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Abstract: Let A be a connected cochain DG algebra such that its underlying graded algebra .A* is the

X1X + XX
graded skew polynomial algebra k{x1,x2,x3)/ | xpx3+x3%2 |, |x1] = |x2| = |x3] = 1. Then the
X3X1 + X1X3
d4(x1) xq
differential 9 4 is determined by | 94(x2) | =M| x2 | for some M € M;(k). When the rank
9.4(x3) x3

r(M) of M belongs to {1,2,3}, we compute H(.A) case by case. The computational results in this
paper give substantial support for the research of the various homological properties of such DG
algebras. We find some examples, which indicate that the cohomology graded algebras of such kind
of DG algebras may be not left (right) Gorenstein.

Keywords: cochain DG algebra; cohomology algebra; DG skew polynomial algebra; AS-Gorenstein
algebra

MSC: 16E45; 16E65; 16W20; 16 W50

1. Introduction

In the literature, Koszul, homologically smooth, Gorenstein and Calabi-Yau properties
of cochain DG algebras have been frequently studied. In general, these homological
properties are difficult to detect. For a non-trivial DG algebra A, the trivial DG algebra
H(A) is much simpler to study since it has zero differential. There have been some attempts
to judge the various homological properties of A from H(A). It is shown in [1-3] that a
connected cochain DG algebra A is a Kozul Calabi-Yau DG algebra if H(.A) belongs to one
of the following cases:

(a)H(A) = k; (b)H(A) = k[[2]], z € ker(d});

k([z1], [22])
([z1][z2] + [z2][21])

A more general result is proved in [4] that A is Calabi-Yau if the trivial DG algebra
(H(A),0) is Calabi-Yau. In particular, A is a Calabi-Yau DG algebra if

aly][z] +bz][y] +c[x]?
alz][x] +b[x][z] +c[y]* |,
alx][y] +b[y][x] +c[z]?

where (a,b,c) € P} — D and x,y,z € ker(d'y). By [5] (Proposition 6.2), A is not a Gorenstein
DG algebra but a Koszul and homologically smooth DG algebra if H(A) = k([y1], -+, [yx]),
for some degree 1 cocycle elements yq,--- ,y, in A. In addition, [6] (Proposition 6.5)

(c)H(A) ,21,22 € ker(3Y).

H(A) = Kk([x], [y, [z])/
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indicates that A is Calabi-Yau if H(A) = k[[z1], [z2]], where z; € ker(d))) and z, €
ker(0%). In [7], it is proved that A is a Koszul homologically smooth DG algebra if
H(A) = k[[y1],- -, [ym]], for some central, cocycle and degree 1 elements y1, -+, Ym
in A. Moreover, A is 0-Calabi-Yau if and only if m is an odd integer. It is proved in [1]
(Proposition 4.3) that A is a Koszul and Calabi-Yau DG algebra if

H(A) = k([ 1, [y21) /(M Tya 1P + t2[y2 12 + ts([va 1 [v2] + [v21[v1]))

withy1,y2 € Z1(A) and (t1, to, t3) € P2 — {(t1,t2, t3)|t1t2 — t5 # 0}. These results indicate
that it is worthwhile to compute the cohomology algebra of a given DG algebra if one
wants to study its homological properties.

Recently, the constructions and studies on some specific family of connected cochain
DG algebras have attracted much attention. In [5-7], DG down-up algebras, DG polynomial
algebras and DG-free algebras are introduced and systematically studied, respectively. It
is exciting to discover that non-trivial DG down-up algebras and DG free algebras with
2 degree 1 variables are Calabi-Yau DG algebras. It seems to be a good way to construct
some interesting homologically smooth DG algebras on AS-regular algebras. The notion
of AS-regular algebras was introduced by Artin-Schelter in [8]. AS-regular algebras are
thought to be the coordinate rings of the corresponding non-commutative projective spaces
in the non-commutative projective geometry (cf. [9-11]). One of the central questions in
non-commutative projective geometry is to classify non-commutative projective spaces,
or equivalently, to classify the corresponding Artin—Schelter regular algebras. In the last
twenty years, they have been intensively studied in the literature (cf. [12-20]).

Let D be the subset of the projective plane P? consisting of the 12 points:

© :={(1,0,0),(0,1,0),(0,0,1)} U {(a,b,c)|a® = b> = °}.
Recall that the points (a,b,¢) € ]P’% — ® parametrize the 3-dimensional Sklyanin algebras,

k<X1, X2, X3>

Sabe = (fi fa f3) ’

where
f1 = axpxs + bxsxy + cx%
f2 = axsx1 + bxix3 + cx%

f3 = axyxp + bxoxq + cxg.

The 3-dimensional Sklyanin algebras form the most important class of Artin-Schelter
regular algebras of global dimension 3 (cf. [21-25]). We say that a cochain DG algebra A is a
3-dimensional Sklyanin DG algebra if its underlying graded algebra A" is a 3-dimensional
Sklyanin algebra S, for some (a,b,c) € Pf — D. In [2], all possible differential structures
on 3-dimensional DG Sklyanin algebras are classified. By [2] (Theorem A), d 4 = 0 when
la| # |b] or ¢ # 0. Note that 04 # 0 only if eithera = b,c = 0ora = —b,c = 0. When
a = —b,c = 0, the 3-dimensional DG Sklyanin algebras A is just a DG polynomial algebra,
which is systematically studied in [7]. For the case a = b,c = 0, the differential 0 4 is

defined by
9.4(x1) x3
d4(x2) | =M x5 |, forsomeM € M;(k).
vl

In this case, the 3-dimensional DG Sklyanin algebra is just Ay | ) (M) in [1]. Note that
such 3-dimensional DG Sklyanin algebras are actually a family of cochain DG skew poly-
nomial algebras. The motivation of this paper is to compute H(.A) when the rank r(M) of
M belongs to {1,2,3}.
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For any M € My (k), one sees that H[A | 2y (M)] is always AS-Gorenstein by [26].
In addition, each DG algebra Ay | (2)(M) is a Koszul Calabi-Yau DG algebra by [3]
(Theorem C). It is natural for us to put forward the following conjecture.

Conjecture 1. Forany M € Ms(k), H(Ap , o3)(M)) is a left (right) Gorenstein graded algebra.

Finally, we give a concrete counterexample to disprove Conjecture 1 (see Example 1).
More generally, we have the following theorem (see Theorem 2).

Theorem 1. Let A be a connected cochain DG algebra such that

X1X2 + X2X1
AP = k(xy,x0,%3) /| xx3+x3%0 |, x| = x| = |xs] =1,
X3X1 + X1X3

(52)+(3)
da(x2) | =N[ 23 |.
94 (x3) 3

Then, the graded algebra H(A) is not left (right) Gorenstein if and only if there exists some
C= (Cij)3><3 € QPL3(k> satisfying N = CilM(Clz]-)3><3, where

1 10 miyp myp M3
M= ( 1 10 ) or M = ( 111’}111 llmu l1m13 )
110 Iomyy  hmiy lhmys
with mlzl% + mlgl% 75 miq, l]lz 7é 0 and 4”’1127?1131%1% = (Tﬂlzl% + mlgl% — m11)2.
Here, QPL,, (k) is the set of quasi-permutation matrixes in GLy (k). Recall that a square
matrix is called a quasi-permutation matrix if each row and each column has at most one non-zero

element (cf. [271). By [1] (Lemma 3.3), a matrix M = (m;j)nxn in GLy (k) is a quasi-permutation
ifandonlyifmirmjr =0,foranyl <i<j<mandre{1,2,---,n}.

and 9 4 is determined by

2. Preliminaries
2.1. Notations and Conventions

Throughout this paper, k is an algebraically closed field of characteristic 0. For any k-
vector space V, we write V' = Homy(V, k). Let {¢;|i € I} be a basis of a finite dimensional
k-vector space V. We denote the dual basis of V by {¢}|i € I}, i.e., {e]|i € I} is a basis of
V' such that ¢ (e;) = ¢;;. For any graded vector space W and j € Z, the j-th suspension
/W of W is a graded vector space defined by (Z/W)i = Wi/,

A cochain DG algebra is a graded k-algebra A together with a differentiald 4 : A — A
of degree 1 such that

9 4(ab) = (34a)b+ (—1)1%la(a 4b)

for all homogeneous elements a,b € A. We write A7 for its opposite DG algebra, whose
multiplication is defined as a - b = (—1)!?/'ltlpa for all homogeneous elements a and b in .A.
Let A be a cochain DG algebra. We denote by A’ its i-th homogeneous component. The
differential d 4 is a sequence of linear maps a;‘ : A1 — A1 such that 85{1 o a;‘ = 0, for
alli € Z. If 94 # 0, A is called non-trivial. The cohomology graded algebra of A is the
graded algebra

ker(d'



Mathematics 2023, 11, 1617

4 of 46

Letz € ker(@il) be a cocycle element of degree i. We write [z]| for the cohomology class
in H(A) represented by z. If A’ = kand A’ = 0,Vi < 0, then we say that A is connected.
One sees that H(.A) is a connected graded algebra if A is a connected cochain DG algebra.
Let A be a connected cochain DG k-algebra. We write m as the maximal DG ideal .A>? of
A. Via the canonical surjection € : A — k, k is both a DG A-module and a DG A7-module.
It is easy to check that the enveloping DG algebra A° = A ® A7 of Ais also a connected
cochain DG algebra with H(.A°) = H(.A)¢, and

mge =myg QA% + AR m gop.

The derived category of left DG modules over A (DG A-modules for short) is denoted
by D(A). A DG A-module M is compact if the functor Homp4)(M, —) preserves all
coproducts in D(A) [28-31]. By [32] (Proposition 3.3), a DG A-module is compact if
and only if it admits a minimal semi-free resolution with a finite semi-basis. The full
subcategory of D(A) consisting of compact DG A-modules is denoted by D(A). The
right derived functor of Hom is denoted by RHom, and the left derived functor of ® is
denoted by ®. They can be computed via K-projective, K-injective and K-flat resolution
of the DG modules. For any M,N € D(A) and L € D(A%),let F = M, N = I and

P = L be a K-projective resolution of M, K-injective resolution of N and K-flat resolution
of L, respectively. Then, we have RHom 4(M, N) = Hom 4(F,N) = Hom4(M, I) and
L@ M = P ® 4 M (cf. [33-36]).

In the rest of this subsection, we review some important homological properties for
DG algebras.

Definition 1. Let A be a connected cochain DG algebra.

1. Ifdimg H(RHom 4(k, A)) = 1 (resp. dimy H(RHom yp (k, A)) = 1), then A is called the
left (resp. right) Gorenstein (cf. [37]);

2. If sk, or equivalently 4eA, has a minimal semi-free resolution with a semi-basis concentrated
in degree 0, then A is called Koszul (cf. [38]);

3. If ak, or equivalently the DG A®-module A is compact, then A is called homologically smooth
(cf. [39] (Corollary 2.7));

4. If A is homologically smooth and RHom 4. (A, A°) = 7" A in the derived category
D((A°)°P) of right DG A°-modules, then A is called an n-Calabi-Yau DG algebra (cf. [40,41]).

Note that the DG algebras considered in this paper are not graded commutative in
general. We should distinguish between left and right Gorenstein properties. To extend the
rich theory of commutative Gorenstein rings to DG algebras, people have completed a lot
of work. We refer to [33,35,42-44] for more details on them.

2.2. AS-Gorenstein (AS-Regular) Graded Algebras

In this subsection, we let A be a connected graded algebra. We have the following
definitions on AS-Gorenstein graded algebras and AS-regular graded algebras [45-47].

Definition 2. We say that A is left (resp. right) Gorenstein if dimy Exty (k, A) = 1 (resp.
dimy Ext}yp (k, A) = 1), where Ext}(k, A) = ®czExty(k, A). For a left Gorenstein graded
algebra A, there is some integer | such that

0, i # depth A,

: ¢))
k(l), i= depth,A.

