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1. Introduction

The classical Hardy inequality

∫
RN
|∇u|pdx ≥

∣∣∣∣N − p
p

∣∣∣∣p ∫RN

|u|p
|x|p dx, (1)

holds for u ∈ C∞
0 (RN) when 1 < p < N and for u ∈ C∞

0 (RN\{0}) when N < p < ∞.
Hardy’s inequality plays an important role in analysis and has extensive applications in
partial differential equations and physics. Since Hardy in [1] firstly proved this inequality
in the case of one dimension, many researchers devoted themselves to it and made great
progress, not only in Euclidean spaces, there are many counterparts in Carnot groups and
Riemannian manifolds, see [2–12] and the references therein.

Davis and Hinz obtained in [13] the following Rellich inequality

∫
RN
|∆u|pdx ≥

(
N(N − 2p)(p− 1)

p2

)p ∫
RN

|u|p
|x|2p dx, u ∈ C∞

0 (RN), (2)

where 1 < p < N
2 , and the constant

(
N(N−2p)(p−1)

p2

)p
is sharp. It is a generalization to

the second-order derivative of Hardy inequality. In [14], Tertikas and Zographopoulos
obtained a Hardy–Rellich type inequality

∫
RN
|x|m|∆u|2dx ≥ Cm,N

∫
RN
|x|m |∇u|2

|x|2 dx, u ∈ C∞
0 (RN) (3)

where N ≥ 5, 4− N < m ≤ 0, and

Cm,N := min
n=0,1,2,···

(
(N−2+m)(N−m)

4 + n(n + N − 2)
)2

(N−2+m)2

4 + n(n + N − 2)
.

The constant Cm,N was proven to be sharp. Particularly, when N+4−2
√

N2−N+1
3 ≤ m ≤ 0,

Cm,N = (N−m)2

4 , whereas when 4− N ≤ m < N+4−2
√

N2−N+1
3 , 0 < Cm,N < (N−m)2

4 . Fur-
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thermore, a new proof of inequality (3) for m = 0 was given in [15]. Particularly, the author
proved that, for N = 3, 4, the sharp constants C0,N are 25

36 and 3, respectively. Moreover, the
authors in [16] obtained an improved Hardy–Rellich inequality associated with operators

L = − ∂2

∂r2 −
Nk − 1

r
∂

∂r
+

1
r2 Λω,

where Λω is a non-negative, self-adjoint operator on SN−1.
In recent years, there has been considerable interest in studying the Hardy-type

inequality for Dunkl operators. It is well known that there exists a constant such that the
following Hardy inequality ∫

RN
|∇ku|pdµk ≥ C

∫
RN

|u|p
|x|p dµk, (4)

holds for all u ∈ C∞
0 (RN) (see [17–19]). When p > Nk = N + 2γ, γ is defined in Section 2,

the best constant C =
(

p−Nk
p

)p
was obtained by different method in [17,18]. When p = 2,

Velicu proved in [19] for any u ∈ C∞
0 (RN) and Nk > 2, the following sharp inequality

∫
RN
|∇ku|2dµk ≥

(Nk − 2)2

4

∫
RN

|u|2
|x|2 dµk, (5)

holds. This results is based on a L2 norm comparison of |∇ku| and |∇u| for any u ∈ C1
0(RN)

which is obtained in [20] by investigating the carré-du-champ operator. For any 1 < p < Nk,

the authors in [17,19] get explicit constants C =
(

Nk−2γp−p
p

)p
and

(
Nk−p

p

)p−1(
Nk−p

p − 2γ(p− 1)
)

, respectively. However, the best constant of Lp Dunkl–Hardy in-
equality for any 1 < p < Nk is still an open question.

