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Abstract: Enhancing underwater images presents a challenging problem owing to the influence of
ocean currents, the refraction, absorption and scattering of light by suspended particles, and the weak
illumination intensity. Recently, different methods have relied on the underwater image formation
model and deep learning techniques to restore underwater images. However, they tend to degrade
the underwater images, interfere with background clutter and miss the boundary details of blue
regions. An improved image fusion and enhancement algorithm based on a prior dark channel
is proposed in this paper based on graph theory. Image edge feature sharpening, and dark detail
enhancement by homomorphism filtering in CIELab colour space are realized. In the RGB colour
space, the multi-scale retinal with colour restoration (MSRCR) algorithm is used to improve colour
deviation and enhance colour saturation. The contrast-limited adaptive histogram equalization
(CLAHE) algorithm defogs and enhances image contrast. Finally, according to the dark channel
images of the three processing results, the final enhanced image is obtained by the linear fusion of
multiple images and channels. Experimental results demonstrate the effectiveness and practicality of
the proposed method on various data sets.

Keywords: image enhancement; feature sharpening; dark detail enhancement; linear fusion
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1. Introduction

The ocean is biologically rich, contains an abundance of minerals and energy, and
represents an essential resource for human survival and future development. To better
understand the underwater world and develop marine products and minerals, it is often
necessary to image and identify underwater objects with the help of photoelectric sys-
tems [1]. However, due to the influence of ocean currents and the strong scattering and
attenuation effects of water on light, especially in shallow seas (where the water depth
ranges between 0–200 m), there is an uneven distribution of underwater suspended par-
ticles, resulting in blurred image details with a forward scattering of light, and foggy
blurring with backward scattering. In addition, due to the selective absorption of light by
underwater objects, the longer red wavelength light attenuates the fastest. In comparison,
the shorter blue wavelength light propagates the farthest [2]. Therefore, underwater images
tend to appear blue. These characteristics of the underwater object images limit their image
recognition and target detection. It is of great significance to improve underwater object
image recognition via image enhancement technology [3,4].

Different from the deep sea, restoration and enhancement of underwater images is a
challenging problem owing to ocean current disturbances and light propagation, absorption
and scattering by micro-suspended particles in shallow seas [5]. The specific environment
present under shallow sea water produces several combined degradation in images, includ-
ing color attenuation, blurring, low contrast, and their interactions (e.g., color distortion
and haze effects). Image degradation caused by the unique conditions of turbid water, and
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target recognition are the unique influences of turbidity areas during target detection [6].
Due to the optical characteristics of water bodies, underwater video images generally have
problems such as color bias and unclear image quality, and image quality degradation is
severe. The graph theory has been widely used in underwater image recognition [7], dense
underwater 3-D mapping paradigm [8], and graph feature extraction [9]. Underwater
visibility can be severely affected by water molecules and suspended particles, which
distort light and cause different wavelengths of light to absorb different colors. Using
the absorption differences of different color channel wavelengths, the transmission plot
through the scene depth was estimated, and the underwater neural network (UWCNN)
was enhanced by graph tangent theory [10]. Hu et al. [11] analyzed the imaging principle of
underwater images and the reasons for their decline in quality and briefly classified various
existing methods, and the underwater video enhancement technologies were mentioned.
Underwater imagery suffers from strong absorption, scattering, color distortion, and noise
from the artificial light sources, causing image blur, haziness, and a bluish or greenish tone,
two methods of underwater image dehazing and color restoration were proposed in [12].