Extl, (k, A) = {
A left (resp. right) Gorenstein graded algebra A is called left (resp. right) AS-Gorenstein (AS
stands for Artin-Schelter) if its left injective dimension id 4 A < oo (resp. right injective dimension

idgop A < o0). If further, its global dimension gl.dimA < oo, then we say A is left (vesp. right)
AS-regular.
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Lemma 1. Let A be a Noetherian and AS-Gorenstein graded algebra. Then, the graded algebra
B = Alx| with |x| = 2 is also a Noetherian and AS-Gorenstein graded algebra.

Proof. By the well-known ‘Hilbert basis Theorem’, one sees that B is Noetherian. We have
B = A®k[x]. Let P and Q be the finitely generated minimal free resolutions of 4k and i, k,
respectively. Then, P ® Q is a finitely generated minimal free resolution of gk. We have

H(Homg(P ® Q,B))

H(Hom gz (P ® Q, A®k[x]))
(Hom (P, Homy ) (Q, A ® k(x])))
(Homu (P, A ® Homy, (Q, k(x]))
(Hom (P, A) ® Homy,) (Q, k[x]))
( (P,

1R
T T T T

1

14

Hom (P, A)) © H(Homyy (Q, k[x])).
Since A and k[x| are both AS-Gorenstein, we have
dimy Extj(k, B) = dimy H(Homp (P ® Q,B)) = 1.

Thus, B = Alx] is left AS-Gorenstein. We can similarly show that B = A[x] is right
AS-Gorenstein. [

Lemma 2. Let A be a connected graded algebra such that

k{x,y)
= ,ﬂb > 0, X| = =1.
(ax2 + Vab(xy + yx) + by?) I+l = vl

Then, A is not left (right) Gorenstein.

Proof. The trivial module ok admits a finitely generated minimal free resolution

d d,_ d d d
oD p A g5 S BB R =A@ Aey A S 4k >0,

where
Fi1= Aen—l/dn(en) = (ﬂx + \/IZ»by)en_l,n > 3;
dy(ep) = (ax + \/@y)ex + (\/%x +by)ey, di(ex) = x,di(ey) = y.

Acting the functor Homy (—, A) on the deleted complex of the minimal free resolution
above, we obtain the complex

N U . O SN A
0=>1"A = e Ade,A = A — e3A — - ——>eA
where
d{(l*) = e§x+e;y;d§(e;) = gj(ax+ \/%y),dﬁ(e;) _ e:(\/%X+by);
di.q(e}) = ef,q(ax + Vaby),i > 2.
We have

ExtY (k, A) = ker(d}) =

Cker(@y) (i —e)Ao (x+ey)A
~im(d}) (exx +ejy) A a
ker(df ;)  ef(ax+ Vaby)A _ 0
' ef(ax+Vaby)A

e
X
-
S
—~
=
S
~—
I
||2
—~
|
&)
=
|
o)
<
~—
2

—
3
—~
(|
*
~—
N*



Mathematics 2023, 11, 1617

6 of 46

Obviously, dimy Ext} (k, A) # 1 and hence A is not left Gorenstein, similarly, we can show
that A is not right Gorenstein. [

Lemma 3. Let A be a connected graded algebra such that

__ Kxy) _ oyl =
A= (o +by2)'ab =0,(ab) # (0,0),|x| = |y| = 1.

Then, A is not left (right) Gorenstein.

Proof. Without the loss of generality, we assume that a = 0,b # 0. The trivial module 4k
admits a finitely generated minimal free resolution

d d dy_ d d d
S Fy S F s D B S F = A @ Aey 5 A S 4k — 0,

F, = Aen/dn(en> = (b]/)en—lln >3;
dy(e2) = (by)ey, di(ex) = x,d1(ey) = y.

where

Acting the functor Hom4(—, A) on the deleted complex of the minimal free resolution
above, we obtain the complex

dy d;

dy d; d; d
05 1"A 5 et ADEA S A S e5A o DA
where
di(1%) = exx +eyy;ds(ex) = 0,d;(ey) = e; (by);

ir1(ef) = e (by),i > 2.

ker(
1 _ * AL
Exta(k,4) = im(d;)  (extegy)A A
. ker(df ;) ef(by)A ,
i — i+1 i >
Ext!y (k, A) () o7 (by) A 0,i>2.

Since dimy Ext’; (k, A) # 1, A is not left Gorenstein. Similarly, we can show that A is not
right Gorenstein. [

3. Some Basic Lemmas

In this section, we give some simple lemmas, which will be used in the subsequent
computations. If no special assumption is emphasized, we let A be a DG Sklyanin algebra
with A* =S, , 0, and 9 4 is determined by a matrix M in M3 (k).

2t .2t .2t

Lemma 4. Foranyt € N, xi*,x5', x5" are cocycle central elements of A.

Proof. One sees that xi2 is a central element of A since

xizxj = xixix]' = —xixjxi = x]«xiz,
when i # j. This implies that each x?' is a central element of A. We have
d(x7) = 9.a(x;)xi — x;9.4(x7)

n n
2 2
= Z mi]'xj Xi — X Z mijxj
j=1 j=1

n
=) mi]-(szxi — xix]z) =0.
=1
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Using this, we can inductively prove d 4 (xiZt )=0. O

Lemma 5. Let Q) be a coboundary element in A of degree d > 3.

(1) If d = 21 + 1 is odd, then Q) = 9 4[x1x2f + x1X38 + Xpx3h]|, where f,g and h are all
linear combinations of monomials with non-negative even exponents.

(2) If d = 21 is even, then Q) = d g[x1f + X28 + X3h + x1xpx3u], where f,g, h and u are all
linear combinations of monomials with non-negative even exponents.

Proof. By the assumption, we have

I 1
O =0yl Z Cib, 13x1 g xg ]
hi+lp+l3=d—-1
I1,12,13>0

If d =21 +11is odd, then d = 2] is even. Since

Il
Z Cl1,12,13x1 Xy X3
ll+l2+l3:d 1

I1,12,13>0
_ L. Is L. Is
= B Cll,lz,lgxl Xy x5 + )3 C11112r13x1 Xy X3
I+l +13=d—1 L+ +13=d—1
Ii,1,13>0 I1,1b,13>0
14,1 are odd, I3 is even I1,l3 are odd, I, is even
I I I I
+ )3 Ciy iy, l3x1 Xy x5 + Y. Ciy iy, 13x1 X3 X3,
I+l +13=d—1 I+l +1l3=d—1
Ii,1b,13>0 I1,10,13>0
1,13 are odd, I; is even I1,l5,13 are even
we have
_ L. Is
Q=94 Z Ci, 13x1 X33
L+ +13=d—1
I1,1b,13>0
_ -1 .bL-1_I3
= d[x1x2 Y Clop Xy X2 a5
ll+lz+l3:d71
l1,12,13>0
I1,l> are odd, I3is even
L—1_lp I3—1
+d4lx1%3 )y Ciyip X x5x3 ]
l] +lz+13:d71
l1,12,13>0
11,13 are odd, I»is even
L1 15-1
+0.4[x2x3 ) Cronnrixg x5 ]
I +Ilp+Il3=d—1
l,1,13>0

I»,l3 are odd, I;is even

by Lemma 4. Let

o —1.bL-1_I3
f= ) Cppx 33 '35,
ll+lz+l3:d—1
11,1p,13>0
I1,l are odd, I3is even
1.5 _I3—1
8= Z Cl1,12,13 xZZXB‘3 ’
ll+lz+13:d—1
11,15,13>0
I1,I3 are odd, Iis even
o Ih—1_I3—1
h= Z G, lzlsxl Xy Xz
ll+lz+lg d—1
11,1p,13>0

Ip,l3 are odd, I1is even
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This proves (1).
If d =2liseven,thend — 1 = 2] — 1 is odd. Since

)
2 Cll,lz/lsxl Xy X3
h+l+I3=d—-1

I1,2,13>0
_ Il I I3
= )3 Cll,lz,laxl Xy xg + Y Cllrlzrl3xl X3 X3
L+lh+l3=d—1 hi+h+l3=d—1
I,1,1320 I1,lb,13>0
I1,Ip are even, I3 is odd I1,l3 are even, I, is odd
I I I I
+ )3 CLph ¥t X358 + Y. Gy xgas,
ll+lz+l3:d—1 ll+lz+l3:d 1
I, 1320 l,, 1320
1,13 are even, I; is odd I1,I5,13 are odd
we have
Q=094 ), C 2]
=0y Iibl3*1 A2 43
ll+lz+l3:d—l
I1,l0,1320
_ L, J3—1
=dalxs Y Cli by, l3x1 x|
I+l +13=d—1
Iil2,13>0
14,1, are even, I3 is odd
L-1,Js
+9alx ) Crop i %3 %3]
I+l +13=d—1
Ih12,13>0
11,13 are even, I, is odd
A
+94[x )3 Ch X X325
I+ +l3=d—1
Iy,l,13>0
1,13 are even, I; is odd
Ch—1yb=1, 551
+ a_A [X1XQX3 Z C11,12 I3X1 Xy X3 ]
lh+h+I3=d—1
I1,l0,13>0
Iq,l3,13 are odd
Let
_ K171l bs
f= )3 Crpix) X325,
l]+12+l3:d71
I1,12,13>0
I»,l3 are even, I7 is odd
§= Z C11/12,13x1 x22 X3
L+l +Il3=d—1
I1,12,13>0
11,3 are even, I is odd
— Iy . Is—1
h= 2 Cly o 13 %7 X3 %57,
L+l +Il3=d—1
I1,12,13>0
I1,l» are even, I3 is odd
_ —1_h—1_l3—1
u= 2 Ciy by, 13 Xy X3
I+l +Il3=d—-1
I1,l2,13>0
I4,p,13 are odd
This proves (2). O
Lemma 6. Let M = (m;j)3x3 be a matrix in GLg(k). Then, x2,x3, x5 are coboundary elements

in A.

Proof. For Vaq,a,,a3 € k, we have
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04 (c1x1 + c2x2 + c3x3)
_ 2 2 2 2
=] (mnxl + m12x2 + m13x3) + 112(77’121X1 + mopx; + m23x3)

2
+ a3(m31x1 + m32x2 + m33x3)
2
1

2
= (aymyq + aymy + agmzy)x] + (aymyp + asmoy + azmszy) x5

p
+ (aymyz + aymosz + azmsz ) x3.

S0, 0 4(a1x1 + axxp + azxs) = x% if and only if

aymyy + agmmyy + agmz =1 m 1
T

aymip +aymoyy +azmz; =0 <M | ap | =1 0

aymyz + axmoz + azmzz = 0 a3 0

Since (M) = 3, there exists

__ Imppmiz3 —mp3in3y

= 7]

__ Imy3mgzy —mypinag
h2 = 7]

__ Imypmp3—my3iipn
4= ]

such that d 4(a1x1 + ax + azx3) = x%. Similarly, we can show there exist

__ Mmpzmgzy —Mmp1M33 — Mpqmszy — M3y
by = = o=

by = 1y ma3 —ny3msy and ) = mypmz) — 1y M3
M| M|

__ Imy3nip) —nyqimp3 — Imyympp—mjpip)
bs = c3 s

such that d g (b1x1 + baxa + b3x3) = x5 and 9 4 (c1x7 + cax2 + c3x3) = x%, respectively. [

Lemma 7. Let M = (m;;)3x3 be a matrix in GLg (k) and mapmss — mozmsy # 0. If g(%2, %3) €
Z2H A/ (x3)] and h(3, %3) € Z* [ A/ (x?)] are sum of monomials in variables ¥, and x5 with
1 > 1. Then

h(x%, 3) Erz 022 with 1y € k,0<i <.

Furthermore, there exist u(xy, x3) and v(xa, x3), which are sums of monomials in variables x, and
x3, such that

{g(x‘z, X3) = @,

h(x_z, x"3) =dy [U(XZ, X3)].