The author in [19] also obtained a Rellich inequality for Dunkl–Laplacian

∫
RN
|∆ku|2dµk ≥

N2
k (Nk − 4)2

16

∫
RN

|u|2
|x|4 dµk, (6)

and the constant N2
k (Nk−4)2

16 is sharp.
In this paper, we proved the following weighted Hardy–Rellich inequality for Dunkl

operators with an explicit constant

∫
RN
|x|a|∆ku|2dµk ≥ Ca,Nk

∫
RN
|x|a |∇ku|2

|x|2 dµk. (7)

It is an extension of inequality (3) in the case of Dunkl operators. In [18], the authors

proved that for a = 0 and a = 2 the best constants of inequality (7) are, respectively, N2
k

4

(Nk ≥ 5 + 4γ) and (Nk−2)2

4 (Nk 6= 2). When a = 0, we have Ca,Nk =
N2

k
4 for any Nk ≥ H0,γ,

where Ha,γ is defined as the largest real zero points of cubic function

fa,γ(x) := x3 + [a(5 + 2γ)− (5 + 4γ)]x2 + 4a(a− 1)x + 4(a− 1)2.

Note that H0,γ ≤ 5 + 4γ, so our result improved the inequality in [18]. When γ = 0
and a = m = 0, ∆k and ∇k degenerate, respectively, to ∆ and ∇, and the inequality (7)
return to the inequality (3).

The plan of this paper is as follows. In Section 2, we introduce some definitions and
basic conceptions of Dunkl operators. In Section 3, we obtained weighted Hardy–Rellich
type inequalities for Dunkl operators by using the spherical h-harmonic decomposition.



Mathematics 2023, 11, 1487 3 of 12

2. Dunkl Operators

In this section, we will introduce some fundamental concepts and notations of Dunkl
operators, see also [21,22] for more details.

We call R a root system, if R ⊂ RN \ {0} is a finite set such that R ∩ αR = {−α, α}
and σα(R) = R for any α ∈ R, then denote σα as a reflection on the hyperplane which is
orthogonal to the root α, written as

σαx = x− 2
〈α, x〉
〈α, α〉α.

We write G as the group generated by all the reflections σα for α ∈ R, it is a finite
group. Let k : R −→ [0, ∞) be a G-invariant function, i.e., k(α) = k(vα) for all v ∈ G and all
α ∈ R, simply written kα = k(α). R can be decomposed as R = R+ ∪ (−R+), when α ∈ R+,
then−α ∈ −R+, and R+ is called a positive subsystem. Fix a positive subsystem R+ in
a root system R. Without loss of generality, we assume that for all α ∈ R, |α|2 = 2. For
i = 1, ..., N, the Dunkl operators on C1(RN) is defined as

Tiu(x) = ∂iu(x) + ∑
α∈R+

kααi
u(x)− u(σαx)
〈α, x〉 .

By this definition, we can see that even if the decomposition of R is not unique, the
different choices of positive subsystems make no difference in the definitions due to the

G-invariance of k. Denote by∇k = (T1, . . . , TN) the Dunkl gradient, ∆k =
N
∑

i=1
T2

i the Dunkl–

Laplacian. Especially, for k = 0 we have∇0 = ∇ and ∆0 = ∆. The Dunkl–Laplacian can be
written in terms of the usual gradient and Laplacian as follows,

∆ku(x) = ∆u(x) + 2 ∑
α∈R+

kα

[
〈∇u(x), α〉
〈α, x〉 − u(x)− u(σαx)

〈α, x〉2

]
.

The weight function naturally associated with Dunkl operators is

ωk(x) = ∏
α∈R+

|〈α, x〉|2kα .

This is a homogeneous function of degree 2γ, where

γ := ∑
α∈R+

kα.

We will work in spaces Lp(RN , |x|aµk), where dµk = ωk(x)dx is the weighted measure.
For this weighted measure, we have a formula of integration by parts∫

RN
Ti(u)vdµk = −

∫
RN

uTi(v)dµk.

If at least one of the functions u, v is G-invariant, the following Leibniz rule holds.

Ti(uv) = uTiv + vTiu

Spherical h-harmonics. We introduce some concepts and basic facts for spherical
h-harmonic theory, see [21] for more details. then we called homogeneous polynomial p of
degree n an h-harmonic polynomial of degree n if it satisfies

∆k p = 0.

Spherical h-harmonics (or shortly h-harmonics) of degree n are the restrictions of
h-harmonic polynomials of degree n to the unit sphere SN−1. We denote the space of
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h-harmonics of degree n as Pn. Denote the dimension of Pn as d(n), which is finite and
given by following equation:

d(n) = (n+N−1
N−1 )− (n+N−3

N−1 ).

