 7, the KS(p-Value) for both complete LED data sets from
use and stress conditions are computed as 0.1659 (0.082) and 0.1541 (0.127), respectively.
As a result, the XL lifetime model fits the LED data appropriately. For more clarification,
Figure 10 displays the estimated/empirical RFs and PP plots from use and stress LED data
sets. This means that the XL model offers an adequate fit for LED data.

Table 7. Failure times of 58 LED products.

Normal Use Condition

0.18, 0.19, 0.19, 0.34, 0.36, 0.40, 0.44, 0.44, 0.45, 0.46, 0.47, 0.53, 0.57, 0.57, 0.63,
0.65, 0.70, 0.71, 0.71, 0.75, 0.76, 0.76, 0.79, 0.80, 0.85, 0.98, 1.01, 1.07, 1.12, 1.14,
1.15, 1.17, 1.20, 1.23, 1.24, 1.25, 1.26, 1.32, 1.33, 1.33, 1.39, 1.42, 1.50, 1.55, 1.58,
1.59, 1.62, 1.68, 1.70, 1.79, 2.00, 2.01, 2.04, 2.54, 3.61, 3.76, 4.65, 8.97

Accelerated Stress Condition

0.13, 0.16, 0.20, 0.20, 0.21, 0.25, 0.26, 0.28, 0.28, 0.30, 0.31, 0.33, 0.35, 0.35, 0.35,
0.39, 0.50, 0.52, 0.58, 0.60, 0.60, 0.62, 0.63, 0.67, 0.71, 0.73, 0.75, 0.75, 0.78, 0.80,
0.80, 0.86, 0.90, 0.91, 0.93, 0.93, 0.94, 0.98, 0.99, 1.01, 1.03, 1.06, 1.06, 1.10, 1.22,
1.22, 1.24, 1.28, 1.39, 1.39, 1.46, 1.48, 1.52, 1.74, 1.95, 2.46, 3.02, 5.16
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Figure 10. Fitted reliability (left) and PP (right) plots from LED data.

Currently, to show the acquired point and interval estimators of XL parameters β and
R1(t) as well as the acceleration factor δ, three different PT-IIC samples from the original
LED data sets are generated and presented in Table 8, with m1 = m2 = 30 and different
choices of Sk = Ski, i = 1, 2, . . . , mk, k = 1, 2.

Utilizing the data in Table 8, the MLEs and associated ACIs of β, δ and R1(t) (for
t = 0.1) are calculated. Setting ak, bk = 0.001, k = 1, 2 in Bayes’ calculations, under the
assumption that the first 10,000 of 50,000 variates from each Markov chain are discarded,
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the Bayes point estimates as well as the BCI/HPD interval estimates of β, δ and R1(t)
(for t = 0.1) are obtained. However, in Tables 9 and 10, the point estimates (with their
St.Es) and interval estimates (with their lengths) are reported, respectively. However, the
estimation results in Tables 9 and 10 stated that the estimates of β, δ or R1(t) obtained
via the maximum likelihood (or Bayes MCMC) approach are quite close to each other.
However, when comparing the acquired point estimates of β, δ and R1(t), it can be seen
that the Bayes estimates behave satisfactorily than the classical estimates in terms of the
lowest St.Es. Equivalent behavior is also observed in the case of interval estimates.

Table 8. Various PC-T-II samples from LED data.

Sample {S1i; S2i} Censored Data

1 (28, 029) 0.18, 0.19, 0.19, 0.34, 0.36, 0.40, 0.44, 0.44, 0.45, 0.46, 0.47, 0.53, 0.57, 0.71, 0.71,
0.75, 0.85, 1.14, 1.17, 1.20, 1.32, 1.33, 1.50, 1.55, 1.58, 1.59, 1.62, 1.79, 2.00, 2.01

(28, 029) 0.13, 0.16, 0.20, 0.25, 0.26, 0.28, 0.28, 0.30, 0.35, 0.35, 0.60, 0.62, 0.63, 0.67, 0.71,
0.73, 0.75, 0.75, 0.80, 0.80, 0.86, 0.90, 0.98, 0.99, 1.01, 1.22, 1.24, 1.28, 1.39, 1.39