2141
Proof. Let g(2.%3) = Y ti% A+1=jrf and (i, 73) = Z r]xz 21— 53] where each ti,ri €k
j=0 j=0
Then
2l+1
2 tx21+1 —j ])

Zt x2l 1-2i 21+Zt21 1x§l —2i 21 1)

l . .
= Y [tai(man? + mos ) 52 7225 + 11202 T H 202 (g6 + mapia?)]
i=0
l 20-2i . 2i 20-2i-2 . 2i+2
=Y [(taiman + tyi1mzp) 0™ 205" + (taimas + tojamas) > 72372

Il
o
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and
0=04( Zr 2 ]
= Z rai1[(map® + moa3?) 52 ~H 2 1 — R T2 272 (1gy 1% + mgy )]
They imply
tompy + tymzy =0
tampy + tamay + tomopz + tymzz =0
tamoy + tsmap + tamoz + t3mzz =0
........ 2)
tr_ommon + ty_1mzn + tyy_4Mmo3 + ty_3mzz =0
tamoy + ty1mzp + ty oMoz + ty_1msz =0
tymos + tymsz =0
and
rimszp = 0
rimpp = 0
rimsz + ramsz = 0
r1Mo3 + r3moy = 0
........ 3)

roj_3msz + 1 1Mz =0
roj_3Mmo3 + 1 _1Mxn =0
ro—1m3z =0

ro—1my3 = 0.

Since mgpmaz — mpzmszy # 0, the rank of the system matrix

My M3 0 0 0 0 o -~ 0 0 0 0 0 0 0
mo3 ms3 mao ms3p 0 0 0 0 0 0 0 0 0 0
0 0

0 0 mo3 ms3 mao msp 0 0 0 0 0 0
0 0 0 0 0 0 0 e 0 ma3 ms3 ma2 mszp 0 0
0 0 0 0 0 0 0 s 0 0 0 mp3  M33 Moy  M3p
0 0 0 0 0 0 o - 0 0 0 0  mp3 msz3

o

of (2) is I 4+ 2. Hence, the space of the solutions of (2) is of dimension /. On the other hand,
forany 1 <i </, 3,4( 21—2i+1 %1 1)

21-2i+3 20-2i42 > 2i-1 21-2i+1 20-2i - 2i41
—Mm3pXp 24 mpi X3 — m33Xp 32 +m23x2 X370
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—mszp 0 0 0
Mmoo 0 0 0
—msa3 —Mmszp 0 0
mop3 nipo 0 0
0 —ms3 0 0
0 mo3 0 0
0 0 0 0
Therefore, ; , : L, : , : is a k-basis of the
0 0 0 0
0 0 —Mms3p 0
0 0 Moo 0
0 0 —Mms33 —Mm3p
0 0 ma3 Mmoo
0 0 0 —M33
0 0 0 mo3
space of the solutions of system (2). So, there exists {sp;_1 € k|1 < i < I} such that
aA(ﬁ 521,1x§l_2i+1x§i_1) = ¢(, %3). Take u(xp, x3) = Zl; SZi,lx%l_Zi"’lx‘;"i_l. )
i=1 i=1
Since | 22 23 # 0, we can conclude r; = r3 = - - - = ry;_1 = 0 from the system
M3z  M33

/ . ,
of Equation (3). So, h(x2,53) = ), 10idp 22752 Since
i=0

m33 _ mp3 — 72
aA [ Moo 1M33 —Mp3i3n *2 Mo 1M33 —Mp31113) X3] 2
—m3p Mmoo _ =2
aA[71122"133—71123"132 X2+ M3z —Mo3im3y x3] =3
we have
1
S ~ 2]—2i - 2i
h(iy,263) = ) roidty™ 3™
i=0
-1
ms33X Mmo3X i .
_ aA[Zm( 33X2 _ 23X3 )x%l 2i zx%z]
i=0 MpoMi33 — Mip3Mizy  Mipnltlzz — M3z
—Mm3pXp mppX3 —
+ 0 4[ra( + )x3 2.
MppM33 — Mp3Mzy Motz — Nip3hi3)
Take
1-1
ms33Xo mp3X3 21—-2i—22i
v(x2,X3) = ZrZi( - )x3 X3
i—0 Mipom33 — Mp3Mzy M3z — M3M3)
—1MmM32X) M3 X3 21-2
+ 1’2]( X3 .

MppM33 — 133y Mipphiz3 — Mp3Mi3n

Then, we are finished. O

Remark 1. Since x3 and x3 are cocycle elements in A, one sees that u(xy, x3) in Lemma 7 can be

! . .
chosen as u(x, x3) = Y- sz,»,lx%l*ZIJrlx%l*l withsy_1 €k, 1<i<lL
i=1

Lemma 8. Let M = (m;;)3x3 be a matrix in GLg (k) with maymaz — mazmsy # 0 and mzz # 0.
Assume that I = (x3), I, = (x3,x3) and I3 = (x3,x3,x3) are the three DG ideals generated by
the subsets {x3},{x3,x3} and {x2,x3,x3} of the DG algebra A, respectively. Then,
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k[f22], l'fl':2

i _ = =2 | = 2( M3tz —Mipiias - 1Moz — 13y = L
H'(L/L) k015" + 0 (m22m33—m23m32 X2t M M33—Mo3132 B)l, ifi=3
0, ifi>4

and

k[fgz], lfl =2
k[—m33x_1x_32 + 1111396_331 s>} k[—m33x'2x'32 + m23x'33], ifi=3

Hi(IB/IZ) = 3 3

k[mo321 %3 — ma3xX12023° |, if i = 4

0, if i > 5.

— m13X2X3

Proof. By Lemma 4, each xl-2 is a central cocycle element of A. So, I;, I and I3 are indeed
DG ideals of A. Then, H*(Ir/1;) = k[x3] and H?(I3/ ;) = k[x3] since I,/ and I3/ I, are
concentrated in degrees > 2, (I,/11)? = kx3 and (I3/1,)? = kx3.
Any graded cocycle element () of degree d in I;/I; can be written as
QO = 05> f (%, 03) + 5°8 (%2, 3),

where f (5, ¥3) and g(x, ¥3) are sums of monomials in variables x, and x3. We have

0 :alz/ll (Z>
=(m1a0? + my353°) 0> f (2, ©3) — ¥15220 A[f (x2, ¥3)] + 52%9 4[g(x2, x3)]

=0 {(m125° + m1333%) f (32, %3) + 0 4[8 (x2, x3)] } — X1 %2°0 4 [f (x2, X3)].

Thus

d4lf(x2,x3)] =0 )
04[g(x2, x3)] = — (m1p20% + m13%3%) f (32, %3).
When d = 3, we have |f(%2,%3)| = 0 and |g(X2,%3)| = 1. Let f(x3,%3) = ¢ € kand
2(¥2, %) = ¢1% + 2%, Then
— (m1p%% + mi33%)c = 0.4[g(x2, x3)]

= 0 4(c1x2 + c2x3)

= o1 (mpx3 + mpxg + myax3) + co(mz1x3 + mspx3 + msazx3)

= (c1mpn + camizn) 5 + (c1mas + camas) a2

This implies that
{C1m22 + comgzpy = —cmyp
C1Mp3 + CoM33 = —CM13.
Hence
‘ —Mip M3
= =
Moy M3
‘ mp3  M33
‘ Mmpy  —M2
¢ = M3 —™M3 ¢ = C(r:lﬂlzmm:mlsmzz)
‘ My M3 221133 —1M231M3)
Mmp3  M33
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Then,
(myzmzy — mopm3z3) - c(mypmosz — myzmy)

o _n.C
Q = f6%c+ 57
Mpp 33 — Mp31M3) M3z — Mp3MM3p

3]

and

_ _9 _ o My3M3p — Mp33 _ MmMqpMmp3 — M3y _
H3(12/11) :k[xﬂ(z + X ( X7 + X3 —|
MppM33 — Mp3M3p MppM33 — Mp31M3p

since B3(I,/I;) = 0.
When d = 4, we have |f(%,¥3)| = 1 and |g(%, ¥3)| = 2. Let f(x2, %3) = I14 + [r X3
and (¥, ¥3) = t125% + taX23 + t3432. Then, by (4), we have

0 =0.4[f(x2,x3)]
=0 4(lixy + Ix3)

:ll(mmx% + m22x§ + m23x§) +1 (mglx% + m32X§ + m33x§)
=(Iymay + lymgy)0* + (Iymas + Lmss) 157,
which implies that

Iymoy + lhomzy =0
Iymyps + Iymszz = 0.

Since myymzz — myzmzp # 0, we obtain I; = I, = 0 and hence f(x,, ¥3) = 0. Then, by (4),
we have

0 =0.4[g(x2,x3)]
:aA[t1x§ + trxpx3 + tgxg]

— 2 2 2 2 2 2
—tz(m21x1 + mypx; + WI23X3)X3 — t2X2(H131X1 + mzax5 + m33x3)

S 2. 3 _3 _ -2
=tomppXp X3 + tamosX3” — frmzpXp” — g3 XpX3”.

My Mp3
mszp 133
So, QO = X102 f (%, %3) + 02g(%, ¥3) = BH%(t1%5% + t3432). By the proof of Lemma 6,
there exist

# 0, we obtain t, = 0.

Thus, tymoy = tymyy = thmszy = trymzz = 0. Since

_ Imp3mg) —Mp) 133 — Mg m3zp —impoing)
| “ i
bz — "111"13?;/17‘71137”31 and 0 = m12m31‘];17"111m32
ba = sl —iMy; 13 Ca = MMga Tyl
3 M| 3 M|

such that 9 4 (byx1 + baxp + b3x3) = x5 and 9 4(c1x1 + c2x2 + €3x3) = x%, respectively. Then,
z = x_zz(tlx_22 + t3x"32)
= %[t10.4(b1x1 + byxp + b3x3) + 30 4 (c1x1 + 222 + €373
= 0p, /1, {02 [t (b11 + boxty + b3¥3) + t3(c1 + 023 + 393)] .

Hence, H*(I,/1;) = 0.
When d = 21+ 3,1 > 1, we have |f(x2,%3)| = 2] and [g(#, ¥3)| = 2] + 1. Since

! . .
04[f(x2,x3)] = 0 by (4), we obtain f(xp, %3) = ¥ 1962 % 3% by Lemma 7, where ry; € k,
i=0
0 <i < I. Then by (4), we have



Mathematics 2023, 11, 1617 14 of 46

0418(x2, x3)] = — (m12%” + m13%3%) f (2, %3)

l . .
—(m1pa0? + mzaia?) (Y roien® 2 5™

i=0
!
— 12133 My2MM23 0] 2i = 2
=9 X2+ x3) () ridep® 2037
22133 — M231M32 22133 — M231M32 i20
!
11313 M3  D1_i D
+9.4[( Xp — x3) () roiep? 2320
MipoMm33 — N33 Maoi33 — M3z i—0

]
mq3mszpy — MM DY . MMz — M13M22 5] _n;i i
:aA{Zri 13M32 12 33x§z 2z+1x%1+ 121123 13 x%l 21x§z+1]}
MppMi33 — Mp3M3p MppMi33 — Mp3M3p

Then, by Lemma 7, we may let

8(%2, 13)
!
_ 27’2 mq3mszp — M12m33 _ 21 2i+1 _321 + MmM1p1M23 — m13m22 - 21 2i 321+1]
i—0  M2M33 — m23m32 Mppm33 — m23m32
+ 9.4[u(x2, x3)]

where 1(x7, x3) is a sum of monomials in variables x; and x3. Then,
I S _2
Q= x1x2 f (%, %3) + B2°g (%2, %3)

21-2i42 28 Toifm v\
= Zrz 002 722062 4 520 4[u(x, x3)]
i=0
!
mi3map — M12M33 _ 9] _2j13 _2i , M12Mp3 — M13M2 _ 21 _2i12 _ 2i
+Zri x22l 21+3x321+ xZZZ 21+2x321+1]
Mppi33 — Mp31M3) MppM33 — Mp3MM3p

_ Zl; railti + (my3may — mypmsz )Xy + (miphips — m13m22)x'3]x_ 22042, 2i
2 Moo M3z — 1131137 2 3

+ f22aA[u(x2, x3)].

— Moz —Mni13m X3 - .
One sees that w = x7 + (m151m3) mlzm”)xzf(’"“ 23 M3M0)Y5 g o cocycle element in A. Hence,
M3z —1Mp31M3)

z=04[— Y riw(bixy + byxp + baxs) 3 Hxd — rywxdxd 2(c1x1 + c2xz + c313))]

+ 1570 4[u(x2, x3)]
=/ {[— lXéhi (b121 + boxy + b3xz) 22 2% o5y )
iz
+ 3,1 {[—raw(c1F + 02 + c333) 5% 2 + u (5, )]0}
Thus, H**3(I,/1;) = 0.