Furthermore, one can decompose the space L2(SN−1, ωk(ξ)dξ) as the orthogonal direct
sum of the spaces Pn, for n = 0, 1, 2, . . ..

Let {Yn
i }, i = 1, . . . , d(n) be a set of orthogonal basis of Pn, In the spherical polar

coordinates x = rξ, for r ∈ [0, ∞) and ξ ∈ SN−1, we can write the Dunkl–Laplacian as

∆k =
∂2

∂r2 +
Nk − 1

r
∂

∂r
+

1
r2 ∆k,0,

where ∆k,0 is a generalization of the classical Laplace-=Beltrami operator on the sphere,
which only acts on the ξ variable. The spherical h-harmonics Yn

i are all eigenfunctions of
∆k,0, and the corresponding eigenvalues are given by

∆k,0Yn
i = −n(n + Nk − 2)Yn

i =: λnYn
i .

The h-harmonic expansion of a function u ∈ L2(µk) can be expressed as

u(rξ) =
∞

∑
n=0

d(n)

∑
i=1

un,i(r)Yn
i (ξ),

where
un,i(r) =

∫
SN−1

u(rξ)Yn
i (ξ)ωk(ξ)dν(ξ),

and ν is the surface measure on the sphere SN−1.

3. Hardy–Rellich Type Inequalities for Dunkl Operators

In this section, we prove the weighted L2 Hardy–Rellich inequalities for Dunkl operators.

Theorem 1. Assume a ∈ R, Nk 6= 2− a and Nk 6= a. If one of the following conditions is satisfied:
(1) a ≥ 2, and Nk ≥ max {1, 2− a + 2

√
(a− 2)(a− 1)};

(2) 0 ≤ a < 2, and Nk ≥ a + Ha,γ;
(3) a < 0, Nk ≥ a + Ha,γ, and{

2−
√

3Nk − 1 ≤ a < 0, i f max { 5
3 , (2−a)2

4 } ≤ Nk ≤ 1 + (2−a)2

2 ;

2−
√

2(Nk − 1) ≤ a < 0, i f Nk ≥ 1 + (2−a)2

2 ,

then, for any u ∈ C∞
0 (RN), the following inequality holds

∫
RN
|x|a|∆ku|2dµk ≥

(Nk − a)2

4

∫
RN
|x|a |∇ku|2

|x|2 dµk. (8)

Remark 1. Note that when a = 0, the function

f0,γ(x) = x3 − (5 + 4γ)x2 + 4,

it follows that
4 + 4γ < H0,γ < 5 + 4γ.

Thus, Theorem 1 improves the results given in [18].

Remark 2. f0,0(4) = −12, f0,0(5) = 4, so 4 < H0,0 < 5. This means that the condition N ≥ 5
is reasonable when a = γ = 0 in inequality (8).
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Remark 3. Especially, we have H1,γ = 2γ. Therefore, inequality (8) holds for any Nk ≥ 1 + 2γ.

Proposition 1. Assume a < 1, then a + Ha,γ > 1 + 2γ.

Proof. We only need to prove fa,γ(1 + 2γ− a) < 0. By direct computation we have

fa,γ(1 + 2γ− a) =(1 + 2γ− a)3 + [a(5 + 2γ)− (5 + 4γ)](1 + 2γ− a)2

+ 4a(a− 1)(1 + 2γ− a) + 4(a− 1)2

=(a− 1)((1 + 2γ)(4 + 2γ)− 2aγ)2γ

− (1− a)2((1 + 2γ)(4 + 2γ)− (4 + 2aγ)).

Since a < 1, it is clear that fa,γ(1 + 2γ− a) < 0.

We prove firstly an estimate of the right-hand side of inequality (8) which is different
from the result for Euclidean gradient. In fact, in the case of the Euclidean gradient, the
following inequality (9) is exactly an equality for any a ∈ R.