2 (014, 14, 14, 014) 0.18, 0.19, 0.19, 0.34, 0.36, 0.40, 0.44, 0.44, 0.45, 0.46, 0.47, 0.53, 0.57, 0.57, 0.63,
0.65, 0.70, 0.71, 0.71, 0.75, 0.76, 0.76, 1.23, 1.26, 1.32, 1.42, 1.55, 1.59, 1.68, 1.70

(014, 14, 14, 014) 0.13, 0.16, 0.20, 0.20, 0.21, 0.25, 0.26, 0.28, 0.28, 0.30, 0.31, 0.33, 0.35, 0.35, 0.35,
0.39, 0.50, 0.60, 0.60, 0.62, 0.71, 0.73, 0.75, 0.78, 0.90, 0.91, 0.98, 1.01, 1.03, 1.28

3 (029, 28) 0.18, 0.19, 0.19, 0.34, 0.36, 0.40, 0.44, 0.44, 0.45, 0.46, 0.47, 0.53, 0.57, 0.57, 0.63,
0.65, 0.70, 0.71, 0.71, 0.75, 0.76, 0.76, 0.79, 0.80, 0.85, 0.98, 1.01, 1.07, 1.12, 1.14

(029, 28) 0.13, 0.16, 0.20, 0.20, 0.21, 0.25, 0.26, 0.28, 0.28, 0.30, 0.31, 0.33, 0.35, 0.35, 0.35,
0.39, 0.50, 0.52, 0.58, 0.60, 0.60, 0.62, 0.63, 0.67, 0.71, 0.73, 0.75, 0.75, 0.78, 0.80

Table 9. Point estimates of β, δ and R1(t) from LED data.

Sample Par.
MLE MCMC

Est. St.E Est. St.E

1 β 1.1011 0.1637 1.0566 0.0867
δ 1.4019 0.3687 1.2951 0.1462

R1(0.1) 0.9181 0.0152 0.9222 0.0080

2 β 0.9338 0.1334 0.8975 0.0765
δ 1.6411 0.4316 1.5452 0.1354

R1(0.1) 0.9336 0.0123 0.9369 0.0071

3 β 1.0167 0.1468 0.9757 0.0815
δ 1.6052 0.4213 1.5092 0.1351

R1(0.1) 0.9259 0.0136 0.9297 0.0075

Two MCMC plots, namely trace and density plots, are also considered in Figure 11
to evaluate the convergence of simulated Markovian chains of β, δ and R1(t) from the
LED data. It shows that the estimates developed from the proposed MCMC procedure are
converged adequately, and the associated densities of β, δ or R1(t) are almost symmetrical.
Moreover, using 40,000 MCMC variates obtained from each unknown parameter, the same
characteristics reported in Table 6 are also reused under LED data; see Table 11. It further
supports the same findings shown in Figure 11.
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Table 10. Interval estimates of β, δ and R1(t) from LED data.

Sample Par.
ACI-NA BCI
ACI-NL HPD

Lower Upper Length Lower Upper Length

1 β 0.7802 1.4220 0.6418 0.9118 1.2071 0.2953
0.8228 1.4737 0.6509 0.9055 1.1993 0.2939

δ 0.6792 2.1246 1.4454 1.0933 1.4869 0.3936
0.8372 2.3475 1.5102 1.1046 1.4916 0.3870

R1(0.1) 0.8883 0.9478 0.0595 0.9083 0.9356 0.0274
0.8888 0.9483 0.0596 0.9090 0.9362 0.0272

2 β 0.6723 1.1953 0.5230 0.7681 1.0323 0.2642
0.7057 1.2356 0.5299 0.7680 1.0319 0.2638

δ 0.7952 2.4870 1.6918 1.3678 1.7345 0.3667
0.9801 2.7479 1.7677 1.3678 1.7334 0.3656

R1(0.1) 0.9094 0.9578 0.0484 0.9245 0.9488 0.0244
0.9097 0.9581 0.0484 0.9245 0.9488 0.0243

3 β 0.7290 1.3044 0.5754 0.8378 1.1165 0.2787
0.7661 1.3493 0.5831 0.8357 1.1134 0.2776

δ 0.7795 2.4310 1.6520 1.3311 1.6965 0.3653
0.9597 2.6850 1.7250 1.3319 1.6970 0.3651

R1(0.1) 0.8992 0.9526 0.0534 0.9166 0.9424 0.0258
0.8996 0.9530 0.0534 0.9169 0.9426 0.0257

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 11. Density (left) and Trace (right) plot of β, δ and R1(t) from LED data.
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Table 11. Characteristics of β, δ and R1(t) from LED data.