When d = 2/ + 4, we have |f(%,53)| = 2]+ 1 and |g(%,¥3)| = 2] + 2. Since
aA[f(X2, x3)} = Oby (4), we have

1
f(x_Z/x_fi) :aA[ZSZZ 1x§l —2i+1 %1 l]
i=1
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by Lemma 7 and Remark 1, where sp;_1 € k, 1 <i <. Then, by (4), we have

04[8(x2, x3)] = — (m1p20? + m13%3%) f (02, X3)

1 . .
= —(mp* + m13f32)aA[Z 52i71x31721+1x§171]'
i=1

Then, by Lemma 7, we may let

l . . _
§(, %3) = —(m1p® + m13a?) [ Y spim102 21521 + 0 4[0(x2, x3)].
i=1

where v(x7, x3) is a sum of monomials in variables x; and x3. Then,

Q= x‘lx"zzf(x‘z, X_3) + x‘zzg(x‘z, JC_3)

1 , 4 ! , '
= x_lx_ZzaA[Z Szi71x§’*21“x§’*1] — (mp0® + m13x3°) [Z Spi_ 1202 2B 2
i=1 i=1

+ 3520 4[0(x2, x3)]

l ) .
= —d[x Zszi—lx%l_m“x%l_l —0(x2,x3)]0°
i—1

! ) )
= 0,1, [(0(%2, %3) — 1 Y 501202 7215271552
i-1

and hence H?*4(I, /1) = 0.
Since (I3/ )3 = kxy 532 @ k732 @ ka3, any cocycle element in (I3/1)3 can be de-
noted by Clx_lf32 + C2x_2f32 + C3f33 where c1, ¢y, c3 € k. Then,
0 =3y, /(171532 + 202 3° + €343°)]
=cym3¥st + comp izt + camazst

4
=(cymy3 + comoz + c3m33) X3

and hence cym13 4 campz + c3mzz = 0, which has a basic solution system

—Mm33 0
0 ;| —m33
mi3 mp3

So, Z3(I3/12) = k(—m33x‘1x'32 + m13x'33) D k(—m33x"2x_32 + m23x‘33). Then,
H3(I/ ) = k[ —mz3x153° + m13i3° | @ k[ —mazip63” + mo i |

since one sees easily that B3(I3/1;) = 0. Any graded cocycle element z of degree d,d > 4
in I3/ I, can be written as
X = 05°9(%3) + 0%5° 9 (3) + ¥ 0757 P(3) + F3°A(13).
We have
0 =01,/1,(X) = 91/, [\15°P(3) + 27379 (3) + F1 0257 (F3) + ¥37A (%3]
=m13%3 P(13) — X103°0 [P(x3)] + Mz p(¥3) — 22%3°0 4 [@(x3)]
+ M3 P(3) — mos ¥ 3 P (a3) + X1 0520 4 [P (3)] + X370 4[A(x3)]
=237 (M35 (3) + mo3Xa @(H3) + 0.4 [A(x3)]] + 1020370 A [ (3)]
— 11 [73%04[@(x3)] + mosz*yp(%3)] + o [m13 03 (3) — 2370 4[gp(x3)]].
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Hence,
m13 032 (x3) + mz¥3?p(3) + 9.4[A(x3)] = 0
520 4[¢(x3)] + mos 3ty (53) = 0 5)
m13x34¢’ 3) - x328A[ x3)] =0

(%

dalp ()] =
When d = 4, we have |¢(x3)| =0, |¢(x3)| = |¢(53)] = 1and [A(X3)| = 2. Let p(¥3) =c €
k. Then, by (5), we obtain ¢(x3) = F/Lx3,¢(x3) = 72 x3 and A(¥3) = ¢’ %32, for some
¢’ € k. So,

Z4(I3/ ) = k(—mp3x1553° + mi3xp3° + maz p0%) B k™.

Then, H4(13/12) = k[m23x'1x"33 - m13x'2x'33 — TYZ33X_1X_2.X_22-‘ since B4(13/12) = kx'34. When
d=21—-1>5wehave |p(53)] =21 — 4, |¢p(x3)| =21 — 4, |p(x3)| =2] —5and |A(F3)| =
21 — 3. Let (¥3) = g¥3%/ > for some q € k. Then 0 = d4[(%3)] = qmzi2~* by (5).
So, g = 0 and (x3) = 0. Then we obtain d 4[¢(x3)] = d4[¢(x3)] = 0 by (5). Let
¢(x3) = px3~*and ¢(x3) = ra %, p,r € k. Then,

da[M(x3)] = —mzpis® 2 — mpzrai? 2.

_ _21-3
So, A(%3) = (m13p+ﬂrlr;§3r)x3 . Then,

X = T52P(03) + 0032 @(0) + X502 (5) + G2A(5)
a-a  (mizp 4 mosr)iz® !
ms3
_ [ms3(pir +122) — (prmiz + rmp3) %3] 522
msz3
— 3 [—ma3(p¥1 +1%2) + (pmas +1rma3) N3] o3
L/L1 30 h

2
m3zs

= pi 2 2 i

Thus, H? (/1) = 0, for any I > 3. When d = 2] > 6, we have |¢(53)| = 2] — 3,
lo(x3)| =21 =3, |p(x3)| =21 —4and |A(x3)| = 2] — 2. So, d 4[A(x3)] = 0 and a4[y(x3)] = 0.
Then, (5) is equivalent to

my3 %32 (3) + mazia?g(x3) = 0
5320 4[¢(x3)] + m33tp(3) = 0
my3 X3t (o3) — 4320 4[@(x3)] = 0.

Let A(#3) = sx3? 2 and l/)(Xg) = t532/~%. Then, by the system of equations above, we
obtain ¢(x3) = _m23t 3and ¢(%3) = %@21—3‘ Then

X = 0%3°¢(¥3) + %57 (3) + flfzfa‘zlﬁ(fs) + ¥3%A(3)

—mpst _ mizt _ _
= 7239(7_13(7321 ! + 13 XZX + tX1 X0 X3
ms3
—Mp3X X3 + My3XpX3 + M3zXy X2 [tz 2
mss
- 21—1 5 _21-1
= /1l 5 "+ —» )
M33 msz3

21-2 = 21

+ sxp

21

+ 5X3

ms3
—mp3X1X3 + m3XpX3 + m33xX1X2

Hence, H¥ (I3/1) = 0 forany ! > 3. [
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Lemma 9. Let M = (m;j)3x3 and r(M) = 2. Then, r(X) = 5, where

my1 Mo Mz 0 0 0 0 0 0

Mmip My Mzp Myp My Mz 0 0 0
x = | ™ ma ms3 0 0 0 mp my mzy
0 0 0  myz mp3 mzz myp My Mz

0 0 0 mip Moy M3p 0 0 0
0 0 0 0 0 0 mi3z MmMp3 M33

Proof. Since 7(M) = 2, there exists (s1,52,53)7 # 0 such that M(sy,s3,53)T = 0, which is
equivalent to

miq mip miz
si| mo | +s2| myp | +s3| maz | =0.
mszq mszp msaz
mip mi3
Without the loss of generality, let s; # 0. Then, | my |, | mps | arelinearly indepen-
m32 m33

dent and s .
2 3
(m11,m21,m31) + g(mlzl mapp, m32) + g(mm, 17123,77133) =0.

For X, we can perform the following elementary row transformations

S S S S S S
0 0 0 Fmp Pmy Fmy Fmyy Fmy Fmz
. mip My mMzp My My M3 0 0 0
r1+ = X1,
x myz My M33 0 0 0 myy My M3y
2 xrs 0 0 0 mz mpz  mzgz  myp My M3y
0 0 0 mip mopo msp 0 0 0
0 0 0 0 0 0 miys mo3 ms3
-5 -5 -3
0 0 0 0 0 0 ST mis3 ST no3 ST ms3
1 1 1
2
2 xr myp Mpy M3y My My Mz 0 0 0
1 2 5
S
— 1 o mz myz mzz 0O 0 0 miq My ms1
S$9S:
n *% ! 0 0 0  myz mpz mzz My mpy mzp
0 0 0 mip Mppy M3 0 0 0
0 0 0 0 0 0 mqs mop3 ms3
0 0 0 0 0 0 0 0 0
2 myp My mzy miy mp mz 0 0 0
r+ sz X71g 0 0 0
1 M3z M3 M33 myp Mz mzg
0 0 0 myz mpz maz myp myp Mz

0 0 0 mip Moy M3 0 0 0
0 0 0 0 0 0 mi3 Moz M3z

This indicates r(X) < 5 and

mip My mzy myy mpyy mzy 0 0 0
myz mpz mzz 0 0 0 my1 my my
r(X)=r[ 0 0 0 myz mpz mzz myp my mz

0 0 0 mip Mppy M3 0 0 0
0 0 0 0 0 0 my3 Moz M3z
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Let
L) my3 0 0 0
Mmoo mo3 0 0 0
msp msa3 0 0 0
miq 0 my3 My 0
Lh| my + 1 0 + 13| mo3 14| my +I5 0 =0.
mz; 0 ms33 mzp 0
0 miy myp 0 my3
0 Moy Mo 0 M3
0 mzy mzp 0 mz3
Then,
liymip +hmiz =0
Iymoy + lhomys =0
Iymzy + lhomzs =0
lymyy + Igmyz + lgmyp =0
lymay + Izmaz + lymay = 0
lymzy + I3maz + Iymzp = 0
lomyy + lzmyp + Ismyz =0
lamay + I3may + Ismaz = 0
lamzy + I3msp + Ismsz = 0,
mi2 mi3
which implies |y =l =13 =1y =I5 =0since | my |, | m3 | arelinearly indepen-
mzp m33
dent. Thus,
mip myp mzp my mp mzy 0 00
myz  mpz mzz 0 0 0 my my mzy
T(X) =r 0 0 0 mi3z MmMp3 Ms33 MNlqp Moy M3 =5.

0 0 0 mip Moy M3p 0 0 0
0 0 0 0 0 0  myz mp3 m33

Similarly, we can show r(X) = 5whens; #0orsz #0. O
Lemma 10. Let M = (m;;)3x3 be a matrix in M3 (k) with r(M) = 2. If
r = mnx% + 7’}1123(% + m13x§,
1y = m21x% + mzzx% + ngxg,
r3 = m31x% + m32x% + 111339(%,
3]

then the graded ideal (rq, 12, 13) is a prime graded ideal of the polynomial graded algebra k[x3, x3, x

Proof. Since r(M) = 2, there exist a non-zero solution vector (t1,t5,3)T of the homoge-
neous linear equations MT X = 0. We have

r1 x%
tir 4 try +tars = (bt t3) [ 12 | = (Bt t3) M| x5 | =0.
73 x3
Since (t1, t2, t3)T # 0, we may as well let t3 # 0. Then, r3 = —%rl — %rz and hence

(r1,12,13) = (r1,12). Since



Mathematics 2023, 11, 1617

19 of 46

m31 " miq ¢ myy

1 2
mszp = —g mip - g mpy |,
msaz mi3 mp3

we have
m m m
’ 11 12 13 —2
mp1  Mpy M3

this indicates that there at least one non-zero minor among

miyp My miyp  mMi3 mip Mi3
mpy My mp1 M3 My  Mpy3
mip  MmMip

We may as well let # 0. Then, one sees that

My M3
k(x, x3, 23/ (r1,12) = k[x3]
is a domain. So, (r1,12,13) = (r1,72) is a graded prime ideal of k[x%, x%, x%] O

Lemma 11. Assume that M = (m;;)3x3 € Mz (k) withr(M) = 2,k(s1,s2,53)" and k(ty, tp, t3)"
are the solution spaces of homogeneous linear equations MX = 0 and MT X = 0, respectively. We
have the following statements.