Lemma 1. For any u ∈ C∞
0 (RN), we have the inequalities:

(1) When a ≥ 2,

∫
RN

|∇ku|2

|x|2−a dµk ≤
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[
|u′n,i|2rNk+a−3 − λnu2

n,ir
Nk+a−5

]
dr. (9)

(2) When a < 2,

∫
RN

|∇ku|2

|x|2−a dµk ≥
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[
|u′n,i|2rNk+a−3 − λnu2

n,ir
Nk+a−5

]
dr, (10)

and

∫
RN

|∇ku|2

|x|2−a dµk ≤
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[
|u′n,i|2rNk+a−3 − λnu2

n,ir
Nk+a−5

]
dr

+ 2(2− a)γ
∞

∑
n=1

d(n)

∑
i=1

∫ +∞

0
u2

n,ir
Nk+a−5dr.

(11)

Proof. By integration by parts,

∫
RN

|∇ku|2
|x|2−a dµk = −

∫
RN

∆ku · u
|x|2−a dµk + (2− a)

∫
RN

u
x · ∇ku

|x|4−a dµk, (12)

where

∫
RN

u
x · ∇ku

|x|4−a dµk = −
∫
RN

u · ∇k(
xu
|x|4−a )dµk

= −
∫
RN

u

(
Nk + a− 4
|x|4−a u +

x
|x|4−a∇ku− 2

|x|4−a ∑
α∈R+

kα(u− u(σαx))

)
dµk.

Therefore∫
RN

u
x · ∇ku

|x|4−a dµk = −
Nk + a− 4

2

∫
RN

u2

|x|4−a dµk + ∑
α∈R+

kα

∫
RN

(u− u(σαx))u
|x|4−a dµk. (13)
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Inserting (13) into (12),

∫
RN

|∇ku|2
|x|2−a dµk =−

∫
RN

∆ku · u
|x|2−a dµk −

(2− a)(Nk + a− 4)
2

∫
RN

u2

|x|4−a dµk

+ (2− a) ∑
α∈R+

kα

∫
RN

(u− u(σαx))u
|x|4−a dµk.

(14)

When a ≥ 2, since |x|a−4 and dµk are G-invariant, by Hölder’s inequality we have

∫
RN
|x|a−4u(σαx) · udµk ≤

(∫
RN
|x|a−4|u(σαx)|2dµk

) 1
2
(∫

RN
|x|a−4|u|2dµk

) 1
2

=
∫
RN
|x|a−4|u|2dµk.

(15)

It follows from (14) and (15),∫
RN

|∇ku|2
|x|2−a dµk ≤ −

∫
RN

∆ku · u
|x|2−a dµk −

(2− a)(Nk + a− 4)
2

∫
RN

u2

|x|4−a dµk.

By using the spherical decomposition for Dunkl operators,

∫
RN

|∇ku|2

|x|2−a dµk ≤−
∫
RN

u · ∆ku
|x|2−a dµk −

(2− a)(Nk + a− 4)
2

∫
RN

u2

|x|4−a dµk

=−
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[
un,i(u

′′
n,i +

Nk − 1
r

u
′
n,i +

λn

r2 un,i)rNk+a−3
]

dr

− (2− a)(Nk + a− 4)
2

∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0
u2

n,ir
Nk+a−5dr

=
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[
|u′n,i|2rNk+a−3 − λnu2

n,ir
Nk+a−5

]
dr.

When a < 2, inequality (10) can be obtained similarly. On the other hand, by spherical
decomposition we have

u =
+∞

∑
n=0

d(n)

∑
i=1

un,i(r)Yn
i (ξ),

u(σαx) =
+∞

∑
n=0

d(n)

∑
i=1

ũn,i(r)Yn
i (ξ),

where
u0,1(r) =

1
ωk

d

∫
SN−1

u(rξ)ωk(ξ)dν(ξ),

ũ0,1(r) =
1

ωk
d

∫
SN−1

u(r · σα(ξ))ωk(ξ)dν(ξ),

where ωk
d :=

∫
SN−1 ωk(ξ)dν(ξ) is the spherical measure. Note that ωk(ξ)dν(ξ) is G-

invariant, by a change of variables σαξ → ξ, we obtain

ũ0,1(r) = u0,1(r),

u− u(σαx) =
+∞

∑
n=1

d(n)

∑
i=1

(un,i(r)− ũn,i(r))Yn
i (ξ).
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From Parseval’s identity, we have

∫
RN

1
|x|4−a (u− u(σαx))udµk =

+∞

∑
n=1

d(n)

∑
i=1

∫ +∞

0
(un,i(r)− ũn,i(r)) · un,irN+a−5dr

=
∫
RN

1
|x|4−a [(u− u0,1)− (u(σαx)− ũ0,1)](u− u0,1)dµk.