Due to refraction, absorption, and scattering of light by suspended particles in water,
underwater images are characterized by low contrast, blurry details, and color distortion.
A fusion algorithm to restore and enhance underwater images was proposed in [13], and
a color balance algorithm based on CIE Lab color model was proposed to alleviate the
effect of color deviation in underwater images in [14]. In order to concurrently address
imbalance, blurring, low contrast, etc., a deep retinal decomposition network for untethered
image enhancement was proposed. Convolution neural network was designed to estimate
the illumination and obtain reflectance, and color balance and illumination correction
were performed on the decomposed reflectance and illumination in [15]. Xue et al. [16]
proposed a Joint Luminance and Chrominance Learning Network (JLCL-Net), and the
disentanglement in critical factors was realized to avoid introducing interference by sepa-
rating the luminaries and chroming of the underwater images. By using the red channel to
compensate for the original image and white balance, an underwater image enhancement
method based on local contrast correction (LCC) and multi-scale fusion was proposed by
Gao et al. [17] to solve issues concerning low contrast and color distortion of the underwater
image. Aiming at the severe color distortion caused by light scattering and absorption in
water, the encoder color network (an underwater image color restoration network (UICRN))
was used to extract the features of the input underwater image, estimate the light scattering
and absorption transmission diagram, calculate the loss function and training strategy
in [18], and feature mapping was used to restore image sharpness [19]. Furthermore, a
two-branch network combining deep learning, a color additional image enhancement
technology [20], convolution neural network with deep learning [21], Illumination feature
and colour information adaptive learning module [22], penalty and generation of counter-
measure network (GCN) based on pre-processed image [23], were proposed to solve the
severe color distortion and reduced contrast of underwater images.

2. Related Work

The key problem of underwater image enhancement is the acquisition and feature
extraction of the original image, and underwater images are often blurred and distorted
in color [24]. However, traditional image enhancement algorithms generally only pay
attention to a few features of the image environment, and the enhancement effect depends
on the features of the original image. Yuan et al. [25] presented an image-processing
technology based on secondary migration learning and retinal algorithm to solve the
problems of small underwater data sets and unclear underwater images. A comprehensive
perception of underwater image enhancement using real large-scale images was proposed
by Li et al. [26], and an underwater image enhancement benchmark was constructed. This
was used to train the generalization of convolution neural network. Due to the need for
sufficient training data and effective network structure, the perception and processing of
underwater information are significantly affected. Yang et al. [27] presented a conditional
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generative adversarial network (cGAN), where a multi-scale generation can achieve clear
underwater images. Considering the high-frequency and low-frequency parts of the
original underwater image, an underwater image enhancement algorithm based on the
structural decomposition two-stage underwater image convolution neural network was
proposed by Wu et al. [28]. However, the effect of the original images taken from the
turbid underwater environment in the shallow sea could be improved, and the complex
and diverse degradation enhancement mapping is difficult to model. By learning the
potential consistency between the template and the original underwater image to select the
appropriate color transfer template, the problem caused by the incomplete color correction
model was alleviated in [29]. Guo et al. [30] proposed adding the multi-scale, dense
concatenation. Residual learning to the generator to extract the features of the original
underwater image, and an end-to-end multi-scale underwater image enhancement network
based on attention mechanism was proposed by Fang et al. [31]. To improve the quality of
acquired underwater images, numerous methods have been proposed, such as underwater
image feature enhancement and fusion technology [32], underwater image cooperative
enhancement network based on encoder-decoder integrated structure (UICoE-Net) [33],
hybrid underwater image training model based on physical prior and data-driven [34],
semi-supervised depth convolution neural network [35].

In order to restore underwater images with precise texture details and vivid color,
issues regarding color distortion and low contrast of the enhanced image should be
solved.Lin et al. [36] proposed a global and local guidance model in which the global
path target was used to estimate the basic structure and color information. In contrast,
the local path target was used to remove nasty artefacts, such as noise, overexposed
areas and blurred edges. Due to insufficient consideration of the underwater physical
deformation process, underwater light absorption and scattering lead to poor underwater
image restoration effect. A two-stage underwater image restoration network (UIR) was
proposed to solve the problem of vertical distortion in underwater image reconstruction
in [37]. Cheng et al. [38] presented an underwater image enhancement method based on the
Mueller matrix image neural network to obtain Mueller matrix images of different objects
under different water turbidity and realize underwater image enhancement of different
materials and textures. An improved image fusion and enhancement algorithm based on a
prior dark channel is proposed in this paper. The main contributions of the current paper
are summarized as follows.