(1) If 5143 + spt3 + s3t3 # O, then k[[t1x1 + taxo + t3x3]] is a subalgebra of H(A);

(2) If 513 + sot3 + s3t5 = 0, then

k[[t1x1 + Faxo + £3x3], [slx% + 5px3 + 53x§ﬂ/( [t1x1 4 taxo + t3x3]?)

is a subalgebra of H(A).

Proof. Clearly, we have H(A) = k. Since r(MT) = 2 < 3, there is a non-zero solution
vector (t1, 1o, t3)T of the homogeneous linear equations MTX = 0. For any c1x1 + cox2 +
c3x3 € Z'(A), we have

0= aA(Clxl + coxp + C3X3)
da(x1)

= (c1,c2,¢3) [ 9a(x2)
0 4(x3)

=

= (c1,02,c3) M| x

=
W R~ N
~

€1
which implies that (c1,c,c3)M = 0 or equivalently MT | ¢, | = 0. Thus, H'(A) =
3
k[t1x1 + taxo + t3x3].
For any lllx% + lipx1 % + li3x1x3 + Iox3 + axoxs + l33x§ € ker(ai), we have
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0 = d4ll11x] + lpx1xp + li3x1x3 + 12X5 + l3xax3 + 13333
= llz(mnx% + mipx3 + mlaxé)xz - 112x1(m21x% + mppxj + mzsxg)
+ l3(myyx] 4 mipx3 + mi3x3)xs — ligxy (ma1x7 + mapx; + ms3x3)
+ La (Mo x7 + mopx3 + mazx3)x3 — logxo (m31x7 + mapx3 + mzzx3)
= —(lomoy + hamzr)x; + (homiy — lamar ) x3xp + (lizmag + bamoy)xixs
— (lamap + lismap)x1x5 + (ligmap + laman ) x5x3 + (lipmiy — bamay)x;

— (lhamas + hiamaz)x133 + (liamys — lamaz)xax3 + (lizmas + lsma)x3.

Hence,

liamyy + l13mz; =0
lipmyy — lpzmz; =0
hiamyy + lpzmoy =0
ligmap + ligmap = 0
lizmyp + lpzmay =0
lipmyp — lpzmszy =0
lipmos + lizgmaz =0
lipmyz — lpzmsz =0
lizmyz + Ipzmoz = 0

liamy + l13mz; =0
lipmo + liz3mszy =0
liamos + lizmaz =0
lipmyy — lpzmsz; =0
lipmyp — Ipzmszy =0
lipmyz — Ipzmaz =0
hiamyy + lpzmoy =0
lizmyp + lpzmpy =0
liamyz + Ipzmaz =0,

which is equivalent to

myy My Map 0 Lz ha
myp My M3 lp 0 I | =03x3.
miz M3 M3z lz —ls O

We claim that Iy = I3 = l13 = 0. Indeed, if any one of I15, I3, [13 is non-zero, then there are
at least two non-zero linear independent vectors among

0 l12 li3
lo |, 0 A bs |,
li3 —I 0

which are all solutions of MX = 0. This contradicts with (M) = 2. Hence, ker(9%) =
kx% ® kx% @ kx%. In A, we have

(b1x1 + taxp 4 t3x3)? = 1242 + B3 + 242,

(1) 1f slt% + szt% + S3t§ # 0, we claim that t%x% + t%x% + t%x% ¢ B%(A). Indeed, if there exist
q1X1 + gax2 +q3x3 € Al such that aA(q1X1 + gox2 + l]3X3) = t%x% + t%x% + t%x%, then

x]
(1,92, 93)M| x5 | = 04(q1x1 + g2x2 + g3x3)
x3
= 1247 + t3x3 + 15%3
x
=658 3 |
x3

which implies that (91,42, 93) M = (t2,13,13) and hence
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51 51
0=(91,92,q3)M| s2 | = (tz, t%, t%) s | = slt% + szt% + S3t%.
S3 S3

This contradicts with the assumption that slt% + szt% +s3 t% # 0. Then, we obtain that t%x% +
t5x3 + 1333 & B2(A) if 5113 + 513 + s3t3 # 0. On the other hand, we have dimy B?(A) = 2
since (M) = 2. Therefore, dim; H?(A) = 1 and

H%(A) = k[3x2 4 1355 + 533 ] = k[tyx1 + taxy + t3x3] %

In order to show k[[t1x1 + toxp + t3x3]] is a subalgebra of H(.A), we need to show (t;x1 +
tyxy + t3x3)" & B"(A) for any n > 3. If this not the case, we have

dg[x1x2f + x1x3¢ + x2x3h], if n =2j+ 1 is odd

t1x1 + taxy + t3x3)" =
(fix1 + f2x2 + f333) {E)A[xlf+x2g+x3h+x1x2x3u], if n =2j iseven

where f,g,h and u are all linear combinations of monomials with non-negative even
exponents. When n = 2j is even, we have

(Bxi+6533 + 533) = (121 + taxy + £3%3)"
= d[x1f + x28 + x3h + x1x2x31]
= (m11x7 + mipx3 +miax3) f + (ma ] + mopx3 + mpx3)g
+ (mglx% + mzpx3 + m33x§)h + (mllx% + mipx3 + m13x§)x2x3u
— xl(mnx% + mpx3 + m23x§)X3g + X1X2(ﬂ’131x% + mzpx3 + m33x§)u.

Considering the parity of exponents of the monomials that appear on both sides, the
equation above implies that

(x5 + 5535 + 5533)) = (my1x] 4+ mpax3 + myzx3) f + (mo1 x5 + mpx5 + ma3x3)g

+ (mglx% + m32x§ + m33x§)h
= 0d4(x1)f +0.4(x2)g +0a(x3)h
and
04 (x12x0x3U) = (mllx% + mux% + m13x§)x2x3u — xl(mzlx% + mzzx% + m23x§)x3g

+ X122 (31 x5 + mpx; + mazag)u = 0.
Therefore, (£2x2 + t3x3 + t3x3)/ is in the graded ideal (9 4(x1),0.4(x2), 9.4 (x3)) of k[x2, x3, x2].
By Lemma 10, (9.4(x1),9.4(x2),04(x3)) is a graded prime ideal of k[x?, x3, x3]. So, t3x? +
t5x3 + t2x3 € (9.4(x1),9.4(x2),9.4(x3)). Hence, there exist a1,a, and a3 in k such that

Bxf + 5555 + 5535 = 119.4(x1) + 2204 (x2) + 139.4(x3)
= d 4(a1x1 + apxp + azxz).
However, this contradicts with the fact that #2x2 + t3x3 + t3x2 ¢ B%(A), which we have

proved above. Thus, (t1x1 + tax2 + t3x3)" & B"(A) when n is even.
When n = 2j 4-11is odd, we have
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(byx1 + taxo + t3x3) (1343 + 333 + B3x3)] = (tyx) + baxo + t3x3)"
= dy[x1x2f + x1x3¢ + xX2x3H]
= (M3 + mpx3 + mpzxd)xaf — x1(mo1x3 + mopxs + mo3x3) f
+ (m11X3 + mypx3 + my3x3)xag — x1(ma1x3 + mapxs + mszx3)g
+ (m91X3 + Mo X3 + mp3x3)x3h — xo (13163 + m3px3 + mazx3)h
= —x1[(ma1xF + mpx5 + msx3) f + (m31x7 + mapx3 + mazx3)g]
+ x2[(m11%F + m1ax3 + mzx3) f — (ma1x; + mapx3 + maza3) ]
+ x3[(ma1xF + mpx5 + m3x3)h + (m11xF + mx5 + my3x3)g)
= x1[—=0a(x2)f — 0.a(x3)8] + x2[0.4(x1)f — 0.a(x3)h] + x3[0.4(x2) P + 9.4 (x1)g]-

This implies that

b (835 + 6575 + 5x5)) = —9a(x2)f — 0a(x3)g = du[—22f — x3g]
b (137 + 525 + t%x%){ d4(x1)f —0a(x3)h = dal[x1f — x3h]
t3(t3x2 4+ t3x3 + 3x3)] = 9 4(x2)h + 9 4(x1)g = D a[x2h + x1g].

Since (t;,ty,t3)T # 0, there is at least one non-zero t;,i € {1,2,3}. Then, we obtain
(8232 + 332 + 3x3)] = (hx1 + taxp + t3x3)% € B%(A), which contradicts with the proved
fact that (f1x1 + trxp + t3x3)" € B"(A) when n is even. Therefore, (f1x1 + frxp + t3x3)" &
B"(.A) when n is odd.

Then, we reach a conclusion that k[[t1x1 + t2x + t3x3]] is a subalgebra of H(.A) when
s112 + sot3 + 5313 # 0.

(2) When s1#2 + s3t3 + s3t2 = 0, we should show #2x? + t2x3 + t2x2 € B%(A) and
1% + 5ox3 + s3x3 & B?(A) first. In order to prove t5x7 + t5x3 + t5x3 € B*(A), we need to
show the existence of an element g x1 + g2x2 + g3x3 € Al such that

x3
d4(q1x1 + q2x2 4 43x3) = (1,92, 93)M | x5
x3
X3
=\ 58| 3 |
3

which is equivalent to

M q2 = t%
13 3
Hence, it suffices to show that the nonhomogeneous linear equations
2
g
M'X=| 8
2
3
t% S1
have solutions. Let M = (B1,B2,B83) and b = t% . Since M| sy = 0, we have
t S
3 3

3
i=

3
siB; = 0 and hence ) silBiT = 0. Hence,
1 i=1
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T 2 2

. P g
r(M',b)=r 2 t% t5 ,
3 13 51[31 + szﬁZ + S3/33 slif1 + szt2 + s3t5

0 =

t2
( b t2 < 2.
) >

On the other hand, we have (M7, b) (MT) = 2. So, r(MT,b) =2 = r(MT") and then

the nonhomogeneous linear equations
M'x=| £

has solutions.
Now, let us prove s1x? + spy? + 532> & im(d 4), which is equivalent to the nonhomo-

geneous linear equations

51
MIX=1 s
53
51
has no solutions. Lets = | s, |. Then,
53
T T
T 1 5 B1 51
rM',s)=r| B s | =7 pl 2
T s s1p] +52B] +53P] 5] +53 453
T
! 51 .
=r| Bl Sp =3#r(M')=2

2,282
0 sy+s5+s3

Hence, MTX = s has no solutions and H?(A) = k[s;x% + spx3 + s3x3]. It remains to

show that ‘ '
(512 + 5205 +5323) 7 & BI2(A)

and
(b1x1 + Xy 4 t3x3) (51%% + s2%3 + 5343) & BHTL(A)
for any j > 1. We will use a proof by contradiction.

If (51x2 + 5px2 + s3x3)/*! € B%+2(A), then by Lemma 5, we have

(5102 + 5px3 4+ 5333V T = 9 4[w1 f + x08 + X3k + x1x0%31),

where f,g, h and u are all linear combinations of monomials with non-negative even
exponents. Considering the parity of exponents of the monomials that appear on both sides
of the following equation

(S1x1 +Szx2 + 53X3)]+1 = aA [xlf + x28 + x3h + x1x2x3u]
= (my1x] 4+ m1px5 + mi3x3) f + (ma1xg + mopx3 + my3x3)g
+ (m31x% + m32x§ + m33x§)h + (mnx% + mlzx% + m13x§)x2x3u

2 2 2 2 2 2
— x1(mpy X + mopx5 4 mo3x3)X38 + X1 X2 (M3 X7 + M3pX5 + M33x5)u
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implies that

(5122 4 5223 + 5333 )11 = (my1 2% + mpox3 + miax3) f + (moy X3 + mpx3 + mp3x3)g
+ (m31x3 + m3px3 4 maza3)h
=04(x1)f +04(x2)g +0a(x3)h

and

O A (x1x0x31) = (m11X3 4+ m1px5 + my3x3) xoxzu — X1 (M X3 + Mo X3 + mo3x3)x3g
+ Xlx;y_(ﬂ’lg]x% + m:;;_x% + m33x§)u =0.
Therefore, (51x3 + spx3 + s3x3)/ ™! is in the graded ideal (94(x1),04(x2),04(x3)) of
k[x2,x3,x3]. By Lemma 10, (94 (x1),0.4(x2),9.4(x3)) is a graded prime ideal of k[x3, x3, x3].