Moreover

−
∫
RN

1
|x|4−a (u(σαx)− ũ0,1)(u− u0,1)dµk

≤
(∫

RN

1
|x|4−a (u(σαx)− ũ0,1)

2dµk

) 1
2
(∫

RN

1
|x|4−a (u− u0,1)

2dµk

) 1
2

=
∫
RN

1
|x|4−a (u− u0,1)

2dµk.

Then we have∫
RN

1
|x|4−a (u− u(σαx))udµk ≤ 2

∫
RN

1
|x|4−a (u− u0,1)

2dµk. (16)

By (16) and spherical decomposition of Dunkl operators, we have

∫
RN

|∇ku|2

|x|2−a dµk ≤−
∫
RN

u · ∆ku
|x|2−a dµk −

(2− a)(Nk + a− 4)
2

∫
RN

u2

|x|4−a dµk

+ 2(2− a)γ
∫
RN

1
|x|4−a (u− u0,1)

2dµk

=−
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[
un,i(u

′′
n,i +

Nk − 1
r

u
′
n,i +

λn

r2 un,i)rNk+a−3
]

dr

− (2− a)(Nk + a− 4)
2

∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0
u2

n,ir
Nk+a−5dr

+ 2(2− a)γ
∞

∑
n=1

d(n)

∑
i=1

∫ +∞

0
u2

n,ir
Nk+a−5dr

=
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[
|u′n,i|2rNk+a−3 − λnu2

n,ir
Nk+a−5

]
dr

+ 2(2− a)γ
∞

∑
n=1

d(n)

∑
i=1

∫ +∞

0
u2

n,ir
Nk+a−5dr.

Now it’s time to prove Theorem 1.

Proof of Theorem 1. Since

∫
RN
|x|a|∆ku|2dµk =

∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

(
u
′′
n,i +

Nk − 1
r

u
′
n,i +

λn

r2 un,i

)2
rNk+a−1dr,

when a ≥ 2, by Lemma 1 we have
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∫
RN
|x|a|∆ku|2dµk − C

∫
RN

|∇ku|2
|x|2−a dµk

≥
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[(
u
′′
n,i +

Nk − 1
r

u
′
n,i +

λn

r2 un,i

)2
rNk+a−1 − C|u′n,i|2rNk+a−3 + λnCu2

n,ir
Nk+a−5

]
dr

=
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[
|u′′n,i|2rNk+a−1 + ((Nk − 1)(1− a)− 2λn − C)|u′n,i|2rNk+a−3

]
dr

+ λn(λn − (2− a)(Nk + a− 4) + C)
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0
u2

n,ir
Nk+a−5dr.

Denote

In,i =
∫ +∞

0

[
|u′′n,i|2rNk+a−1 + ((Nk − 1)(1− a)− 2λn − C)|u′n,i|2rNk+a−3

]
dr

+ λn(λn − (2− a)(Nk + a− 4) + C)
∫ +∞

0
u2

n,ir
Nk+a−5dr.

Using the following weighted Hardy inequality

∫ +∞

0
|u′ |2rNk+a−1dr ≥ (Nk + a− 2)2

4

∫ +∞

0
u2rNk+a−3dr, (17)

∫ +∞

0
|u′ |2rNk+a−3dr ≥ (Nk + a− 4)2

4

∫ +∞

0
u2rNk+a−5dr, (18)

we have

In,i ≥
(
(Nk − a)2

4
− 2λn − C

) ∫ +∞

0
|u′n,i|2rNk+a−3dr

+ λn(λn − (2− a)(Nk + a− 4) + C)
∫ +∞

0
u2

n,ir
Nk+a−5dr.