(1) Due to the influence of ocean currents, and the strong scattering and attenuation
effects of water on light, especially in shallow seas, an improved underwater image fusion
and enhancement algorithm is proposed by fusion of homomorphism filtering, MSRCR
and CLAHE algorithms. By comparing with four other methods, the proposed approach
can effectively and simultaneously compensate for deficiencies in brightness, color, and
contrast.

(2) In the RGB color space, the color deviation and enhanced color saturation are
improved, and image contrast and clarity are achieved with the dark channel.

The rest of this paper is structured as follows: In Section 2, the dark channel is
described. The proposed improved image fusion and enhancement algorithm based on a
prior dark channel is detailed in Section 3. The experiments are shown in Section 4. Finally,
conclusions are drawn in Section 5.

3. Description of Dark Channel
3.1. Color Cast

White balance improves image appearance by compensating for the color loss caused
by the selective absorption of light under water. Underwater images usually have a blue
tone, and the grey world method is the best way to eliminate the blue tone. However,
the direct use of the grey world method will cause serious red artefacts, resulting in
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overcompensation of the red position. Compensate the red channel Irc at each pixel
position x, we obtain

Irc(x) = Ir(x) + α ·
(

Īg(x)− Īr(x)
)
· (1− Īr(x)) · Ig(x) (1)

where Ir and Ig denote the red channel and green channel of the pixel position x of image I,
respectively. According to the upper limit of its dynamic range and normalized between
[0, 1], Īg and Īr are the average of Ig and Ir, respectively. α is a constant parameter. In turbid
or high-plankton concentration water, the blue channel may attenuate significantly, so it is
also necessary to compensate for the attenuation of the blue channel. The compensated
blue channel can be expressed as

Ibc(x) = Ib(x) + β ·
(

Īg(x)− Īb(x)
)
· (1− Īb(x)) · Ig(x) (2)

where Ib is the blue channel of the pixel position x of image I. According to the upper limit
of its dynamic range and normalized between [0, 1], and Īb is the average of Ib, and β is a
constant parameter.

After compensating for attenuation of red and blue channels, the assumption of the
grey world method can be used to estimate and compensate for the color deviation of the
image. However, the image after color deviation correction still has the problems of blurred
details and low contrast, so it needs to be further processed.

3.2. Homomorphic Filtering

Due to the absorption and scattering of light as it propagates through water, the un-
derwater image exhibits uneven illumination, resulting in blurred image details. Homo-
morphic filtering algorithms can compress the image brightness range and enhance image
contrast. Image f (x, y) can be represented by the product of its illuminates function i(x, y)
and reflection function r(x, y), yields to

f (x, y) = i(x, y) · r(x, y) (3)

where i(x, y) describes the illumination of the image, which has nothing to do with the
image, 0 < i(x, y) < ∞. r(x, y) contains the details of the image, which has nothing to do
with lighting, 0 < r(x, y) < 1. Since the relative variation of illuminates is slight, it can
be regarded as the low-frequency component of the image, while the reflectivity is the
high-frequency component. By dealing with the influence of illuminates and reflectance on
the image’s grey value, the shadow region’s detailed features can be obtained. Taking the
logarithm of both sides of (3), we obtain

ln f (x, y) = ln i(x, y) + ln r(x, y) (4)

By using the Fourier transform of (4), we obtain

F[ln f (x, y)] = F[ln i(x, y)] + F[ln r(x, y)] (5)

Equation (5) can be rewritten as

s(x, y) = F−1[S(x, y)] = F−1[H(x, y)F(x, y)] = F−1[H(x, y)i(x, y)] + F−1[H(x, y)r(x, y)] (6)

where H(x, y) is the homomorphic filter function, which can be applied to the illuminates
component and the reflection component, respectively, satisfied with

H(x, y) = (γH − γL)
[
1− e−cD2(x,y)/D2

0

]
+ γL (7)
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where D2(x, y) =
(

x2 + y2), the constant c is used to control the sharpness of the slope,
transitioning between γL and γH . γL and γH are the parameters for adjusting, γL < 1 and
γH > 1.