So, s1x7 + sox3 + 5333 € (9.4(x1),04(x2),04(x3)). Hence, there exist by, by and bs in k
such that

5103 + 52X3 +53x3 = b19 4 (1) + b0 4 (x2) + 39 4(x3)
=9 4(b1x1 + boxy + b3x3).
However, this contradicts with the fact that s1x7 + s,x3 + s3x3 € B?(.A), which we have

proved above. Thus, (slx% + szx% + 33x§)7+1 ¢‘B2j+2(A), forany j > 1.
If (131 + taxo + t3x3) (51X7 + 5043 + 53x3)] & B?1(A), then by Lemma 5, we have

(trx1 + taxo + t3x3)(51x% + szx% + 53x§)j = dy[x1x2f + x1x3¢ + X2x3H],

where f, g and & are all linear combinations of monomials with non-negative even expo-
nents. Then,

(t1x1 + Xy + t3x3) (51%F + 523 + 53x§)j = dy[x1x2f + x1x3¢ + X2x3h]
= (my a3 + mppx3 + myzx3)xof — xq (Mo X3 + monx3 4+ myzx3) f

+ (myy X3 + mypx3 4 my3x3)x3g — xq (M3 x3 + mapx3 4+ mazx3)g

+ (M1 X3 + Mopx3 4 mo3x3) xzh — xp(mzyx3 + mapx3 + mazx3)h

= —x1[(mpxF + mpx3 + mozx3) f + (mz1x3 + mapxs + mazx3)g)

+ x2[(m11xF + m1ax3 +ma3x3) f — (ma1x; + mapx3 + mazx3 )]
+ x3[(ma1F + mpx3 + mo3x3)h + (m11x7 + mx5 + my3x3)g)

= x1[—04(x2)f —04(x3)8] + x2[0.4(x1)f — d.a(x3)h] + x3[0.4(x2)h + 9 4(x1)g]-

This implies

t1 (5107 + 5245 +83%3)) = —04(x2) f — A (x3)g = da(—x2f — x38)
ta(s1x3 + 52x3 + 53x3)) = 9 4(x1)f — 9a(x3)h = d4(x1f — x3h)
t3(s1%7 + 5245 +53%3)) = A4 (x2)h + 9A(x1)g = da(x2h + x18).
Since (t1,ty,t3)T # 0, there is at least one non-zero t;,i € {1,2,3}. Then, we obtain that
(s1x2 + szx% +53x3)/ € B%(A). This contradicts with the proved fact that (s;x? + spx3 +
s3x3)] & BH(A) forany j > 1.
Then, we can reach a conclusion that

k[[tlxl + toxpy + i’gxﬂ, [slx% + Szx% + 53x§]]/( [tlxl + trxo + t3X3—|2)

is a subalgebra of H(A). O
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4. Computations of H(.A)

In general, the cohomology graded algebra H(.A) of a cochain DG algebra A usually
contains some homological information [4,48-50]. So, it is worthwhile to compute. Let A
be a 3-dimensional DG Sklyanin algebra with A* = S, ;o and 9 4 be defined by a matrix
M € M;z(k). Note that A is just the DG algebra A, | 4s)(M), which is systematically
studied in [1]. In this section, we will compute H(.A) case by case. When (M) = 3, we
have the following proposition.

Proposition 1. If M = (m;;)3x3 € GL3(k), then H(A) = k.

Proof. It suffices to show that H (A) = 0 when i # 0. If [yxq + loxy + I3x3 € Z'(A), then

1

0=04(lx1 +hxy+I3x3) = (I, b, 3)M| x5 |,
5
X3

lh
which implies that (I1,15,13)M = 0 and hence M” | I,

I
r(MT) = 3. So, Z'(A) = 0and H'(A) = 0. Since 94 is a monomorphism, we have
dimy B2(A) = 3 and B*(A) = kx? @ kx3 & kx3. We claim Z2(A) = B%(A). It suffices to
show (kx1x2 @ kx1x3 @ kxox3) N Z%(A) = 0 since

= 0. Then, each [; = 0 since

A% = kx% @ kx% &) kx% @ kx1xp @ kxix3 & kxoxs.
For any c1ox1x2 + c13x1x3 + c23X2X3 € ZZ(.A), we have

0 = 9 4[c12x1x2 + c13Xx1 X3 + C23X2X3]

2 2 2 2 2 2
c12(my1X7 4+ mipx5 + my3x3) X2 — c12X1 (M1 X7 + M X5 + Mo3x3)

+ c13(mi1x] + mipxg + mi3x3)xz — c13x1 (m31 x5 + mapxs + mazx3)

+ co3 (M X% + mopx3 + my3x3)x3 — Co3Xa (M3 X7 + M3 X3 + M33x3)

= (—c1amy1 — c13m31)x3 + (c1amin — ca3ms) X3 + (c13maz + C23mma3)x;
+ (c1aman — co3man ) x%y — (c1amop + c13m3p)x1X3 — (C1omos + C13M33)x1X3
+ (c13m11 + c23mp1 ) x5 x5 + (C131m12 + C23M22)X3x3 + (C12m13 — Co3MMiz3) X2 3.

Then,

C1pmp1 + ci3mz; =0
C1amip — cp3mzp =0
C13M13 + ca3tpz = 0

C13M11 + Ca3tp; =0
C13Myp + cp3mpp =0

C1pmy3 — cp3mzz = 0

C12Mp1 + c13m3; =0
C1oMp + c13m3zp =0
C1pMa3 + c13m33 =0

C13M11 + ca3tip; =0
c13Myp + cp3mmpp =0
c13Mmy3 + cp3mpz = 0

C1pmyy — cp3maz; =0 C1pmyy — cp3maz; =0 c1p=0
C1pmpp + ci3mzp =0 C1pMmyp — cp3mzp =0 ci3=0
C1aMa3 + c13m3z = 0 C1pmi3 — cp3mmzz = 0 c3 =0

since (M) = 3. So, (kx1x @ kx1x3 ® kxyx3) N Z?(A) = 0. Thus, H>(A) = 0.

2

Since x2, x5 and x3 are central and cocycle elements in A, they generate a DG ideal
I = (x2,x3,x%) of A. One sees that A/I = A(x1,x2,x3) with d4,; = 0. The long exact

sequence of cohomologies induced from the short exact sequence
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0—-I15A5 A/ T—0
contains (Seq4.1):

0— H2(A/I) = k([x1 Axa]) @ k([x1 Ax3]) D k([x2 A x3]) ﬁ H3(I) Hll)

H3(A) O BB (A/T) = k([0 Axa Axs]) S B3 Y B4 (A) — HAA/T) = 0

(1) §Q)

S Y B (A) 5 00— HI(D) Y H(A) 50 -

We claim that H3(I) = k[w;] @ k[w,] @ k[w3], where

3 2 2 3 2 2
W1 = —Mp1X] + M1 X] X2 — M X1X5 + M1pXy; — Mp3X1X3 + M13X2X3
3 2 2 2 2 3
Wy = —M31X] + M1 X]X3 — M3pX1X5 + M1pX5X3 — M33X1X5 + M13X3
2 2 3 2 2 3
W3 = —Mm3z1X7X2 + M1 X1X3 — M32X5 + MpX5X3 — M33X2X5 + M3X3.

Any cocycle element Q € Z3(I) can be written as

O = (q1X1 + qox2 + E]3X3)x% + (Q4X1 + gs5x2 + q6x3)x§ + (Q7X1 + qsx2 + q9x3)x§,

whereeach q; € k, 1 <i <9. Then

0=0(z)
x] x x]
= (91, 92,93)M ( x5 ) %5 + (44,95, %)M( X5 ) X5+ (47,98, 49)M< x5 ) x5
x3 x3 x3
x4 x2x3 X333
= (%/QZI%)M( xixg ) +(Q4r%,%)M( 2632 ) + (qy,qg,qg)M( xgicg )
X1X3 xX3 X3
and hence
1
(91,92,93)M| 0 [ =0
0
0
(94,95,96)M| 1 [ =0
0
0
(97,98,99)M| 0 [ =0
1
0 1
(q1,92,93)M | 1 |+ (qa,95,96)M| 0 | =0
0 0
0 1
(91,92,93)M| 0 | +(g7,98,99)M| 0 | =0
1 0
0 0
(94,95,96)M | 0 | +(q7,98,99)M| 1 | =0,
1 0
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which is equivalent to

q1
q2
mip My Mz 0 0 0 0 0 0
0 0 0 mp my mp 0 0 0 7
0 0 0 0 0 0 mya my my 4
qs =0.
Mmip My Mz Mmyp My mz 0 0 0 g6
miz mpz mzz 0O 0 0 myy my my 4
0 0 0 my3 mp3 mzz mpp My Mz 45
q9

Since (M) = 3, one sees that

myp my mym 00 0 0 0 O
0 0 0 mip Moy M3 0 0 0
0 0 0 0 0 0 mi3z MmMp3 M33

=6.
mip My mzy myy My mzy 0 0 0
miz My mzz O 0 0 myy my my
0 0 0 myz mpz mzz mpp My Mz

Hence, dim; Z3(I) = 3. On the other hand,

dA(x1x2) = wq
04(x1x3) = wo
04(x2x3) = w3

implies that d;(w;) = 0,i = 1,2,3. Then, Z3(I) = kw; @ kw; @ kws and hence H3(I) =
k[w1] @ k[wy] @ k[ws] since B3(I) = 0. The definition of connecting homomorphism
implies that

8 ([x1 Axa]) = [w1]
8 ([x1 Ax3]) = [w;]
82([xa Ax3]) = [ws].

Hence, 62 is a bijection. By the long exact sequence (Seq4.1), we have H3(A) = 0.
Since B(A) = kx? & kx3 & kx2, one sees that

B(I) = kx] @ kx3x3 @ kx3x3 @ kxs @ kx3x3 @ k.
For any Q € Z*(I) N(I*/B*(I)), we can write it as

Q = (rx1x + rpxx — 3+ r3x2x3)x% + (rax1X2 4 r5x1X3 + 16X2X3) X3

+ (rpx1xp + rgx1x3 + r9x2x3)x§,

wherer; € k,1 < i <9. Then,
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o

+ (ramyg + r3mop + rsmyy + ey
+ (rami3 + r3moz + rgmyy + romyy
— (rqmo3 + rsmaz + r7mpn + rgmap) x1 X
+ (rymip — romzy + ramyz — remsz)x

+ (1’511113 —+ rgMo3 + rghqp + roMon ) x

and hence

Q
~

+ + + + + + o+

Q) = [rl(mnx% + mlzxg + mngC%)JQ — rlxl(mﬂx% + mzzx% + 71123,x§)]xl

2 2 2 2 2 2012
My X] + mpxy + mi3x3) X3 — roxq (M3 X7 + m3pxs + mazx3)|xg

<
N

73 m21x1 + TH22JC2 + Mp3X3)X3 — I3X2 TH313C1 + m32x2 + TH33JC3
74 mnxl + muxz + M13X3)X2 — 13X m21x1 + m22x2 + m23x3 X
m31x1 + m32x2 + m33x§ b

2t
]
]
]
]
]
]

mnxl + muxz + my3X3)X3 — 15X

<
a1

2R
WK W WN DN NN NN

(m
( 3) (
( 3) (
( 3) (

16 (mpyx3 + Mo x3 + mozx3) X3 — rexa (M3 X3 + mapx3 4+ mazx3
( 3) (

1 (myyx3 + mypx3 + myzx3)xz — rgxy (M3 X3 4 mapxs + mxx3))x
(

2
7 mnxl + mlzxz + my3x5) X2 — r7X1 mzlxl + m22x2 + mp3x3)
2
79 m21x1 + m22x2 + m23x3)x3 — 1’9X2(1’n313{1 + m32x2 + m33x3)]x
5
3