Let C ≤ (Nk−a)2

4 − 2λn, then Cmax = (Nk−a)2

4 . Taking C = (Nk−a)2

4 , we have

In,i ≥ λn

(
λn −

(Nk − a)(Nk + 3a− 8)
4

) ∫ +∞

0
u2

n,ir
Nk+a−5dr.

If Nk ≥ a, (Nk−a)(Nk+3a−8)
4 ≥ 0, then In,i ≥ 0. When 1 ≤ Nk ≤ a, (Nk−a)(Nk+3a−8)

4 ≤ 0,

then In,i ≥ 0 if λ1 ≤ (Nk−a)(Nk+3a−8)
4 , thus

max {1, 2− a + 2
√
(a− 2)(a− 1)} ≤ Nk ≤ a.

When a < 2,
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∫
RN
|x|a|∆ku|2dµk − C

∫
RN

|∇ku|2
|x|2−a dµk

≥
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[(
u
′′
n,i +

Nk − 1
r

u
′
n,i +

λn

r2 un,i

)2
rNk+a−1 − C|u′n,i|2rNk+a−3 + λnCu2

n,ir
Nk+a−5

]
dr

− 2(2− a)Cγ
∞

∑
n=1

d(n)

∑
i=1

∫ +∞

0
u2

n,ir
Nk+a−5dr

=
∞

∑
n=0

d(n)

∑
i=1

∫ +∞

0

[
|u′′n,i|2rNk+a−1 + An|u

′
n,i|2rNk+a−3 + Bnu2

n,ir
Nk+a−5

]
dr.

By integration by parts, we obtain

An = (Nk − 1)(1− a)− 2λn − C,

Bn =

{
λ0(λ0 − (2− a)(Nk + a− 4) + C), n = 0;
λn(λn − (2− a)(Nk + a− 4) + C)− 2(2− a)Cγ, n ≥ 1,

since λ0 = 0, then B0 = 0.
Denote

Jn,i =
∫ +∞

0

[
|u′′n,i|2rNk+a−1 + An|u

′
n,i|2rNk+a−3 + Bnu2

n,ir
Nk+a−5

]
dr,

then from inequality (17) we have

Jn,i ≥
[

An +
(Nk + a− 2)2

4

] ∫ +∞

0
|u′n,i|2rNk+a−3dr + Bn

∫ +∞

0
u2

n,ir
Nk+a−5dr. (19)

For n = 0,

J0,1 ≥
(
(Nk − a)2

4
− C

) ∫ +∞

0
|u′0,1|2rNk+a−3dr,

so we get C ≤ (Nk−a)2

4 .

For n ≥ 1, take C = (Nk−a)2

4 , from inequality (18) we get

Jn,i ≥ −2λn

∫ +∞

0
|u′n,i|2rNk+a−3dr + Bn

∫ +∞

0
u2

n,ir
Nk+a−5dr

≥ Dn

∫ +∞

0
u2

n,ir
Nk+a−5dr,

where

Dn = λn

(
λn −

(Nk − a)(Nk + 3a− 8)
4

)
− (2− a)

2
(Nk − a)2γ,

1. If 0 ≤ a < 2, we can rewrite D1 as

D1 =
(Nk − a)3 + [a(5 + 2γ)− (5 + 4γ)](Nk − a)2 + 4a(a− 1)(Nk − a) + 4(a− 1)2

4

=
1
4

fa,γ(Nk − a).

Thus, D1 ≥ 0 if Nk − a ≥ Ha,γ. Moreover, Dn can be seen as a quadratic function of
λn. Since

λn ≤ λ2 = −2Nk ≤ −2 ≤ − (2− a)2

2
≤ (Nk − a)(Nk + 3a− 8)

8
,
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for 0 ≤ a < 2 and n ≥ 3, we have

Dn ≥ D2 =
N + aγ

4
Nk

2 +
a(3a− 8− 2N)

4
λn +

a
2
(2− a)(2Nk − a)γ ≥ 0.

So Dn ≥ 0 for any n ≥ 1, i.e., Jn,i ≥ 0 for any n ≥ 0. Thus, the inequality (8) holds.
2. If a < 0, we can also have D1 ≥ 0 for

Nk ≥ a + Ha,γ.