In order to ensure that the color of the corrected image does not change, the image is
converted to LAB color space for processing. In this space, the color components A and B
are kept unchanged, and only the brightness component L is homomorphically filtered to
obtain an image with stronger contrast. After homomorphic filtering, the brightness com-
ponent L combines color components A and B to convert to RGB color space. The problem
where the dark features are not evident due to the uneven brightness of underwater images
is solved, as shown in Figure 1.

(a) (b)

Figure 1. Comparison of the algorithms. (a) Color coast. (b) Homomorphic filtering in LAB
color space.

3.3. Multi-Scale Retinex Algorithm with Color Restoration

By using the Retinex enhancement algorithm, the inherent reflection characteristics
of the target object can be obtained by eliminating the interference of light illumination.
Assume that the initial image is I(x, y), there has

I(x, y) = L(x, y)R(x, y) (8)

where L(x, y) is the incident component, and R(x, y) is the reflection component. The
multi-scale Retinex algorithm with color restoration can be given by

RMSRCRi(x, y) = Ci(x, y)RMSRi(x, y)
Ci(x, y) = η

(
log(λ · Ii(x, y))− log

(
∑N

i=1 Ii(x, y)
))

RMSR(x, y) = ∑ns
n=1 µn(log I(x, y)− log(I(x, y) · Gn(x, y)))

where RMSR(x, y) is the high-frequency detail image obtained after multi-scale filtering,
Gn(x, y) is the single scale Gaussian filtering and n denotes a certain scale parameter, µn
is the weight and its value can be adopted as µn = 1/3. ns is the number of scales used,
RMSRCRi(x, y) is the multi-scale filtered high-frequency detail image of the ith channel
combined with the color restoration factor. The parameters η and λ are the nonlinear
intensity control factor and the information, respectively. This paper adopts the restricted
contrast adaptive histogram equalization algorithm to obtain more image edge information.
The contrast limiting amplitude is to cut the pixels higher than a certain threshold in the
histogram of the block region, and evenly distribute the intercepted parts to the histogram
to limit the amplitude of the histogram. The limit threshold C is given by

C =
N
L
+ σ

(
N − N

L

)
(9)

where N is the total pixels in a block area, L is the maximum gray series in the block area,
and σ is the truncation coefficient between [0, 1].
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3.4. Dark Channel Prior Image Enhancement Algorithm

In the dark channel prior theory, it is proposed that in most non-sky local regions, some
pixels will always have at least one color channel (RGB) with low values. This non-sky
local region shows that the intensity value of the prior dark channel image of the fog-free
image is lower than that of the dark channel prior image of the fog image. Because the
fog image in the atmosphere is similar to the fog image underwater, the atmosphere is
similar to the fog image underwater, and the atmosphere scattering model can be used
for modelling. Therefore, the dark channel prior image intensity characteristics of foggy
underwater images should also be similar to those of atmospheric foggy images. The dark
channel prior theory is applied to the underwater image to generate the dark channel prior
image of the underwater image, and the algorithm is given by

Idark (x) = min
x∈Ω(x)

(
min

c∈{RGB}
Ic(x)

)
, Idark (x)→ 0 (10)

where Idark (x) is a prior image of dark channel, c is a channel of RGB, Ic(x) is a channel of
underwater image, ω(x) is a local window centered on x, and the window size is 15× 15.

4. Prior Improved Algorithm of Dark Channel

According to the processing results of the homomorphic filtering algorithm, MSRCR
and CLAHE algorithms on underwater image enhancement, it can be concluded that the
homomorphic filtering algorithm can alleviate the uneven brightness of the image to a cer-
tain extent and improve the characteristics of the dark part of the image. MSRCR algorithm
can effectively improve the brightness and color saturation of the image, and CLAHE algo-
rithm has a particular de fogging effect. These algorithms have their own best application
scenarios. Because of the shallow sea’s complex and changeable underwater environment,
more is needed to rely on more than one image enhancement algorithm to solve the degra-
dation problem of all underwater image enhancement. Therefore, the robustness of the
underwater image enhancement algorithm can be further enhanced by weighted image
fusion of the results of these algorithms according to specific rules.