—(rimay + rama1 )] + (ramy — reman)x3 + (rgima + romas)x

4 2.3
11M11 — 13z ) X1Xo + (rmyp — r3may + r4myq — reimzy) X{x5

+ (r
+ (rimyg — r3msz + rymyg — 79m31)x1x2x3 + (romyq + r3m21)x‘11x3
— (riman + ramzg + ramyy + rsmz) X323 + (r7myz — romaz) xax3
(7’177123 + romsz3 + rymo1 + 7‘311131)9(:153(3 (1’477122 + r5m32)x1x2
)xix

2
)xq
)
)
)

4
x3 + (rsmyp + reman) x5x3

4
x7x3 — (r7mos + rgizs) X1 X5

N NW
==
WW W NN WL NN
=
Wi

rimo1 +1omz; =0

rimyy — ramsz; =0

romyy + rampy =0

ramp + rsmszy =0

rymyp — remzy =0

rstmy + rgipy = 0

r7mos + rgimzz = 0

rymyz — romszz =0

rgmyz + rompz = 0

1Moo + tomsy + 14y + rsmzy = 0
rimyp — ramzy + ramyy — remzy =0
rimo3 + ramaz + rymoy + rgmsy =0
rimyz — r3msz + rymy — romsz; =0
romyp + 13y 4 r5myy + retip] =
raM3 4 133 + rgimyy + roMipy =
T4Mmo3 + r5m3z + 17y + 1gMmzy =
T4Mm13 — reM3g + 17M1y — r9Mmzy =

r5M13 + teMoz + rgimyp + rotizy = 0.
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Since r(M ) = 3, one sees that the rank of the coefficient matrix

mp1 M3q 0 0 0 0 0 0 0
mqq 0 —mszy 0 0 0 0 0 0

0 mq1 nipyq 0 0 0 0 0 0

0 0 0 Mo M3 0 0 0 0

0 0 0 mqn 0 —Mm3p 0 0 0

0 0 0 0 mio 1 (%] 0 0 0

0 0 0 0 0 0 mp3  M33 0

0 0 0 0 0 0 myz 0 —m33

0 0 0 0 0 0 0 mi3 mo3
mpp M3 0 mp1  M3q 0 0 0 0
mio 0 —Mm3y M1 0 —ms1 0 0 0
mp3 M33 0 0 0 0 mp1 MmMszy 0
my3 0 —m33 0 0 0 miq 0 —ms1

0 mip Mmoo 0 miq maq 0 0 0

0 mi3 mo3 0 0 0 0 miq moq

0 0 0 mp3 M33 0 Moy M3 0

0 0 0 mqs 0 —Mm33 Mqp 0 —Mms3p

0 0 0 0 mi3 mo3 0 mip Mmoo

is 8. Therefore, dim[Z*(I) N(I*/B*(I))] = 1. On the other hand,

2 2 2 2 2 2
0 4(x1x0x3) = (m11x] + maX5 + my3x3)Xox3 — (M1 X7 + MopX5 + Mo3x5)X1X3
2 2 2
+ x1x2(m31x1 + ms3p X5 + Wl33X3)
2 2
= x7(my1x0X3 — M1 X1X3 + M31X1X2) + x5 (M12X2X3 — M X1X3 + M3pX1X2)

2
+ z°(my3xox3 — Mp3X1X3 + M33X1X2).

We have

2
(m11x2x3 — mo1X1X3 + M31X1X2) + X5 (M12X2X3 — MpX1X3 + M32X1X2)

B =

X
+ x5 (miaxax3 — mazx1x3 + mazx1x2) € Z*H(I) ((I*/B*(I))

and hence H*(I) = k[B]. By the definition of connecting homomorphism, we have
33([x1 Axa Ax3]) = [B] # 0and hence 6% is an isomorphism. By the cohomology long
exact sequence (Seq4.1), we obtain H*(A) = 0. Since H'(A/I) = 0 for any i > 4, we have
H*1(I) = H'*1(A) by the cohomology long exact sequence (Seq4.1).

Since
mppy M3 mp1 M3 mpy My
0 # |M| =mp
MmMzp  M33 nmgzy M3z mszy  M3p
there is at least one non-zero in
{’ My M3 ’m21 mp3 ’m21 mpo }

MmMzp M33 mzy  M33 mzy  M3p

mpp M3

0 and m 0. Let
sy s # I

Q1 = (x},x3)/(x3) and Q; = I/(x%,x3). By Lemma 8, we have

Without the loss of generality, we assume that ‘

k[%], ifi =2

H — = = 2 7 2 (M13M3p —1M1oMi33 - MMypMMp3 —My3Mp) = i —
(Q1) k102" + 0 (lezmsa—mzsmsz Xt mpptiz3 —Mmo3msp )], ifi=3
0,ifi>4
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and

k[x?], ifi=2

k[ —ma3x12032 + my33° | @ k[ —mgatp 032 4 mps 3], if i =3
k[mpsx1 3% — myztp 03> — maaX 6037, if i = 4

0, if i > 5.

H'(Qy) =

The cohomology long exact sequence induced from the short exact sequence

T 7T
0— (x3,x3) 515 Q —0
contains
HY(7) 14 8 o510 2 ony HX(@) 45,00 B (1) o5 6
: H(QMHm,xm A Ee(1) " B (Qa) = 05 HE[(:, 33))
H Hi(t) . -
¢ Ho(1 HY(Q2) =0 — -0 — HI[(x3,22)] "5 Hi() 50— -
We have
3 3 2
81(m23x1x3 — m13x2x3 — TH33X1X2X3)
2.3 3.2
=(myymaz — my3mpy ) x7x3 + (Mp1maz — M3z ) Xx3
2 2.3
+(myzmz; — m11m33)x1x2x3 + (mypmpz — myzimp ) x5x3
3.2
+(msaimnn — magmsn)X1x3x3 + (M13may — mipmaz)x3x3
m m m m m m
_ 11 13 X3+ 21 23 X — 11 13 X x%x%
My M3 mzy  M33 msz1p  mMsz
m m m m m m
+ 12 13 x3+‘ 22 23 xl_‘ 12 13 X x%x%
mpp  MmMpy3 mzp M33 mzp  M33
and
a4 ‘ mypy mMi3 x3+‘ M1 M23 xl_’ mpp mi3 x| 22
1
mpy  My3 mgzy  M33 mgy  M33
a4 My Mi3 X3+ a2  M23 X — My MmMi3 X x2
2
My M3 Mgy M33 mzp M3z
— [M|x3x] + [M][x7x3 = 0.
So,
m m m m m m
X:’ 11 13 x3+‘ 21 23 xl_‘ 11 13 X x%
My M3 mz1  M33 mzy  M33
m m m m m m
+ 12 13 X3+ 22 23 x1—‘ 12 13 X x% c Z3(A).
Mmppy My3 mzp  M33 mzp  M33

Since we have proved H3(A) = 0, there exists w € A such that d 4(w) = x. Then
91 (m3x1x3 — M13xpx3 — Mazx1X2%3) = xx3 = 9.4(w)x3

and hence &*([ma3x123 — m13x2x§ — mazx1x2%3]) = [04(w)x3] = 0 by the definition of
connecting homomorphism So, 6* = 0. By the cohomology long exact sequence above, we
have H(I) = H'[(x3,x%)],i > 5. The cohomology long exact sequence induced from the
short exact sequence
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0= (%) 5 (33) 5o -0

contains
0 S " (G, 8) Y (e =05
05 H(() " H(G ) T H Q) =05
Hence, H'((x2)) = H'((x2,x3)) for any i > 5. Then, we obtain

H((x})) = H'((xf,x3)) = H'(I) = H'(A)
for any i > 5. Since x{ is a central and cocycle element in A, one sees that H((x7)) =
H(A) (xﬂ We have shown that H'(A) = 0, when i = 1,2,3,4. Then, we can inductively
prove H'(A) =0foranyi>1. O

Now, let us consider the case (M) = 2. We have the following proposition.

Proposition 2. For M € Mj(k) with r(M) = 2, let k(sq1,50,53)T and k(t,tp, t3)T be the
solution spaces of homogeneous linear equations MX = 0 and MTX = 0, respectively. Then,
H(A) = k[[tix1 + toxa + t3x3]] if s113 + 5213 + 5315 # 0; and H(A) equals to

k[[t1x1 + taxp + t3x3], [s1x] + 5235 + 5323 ||/ ([h1x1 + t2xp + t3x3]?)
when slt% + sztg + S3t§ =0.
Proof. First, we claim dimy H3(.A) = 1. Indeed, for any cocycle element
&= llxi’ + lzx%xz + lgx%xg + l4x1x% + l5xg + l6x%x3 + 17x1x§ + lgxzxg + lgxg + Ligx1x2x3

in Z3(A), we have

0 =04() = hxf(my1x] + m1px3 + m13x3) + lxi (mo1 X7 + mapx5 + mazx3)
+ I3x3 (m31 X3 + mpx3 4+ mazx3) + ly(my1 X3 + mypx3 + myzxd) x3
+ 15 (mp x5 + mopx3 + mo3x3)x5 + lexa (ma1x3 + mapxs + msax3)
+ Iy (m11x3 + mypxs + my3x3)x3 + lg(mo1 X3 + mopx3 + mpx3) x3
+ 19 (m31x‘z‘ + m32x§ + TH33X§)X§ + l10 (WlnX% + m12x§ + m13x§)x2x3

2 2 2 2 2 2
— lloxl (Tle1X1 + mppx5 + m23x3)x3 + 110X1X2(7H31x1 + mzpx5 + mazx )

This implies that

lymq1 + lhmyy + I3mz; =0

Iymyp 4 Iymoyy + Igmsy + Iymqq + Ismio + lgmzy =0
Iymyz 4 Iymps + Igmsz + lymqq + Igmo + lomz =0
lamyg + Ismas + lemss + lzmig + Igmgn + lomzy = 0
lamyg + Ismyy + lgmzy = 0

lymqz + Igmos + lgmszz = 0

llO = O.

Hence,
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hh
my mp mzy O 0O 0O 0 0 O 52
miyp mpyp Mz myp My mzy 0 0 0 li
myz mp3 om0 0 0 my omy ma s | =o.
0 0 0 myz moz mzz mpp My Mz ]
0 0 0 mpy myp mp 0 0 0 Zé
0 0 0 0 0 0 mq3 Moz M3z l7
8
ly
By Lemma 9,
mqq moyq msq 0 0 0 0 0 0
Mmip My Mz Myp My mz 0 0 0
A misomes msz 00 000 myy my omm; | o
0 0 0 myz mpz mzz myp my mz

0 0 0 mip Moy M3 0 0 0
0 0 0 0 0 0 miy3 Moz M33

So, dimy Z3(A) = 9 — 5 = 4. On the other hand,

2 2 2 2 2 2
(m11x1 + mipXxX5 + m13x3)x2 —Xq (m21x1 + Mmoo Xy + m23x3)

a.A (X1X2)
2 3 2 3 2 2
M1 X]X2 + MypXy + M13XX5 — Mo X] — MppX1X5 — Mp3X1X3,

d4(x1x3) = (mnx% + m12x§ + m13x§)X3 — X1 (TYL31X% + 7’}132365 + m33x§)

2 2 3 3 2 2
M11X7X3 + M1aX5X3 + My3X3 — 31X] — M3pX1X5 — M33X1X3,

o4 (x2x3) = (Wl21x% + m22x§ + ngxg)xg — X2 (m31x% + m32x§ + T}’lg3x§)

2 2 3 2 3 2
= Mp1X1X3 + MopX5X3 + Mp3X3 — M31X]X2 — M32X5 — M33X2X3

are linearly independent, since

0 = A0 4(x1x2) + A20 4(x1x3) + A30.4(x2%3)
= Al(mllx%xz + mux% + m13x2x§ — m21x§’ — mypx X3 — m23x1x§)
+ /\z(mllx%x3 + mipx3xz + mlgxg — m31x§’ — mapx x5 — m33x1x§)
+ A3 (Mg x3x3 + MopX3x3 + mpsx3 — M3y X3xy — M3pXs — M33X2%3)
= (Mymyg — Agmg1)xixy + (Aymip — Asmap)xg + (Aymiz — Azmaz)xpx3
— (AMmay + Agmgy)x§ — (Aymap + Aomzp)x1x3 — (Aymos + Aamiszz)x1x3
+ (Agmyy + Agimyr ) x3xs + (Agmin + Agman)x3x3 + (Aamys + Azmasz)x;
implies
Amyy — Agmzp =0
Ay — Agmzp =0
A1z — Agmizg = 0
A1mp1 + Agmzy = 0
Mmp +Agmzy =0 < A=A =A3=0
Aoz + Apmzz = 0
Aoy + Agmpy =0
Ay + Azmipy = 0

Aomyz + Azmipg = 0

since r(M) = 2. Then, dim; B3(.A) = 3 and we show the claim dim; H3(A) = 1.
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Let I = (rq,72,13) be the DG ideal of A generated by the central coboundary elements
r1 = 04(x1),72 = d4(x2) and r3 = d4(x3). Then, the DG quotient ring Q = A/l has a
trivial differential. Since each r; = m;; x% + mizxg + mlgx% and r(M) = 2, we may assume
without the loss of generality that 7y, 7o are linearly independent, which is equivalent to
t3 # 0. Then, r3 = %rl + %rz and I = (r1, 7). We have

i k[fl]@k[fﬂ,izz
Hi(I) = ; . : .
[MTHT2(A) @ [ H2(A) @ [r1x; — x| H3(A),i > 3
and
0,i<O
dimy H(Q) = dim, @ = 4 ' =0
3,i=1
4,1 > 2.