Moreover, Dn ≥ D2 ≥ D1 ≥ 0 if λ2 ≤ λ1 ≤ − (2−a)2

2 or λ2 ≤ − (2−a)2

2 ≤ λ1 and

− (2−a)2

2 − λ2 ≥ λ1 +
(2−a)2

2 . Computing directly we have{
2−
√

3Nk − 1 ≤ a < 0, i f max { 5
3 , (2−a)2

4 } ≤ Nk ≤ 1 + (2−a)2

2 ;

2−
√

2(Nk − 1) ≤ a < 0, i f Nk ≥ 1 + (2−a)2

2 .

Combining all the arguments above, we obtain the inequality (8).

Next we prove the optimality of the constant (Nk−a)2

4 . For any ε > 0, take

uε(r) =

{
r , 0 < r < 1;

r−
Nk+a−4+ε

2 , r ≥ 1.

Recall that Nk 6= 2− a, calculating directly we have

lim
ε→0

∫
RN |∆kuε|2dµk∫
RN
|∇kuε |2
|x|2 dµk

= lim
ε→0

(Nk+a−4+ε)2(Nk−a−ε)2

16 + (Nk−1)2

Nk+a−2 ε

(Nk+a−4+ε)2

4 + 1
Nk+a−2 ε

=
(Nk − a)2

4
.

Theorem 2. Assume 0 ≤ a < 1, Nk 6= 2, and 1 + 2γ ≤ Nk < a + Ha,γ. Then, for any
u ∈ C∞

0 (RN), we have the inequality

∫
RN
|∆ku|2dµk ≥ Ca,N,γ

∫
RN

|∇ku|2
|x|2 dµk, (20)

where

Ca,N,γ :=

(
N2

k + a2 − 4a− 4
)2

4(Nk + a− 2)2 + 16(2− a)(1 + 2γ)
.

Proof. When n ≥ 1, choosing 0 < C < (Nk−a)2

4 , then we have from the inequalities (18)
and (19)

Jn,i ≥ En

∫ +∞

0
u2

n,ir
Nk+a−5dr,

where

En =

(
λn −

(Nk − a)(Nk + a− 4)
4

)2

−
(
(Nk + a− 4)2

4
+ (2− a)2γ− λn

)
C.

Firstly we can rewrite E1 as

E1 =

(
N2

k + a2 − 4a− 4
4

)2

− (Nk + a− 2)2 + 4(2− a)(1 + 2γ)

4
C.
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From E1 ≥ 0 we have

Cmax =

(
N2

k + a2 − 4a− 4
)2

4(Nk + a− 2)2 + 16(2− a)(1 + 2γ)
.

Cmax < (Nk−a)2

4 if and only if 1 + 2γ ≤ Nk < a + Ha,γ. Taking 0 < C ≤ Cmax, then,

E2 − E1 =λ2

(
λ2 −

(Nk − a)(Nk + a− 4)
2

)
− λ1

(
λ1 −

(Nk − a)(Nk + a− 4)
2

)
+ (λ2 − λ1)

(
C−

N4
k

4

)

=Nk

(
N2

k + a(4− a)
)
−

(Nk − 1)
(
(Nk − 1)2 − 2(Nk − 1) + a(4− a)

)
2

+ (Nk + 1)
(
(Nk − a)2

4
− C

)
≥ 0

for any 0 ≤ a < 1.
On the other hand, for any n ≥ 2,

λn −
(Nk − a)(Nk + a− 4)

2
+ C ≤ λ2 −

(Nk − a)(Nk + a− 4)
2

+ C

= −
N2

k + a(4− a)
2

+ C ≤ 0,

we have En ≥ E2 ≥ E1 ≥ 0. Thus, Jn,i ≥ 0, which implies that inequality (20) holds.

Remark 4. If a = 0, γ = 0, then

C0,N,0 =

{ 25
36 , N = 3;
3, N = 4,

which recovers the results in [15].

4. Conclusions

In this paper, by using the spherical h-harmonic decomposition theory, we obtained
some weighted Hardy–Rellich inequalities associated with Dunkl operators. Particularly,
we obtained the explicit constants of these inequalities and proved the sharpness of the
constant in some cases.
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