The prior weight coefficient wDCP of the dark channel is calculated from the exp
function of the prior image mean of the dark channel, yields to

wDCP = exp
(
− Imdark

v2

)
(11)

where Imdark is the mean value of the prior image of the dark channel, and v is a constant
parameter. By calculating the mean value of the prior image of the dark channel of the
underwater image, v = 10 can effectively ensure that the prior weight coefficient of the
dark channel will not be too small, and the calculation efficiency is higher. The final fusion
weight coefficient can be calculated according to the dark channel prior weight coefficient,
we obtain

Wi = 1− wDCPi
wDCPother + wDCP another

(12)

where wDCPi is the dark channel prior weight coefficient of the current image, wDCPother and
wDCP another are the dark channel prior weight coefficients of other images. The underwater
image enhancement fusion algorithm with the improved dark channel can be expressed
as follows:

Step 1. Homomorphic filtering and MSRCR are fused with the RGB channel.
Step 2. Calculate the dark channel prior weight coefficient wDCP of the fused image

according to (11), and then use (12) to calculate the weight coefficient Wi of the second
fusion step.

Step 3. The fusion is performed again according to the weight coefficient, and the
RGB channel image fusion is performed for the first fusion image and the CLAHE image,
respectively.
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Step 4. The three RGB fusion channels are merged to obtain a complete fusion image.
The structure of underwater image enhancement fusion algorithm is shown in Figure 2.

Figure 2. Structure of underwater image enhancement fusion algorithm.

5. Experiments and Analysis
5.1. Experiments

The validity of this method is verified by establishing the underwater image data
set. The images in the experiment come from the underwater image data set searched by
the network. The experiments are carried out on the Underwater Image Enhancement
Benchmark (UIEB) [26] dataset, which includes 950 real-world underwater images in
all. 890 of them have corresponding reference images which are considered to be the
best restoration results selected by 50 volunteers, while the rest 60 underwater images
cannot obtain satisfactory references and are treated as challenging data. The experimental
algorithm programming environment is Spyder (Python 3.7). In order to illustrate the
effectiveness of the proposed algorithm, five underwater images with different scenes and
hues are selected and compared with four algorithms in the literature [39,40].

Figure 3 shows that the literature [39] and the CLAHE algorithm have improved image
clarity and contrast. However, the color deviation has not been eliminated, and the image
is dark after the [39] processing. MSRCR algorithm effectively improves the brightness and
color saturation of the image, but the color deviation still exists, and the image details are
fogged. The color deviation is improved effectively, so as the image clarity and contrast,
but the image is prone to overexposure, resulting in the loss of details. The proposed
algorithm in this paper can enhance the dark details and has a excellent visual effect while
improving the contrast and clarity and adjusting the color deviation.

5.2. Analysis

In total, three quality indexes, including UIQM, information entropy and EAV point
sharpness, are adapted to evaluate the processing results of the different algorithms.

UIQM is the effective evaluation index method for underwater color image quality,
which is evaluated by the linear combination of chromatically, saturation and contrast.
However, there is uncertainty for the value of the UIQM index [41]. The larger the index
value, the better the image effect. The calculation formula is given by

UIQM = c1 · UICM + c2 · USIM + c3 · UIConM (13)

where c1, c2 and c3 are the weight factors of each component in the linear combination,
and c1 = 0.0282, c2 = 0.2953, c3 = 3.5753, respectively. UICM is chroming component,
USIM is sharpness component, and UIConM is contrast component. Information entropy
is mainly an objective evaluation index to measure the amount of information in an image.
The higher the information entropy, the higher the information content of the fused image
and the better the quality. It can be expressed as
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E = −
m

∑
x=1

n

∑
y=1

p(x, y) log(p(x, y)) (14)

where p(x, y) represents the gray scale of each pixel, m and n denote the size of the image.
EVA point sharpness is to evaluate the image sharpness by calculating the grey level
change of a certain boundary in the image. The greater the grey level change in the image,
the clearer the boundary. The calculation formula is given by

EVA =
∑b

a(d f /dx)2

| f (b)− f (a)| (15)

where d f /dx is the grey change rate in the average direction of the image edge, and
f (b)− f (a) is the overall grey change in this direction. The five images in Figure 3 are
evaluated using three image quantity indexes, as shown in Table 1.