Sample Par. Mean Mode Q1 Q2 Q3 St.D Skewness

1 β 1.05659 0.97503 1.00675 1.05321 1.10589 0.07440 0.10953
δ 1.29506 1.00769 1.22867 1.29564 1.36308 0.09972 –0.07161

R1(0.1) 0.92221 0.92977 0.91763 0.92252 0.92683 0.00690 –0.10999

2 β 0.89753 1.00956 0.85154 0.89513 0.94278 0.06733 0.11433
δ 1.54519 1.26645 1.47943 1.54308 1.61046 0.09559 0.06226

R1(0.1) 0.93693 0.92657 0.93276 0.93717 0.94118 0.00621 –0.12847

3 β 0.97569 1.09249 0.92824 0.97360 1.02265 0.07043 0.10148
δ 1.50918 1.23056 1.44375 1.50729 1.57402 0.09507 0.05070

R1(0.1) 0.92970 0.91888 0.92536 0.92991 0.93411 0.00652 –0.10833

To assess the actual behavior of the reliability function under normal use conditions in
LED data, utilizing Samples 1, 2 and 3 reported in Table 8, both point and interval estimates
of R1(y) are displayed in Figures 12 and 13, respectively. It is clear, from Figure 12, that the
Bayes estimates have higher-level values than the classical estimates. In addition, Figure
13 showed that the asymptotic interval estimates (developed by NA/NL) are quite close
to each other. A similar pattern is also noted in the case of the Bayes interval estimates
(developed by BCI/HPD interval). Furthermore, in terms of the smallest interval length,
the HPD (or BCI) interval estimates perform better compared to the ACI-NA (or ACI-NL)
estimates. Obviously, the interval estimates of R1(y) in Figure 8 are smoother than those in
Figure 13 because the LED data have a larger size than those created from the insulating
fluid data.
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Figure 12. Point estimates of R1(y) from LED data.
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Figure 13. Interval estimates of R1(y) from LED data.

In conclusion, the findings obtained from insulating fluid or LED data revealed that
the proposed XL lifetime model is beneficial for addressing engineering issues and demon-
strated the applicability of the suggested estimation techniques to real phenomena.
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7. Concluding Remarks

An investigation of constant-stress partially accelerated life tests when the lifetime of
the test product follows the XLindley distribution is presented in this paper. Utilizing the
progressive Type-II censored sample, two approaches are considered to obtain the point
and interval estimators for the unknown parameters and the reliability function at the
normal use conditions. In addition to the maximum likelihood estimates, two approximate
confidence intervals are obtained based on the asymptotic normality of the maximum
likelihood estimates. From the Bayesian point of view, the point estimates of the different
parameters are acquired using the Monte Carlo Markov Chain technique based on the
squared error loss function. The Bayes credible intervals and highest posterior density
credible intervals are also provided. A simulation study and two applications are provided
to compare the various estimators and demonstrate the effectiveness of the suggested
approaches. The numerical outcomes showed that the estimates produced by the Bayesian
approach are more accurate than those produced by the maximum likelihood estimation
method in terms of minimum root mean squared error, relative absolute biase and interval
length. For the model parameter and the acceleration factor, the highest posterior density
credible interval procedure gives the smallest interval lengths compared to other methods.
Alternatively, to obtain the reliability interval bounds under normal use conditions, the
Bayes credible interval is preferred. In future work, it is of interest to investigate the
estimation issues of the same model used in the current study in the presence of other
censoring schemes, such as adaptive progressive censoring or generalized progressive
hybrid censoring. Another future work is to compare the efficiency of Bayesian estimations
based on symmetric and asymmetric loss functions, including LINEX and general entropy
loss functions.
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