Figure 3. Comparison of experimental results with different algorithms.

The algorithm in [39] does not significantly improve the image in UIQM, informa-
tion entropy, or even slightly lower than the original image, and the image contrast and
sharpness are reduced. CLAHE algorithm, MSRCR algorithm and the literature [40] have
significantly improved the image quality. The image information entropy of the part pro-
cessed by CLAHE is slightly better than that of all experiment algorithms. However, it can
be seen from Figure 3 that there is still a significant color difference in the CLAHE enhanced
image, which impacts the UIQM index. Although the MSRCR algorithm improves the
brightness and color saturation, the EVA index is still slightly lower and the definition
is reduced. Literature [40] corrected image’s color deviation and improved the image’s
contrast, and some UIQM and information entropy indexed are slightly better than all the
experimental algorithms. However, the processed image will have the problem of uneven
brightness due to overexposure, resulting in the loss of detailed information of the image,
and the EVA index is only slightly higher than the original image, reducing the overall
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clarity of the image. The UIQM, information entropy and EVA indexes of the proposed
algorithm in this paper are better than the four comparison algorithms. The definition
index EAV is much higher than all the experimental methods, and the UIQM index is also
almost higher than all the algorithms, effectively improving the image color deviation and
enhancing the image definition and contrast.

Table 1. Underwater image quality evaluation.

Image Number CLAHE MSRCR Literature [39] Literature [40] Proposed Algorithm in This Paper

UIQM

1 1.310 2.099 1.936 4.104 4.363

2 4.352 4.262 4.351 4.396 4.370

3 4.008 3.725 3.852 4.131 4.161

4 5.863 6.013 4.419 5.916 6.191

5 4.256 3.966 4.238 4.314 4.399

Information Entropy

1 4.635 4.180 4.330 6.515 4.777

2 4.914 4.430 4.384 5.113 5.028

3 4.941 4.408 4.617 4.682 4.825

4 4.833 4.822 4.682 4.700 5.634

5 4.757 4.060 3.938 4.362 4.655

EVA

1 8.741 5.847 3.956 4.669 11.330

2 14.320 11.610 6.399 13.110 18.040

3 21.110 17.090 10.400 8.951 32.480

4 35.380 34.890 8.951 22.350 5.051

5 39.170 20.670 16.610 15.310 42.380

6. Conclusions

Owing to the complex and varying underwater environment of shallow seas, issues
arise regarding blurred details, decreased contrast and color distortion of underwater
images. Consequently, an underwater image-enhancement algorithm is proposed in this
paper based on a prior improved algorithm of the dark channel. By compensating for
the loss of red and blue channels, the color distortion caused by the selective absorption
of light can be effectively corrected. Homomorphic filtering of the L component in LAB
space is carried out by using the corrected images. This allows for the resolution of issues
concerning blurred details caused by forward light-scattering and obscure dark details
caused by uneven illumination in underwater images. CLAHE algorithm of the image in
RGB space is adapted to solve the problem whereby the underwater image is foggy due to
the backscattering of light. MSRCR algorithm in RGB space is adapted to solve the problem
of underwater image brightness, improve color saturation and enhance the overall contrast
of images. The UIQM, information entropy, and EVA indexes of the proposed algorithm
in this paper demonstrate superior performance than the four comparison algorithms.
The definition index EAV is much higher than all the experimental methods. The UIQM
index is also almost higher than all the algorithms, effectively improving the image color
deviation and enhancing image definition and contrast.
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