The short exact sequence
0—-I15A50Q0—0

induces the cohomology long exact sequence (Seq4.2):

HO_(>7'L')

0 HA) " 1) & () Y E ) " Q) S ()
— H2(A) — Hz(Q) ‘5_2> .. 6:; Hi(l) Hll) Hi(A) _) Hi(Q) _> o

Since 11, 7 and r1xp — x177 are coboundary elements in .4, we have Hi(z) =0foranyi > 3.
The cohomology long exact sequence (Seq4.2) implies that

dimy H'(A) + dimy H (1) = dim H(Q),i > 3.
By Lemma 11 and dim; H3(A) = 1, we inductively obtain dim; H(.A) = 1,i > 4. Hence,

dimy H'(A) = 1 for any i > 0.
By Lemma 11, the algebra k[[t1x1 + taxy + t3x3]] is a subalgebra of H(.A) when

3
) s,'tlz # 0, and
i=1
k[[tlxl + thxo + t3x3 [, [slx% + Szx% + S3x§-|]/( [tlxl + trxo + t3X3—|2)

3 ‘
is a subalgebra of H(A) when Y s;## = 0. Considering the dimension of each H'(.A) gives
i=1

3
that H(A) = k[[t1x1 + trx2 + t3x3]] = H(A) when }_ s;t? # 0, and
i=1
k[[tyx1 + taxy + t3x3], [512 4 50x3 + 83%3 |1/ ([t121 + taxo + t3x3]2) = H(A),
3
when Y sit? =0. O
i=1

It remains to consider the case that 7(M) = 1. In this case, we might as well let

mi m13 mi3
M= | Iimy Lmyp Lmz |, with [y, € kand (myq1,myp,mi3) # 0.
Lomyy  lhmyp  lhmys
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Indeed, one can see the reason by [1] (Remark 5.4). Note that we have

8A(x1) = mnx% + mlzx% + m13x§
d4(x2) = Iy[m11x% 4 myax3 + my3x3)]
d4(x3) = l[my1x} + mypx3 + my3x3).

For any cyx1 + cax2 + c3x3 € Z!(A), we have

0= BA(c1x1 + X + C3X3) = (Cl + 1162 + lng) [mux% + mux% + mlgxg]
= c1 +lico +lac3 =0,
I I

which admits a basic solution system -1 1, 0 . So,
0 -1

Zl(.A) = k(l1X1 - X2) @k(lle — X3)
and
Hl(.A) = k[llxl — Xz—l @k“le - X3-|.

For any cnx% + C12X1 X2 + €13X1X3 + C20X3 + C23X2X3 + C33x§ € Z?(A), we have

0=0d4 [Cllx% + C12X1X2 + C13X1X3 + szx% + C23X2X3 + C33x§]
=C12 (mnx% + mlzx% + m13X§)X2 — 612X111(1’Yl11x% + mlzx% + 111139(?%)
+c13(m11x% + mlzx% + m13x§)x3 - 613x1lz(m11x% + mlzx% + m13x§)
+C2311(T}’l11x% + mux% + m13x§)X3 — 3%20p (mnx% + mux% + m13x§)
= — (cioly + berz)minx; + (c12 — cash)minxixy + (c13 + cosly ) maxiag
—(c1oly + c13la)mipx1x3 — (c12l1 + c13l)mi3x1x3 + (c12 — c23la)minx3

+(c13 + o3l )mipxdas + (c12 — cazla)mizxax3 + (c13 + caaly ) my3 3.

Since (my1, M1, m13) # 0, we obtain

c12lh + 113 =0 L I, 0 12
c1p — 3l =0 = 1 0 - C13 =0.
c13+ el =0 01 5 €23

We obtain c1p = tly,c13 = —tl1,co3 = t, for some t € k. Thus,

Z2(A) = kx? @ kx3 @ ka3 @ k(lox1xp — lyxyx3 + xx3).
Since B*(A) = k(my1x3 + mypx3 4+ my3x3), we have

Hz(.A) _ kx% (S3) kx% S) kx% @ k(lx1xy — lixx3 + x2x3).
k(mllx% + m12x% =+ ﬂ’l13x%)

Moreover, we claim that dimy H(A) = i + 1, for any i > 0. We prove this claim as follows.

Let I = (my1x7 + mypx3 + my3x3) be the DG ideal of A generated by the central
coboundary elements 0 4(x1). Then, the DG quotient ring Q = A/ has trivial differen-
tial and

0,i<0

dim; H'(Q) = dim; Q' =
«H Q) «Q {2i+1,i20.
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The short exact sequence

0515A4A5Q—-0

induces the cohomology long exact sequence (Seq4.3):
0 1 1

0— H(A) "5 Bo(Q) & () Y H () " B Q) S HR()

H2(1) )

2 i . i
O 2 a) Hig) d

Q) S 5 ™Y Hi ) T H ) S

Since mnx% + mypx3 + m13x§ =9 A(x1) is a central coboundary element in A, we have
H(I) = [my1x3 + mypx3 + my3x3] H2(A) and H'(1) = 0 for any i > 2. The cohomology
long exact sequence (Seq4.3) implies that

dimy H(A) + dimy H(I) = dim H/(Q) = 2i +1,i > 2.
Then, dimy H'(A) + dimy H'~1(A) = 2i + 1 since

dimy H (1) = dimy{ [m11x3 + m1px3 +m3x | H 1 A)}
= dimy H1(A),i > 2.

Since dim; H'(A) = 2, we can inductively obtain dimy H'(A) = i + 1, for any i > 0. In
order to accomplish the computation of H(.A), we make a classification chart as follows:

hilp #0;

Ll =0;

Ly #0;

L #0,1 =0;
L #0,l; =0;
L=I=0.

mypld + myzls # my, {

2 2 _
mpli + mysly = my,

We will compute H(A) case by case according to this classification chart. We have the
following proposition.

Proposition 3. (a) If mypl% + my3l3 # myy and lil, # 0, then H(A) is

k([lix; — x2], [lbxy — x3])

(mia[lixy — x]2 4 miz[lxy — x3]2 — [x1—x0] szl—xall-l*-lzﬁzxrxs] [lx1—x0] )'

mlzl%+n113l%

(b) Ifmlzl% + my3l3 % mqy and il = 0, then

k([lixy — x2], [lax1 — x3])

HA = i - x2][lox1 — 331 + [t — x3] [lx1 — x2])

(¢) Ifmul% + my3l3 = myy and 11y # O, then

k([hix1 — x2], [lax1 — x3])
(mip[lixy — %212 + myz[lhxy — x312)°

H(A) =

(d) Ifmlgl% + Tl’l13l% =mqyy, l4 #0andl, =0, then
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k([lix1 — x2], [x3], [x3])
mip[lixy — x2]% 4+ my3[x3]2
[x3 ][l — x2] — [l — x2][%3]
(23] [x3] — [x3][x%]

[lhixy —xa][x3] + [x3][lix1 — x2]

H(A) =

(6) Ifmlzl% + mlgl% =mq1,lh #0andly =0, then

k([lxy — x3], [x2], [x7])
miz[laxy — x3]% + mip[x2 ]2
(%3] [lax) — x3] — [lox1 — x3] [x7]
[x3][x2] — [x2][3]
[hx1 — x3][x2] + [x2][l2x1 — x3]

H(A) =

(f) Ifmlzl% + m131§ =mqy, l1 =0andl, =0, then

k([x3], [x2], [%3])
HA) mip [x2]% + myz[x3]?
(%3] [x3] — [x3][x3]
(xﬂ [x2] — [x2] [xﬂ
[x3][x2] + [x2][x3]

Proof. (a) Note that x1xp + xpx7 = 0, x1x3 + x3x7 = 0 and xpx3 + x3x2 = 0 in .A. We have

(hxy —x2)* = fx5 + 25,
(lxy — x3)% = 13x3 + x5,

(lhixy = x2) (Iox1 — x3) + (lxy — x3) (lixy — x2) = 21 3.
It is straight forward to check that

ZZ(.A) = kx% () k(llxl - XQ)Z D k(lle - X3)2 D k(11x1 — JCz)(lle - X3).

Since
maa(lxy — x2)? + miz(laxy — x3)* — (maalf + mzls — myg)xg
= mipx3 + my3x3 +myx; € B3(A),
we have
H?*(A) = k[lhix) — x2]? @ k[lpxy — x31> @ k[ (I1x1 — x2) (laxy — x3)]. (6)
We claim that

k([hx1 — x2], [l2x1 — x3])

I~ [y —x3 |+ (a1 —x3 ] [lix1—
(m1a[lix1 — %212 + mas[lhxy — x3]2 — [lx1—x2][laxg lellzi hx1—x3][l1x1—2]
mlzl%+n113l%

is a subalgebra of H(.A). It suffices to show that

(hxy —x2)" ¢ B"(A)
(laxy — x3)" & B"(A)
(lhxy — x2) (laxy — x3)] & B (A)

forany n > 2and i,j > 1. Indeed, if (I;x; — x2)" € B"(.A) then we have
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(lixy — x3)" d4lx1x2f + x1x3¢ + x0x3h], if n =2j+1is odd
1X1 —X2)" = . .
dA[x1f + x28 + x3h + x1x0x3u], if n = 2j is even,
where f,g,h and u are all linear combinations of monomials with non-negative even
exponents. When n = 2j is even, we have
(Fxi+a3) = (hxi — x2)"
=dy [xlf + x29 + x3h + X1XZX3M]
= (mnx% + mlzx% + m13x§)f + ll (mllx% + mlzx% + m13x§)g
+ lz(mllx% + mlzx% + m13x§)h + (mllx% + m12x§ + TH13X%)XZX3L£
—x1h (mllx% + mux% + m13x§)x3u + x1x212(m11x% + mlzx% + ﬂ”l13x§)u.

Considering the parity of exponents of the monomials that appear on both sides of the
equation above implies that

(I3xf + ) = (m11x] + mapx3 + miax3) f + I (m11x7 + mypx3 + m3x3)g
+ lz(mnx% + mux% + m13x%)h
= d4(x1)[f +hg+ bh]

and

2 2 2 2 2 2
9 4(xyzu) = (my1x] + mipxs + my3x3)xpx3u — l1x1 (M1 X7 + mypx5 + mizx3)x3u
2 2 2
+ x1x01lp (my1x7 + mypx5 + mizxz)u = 0.

Hence, (I2x? 4 x3)/ is in the graded ideal (34 (x1)) of k[x, x3, x3]. By Lemma 10, (9 4(x1),

d4(x2), 94(x3)) = (d4(x1)) is a graded prime ideal of k[x},x3,x3]. So, I3x2 + x5 €

(04(x1)). Hence, there exist a; € k such that
Bxf 403 = a104(x1) = da(arxy).

However, this contradicts with the fact that 12x3 + x3 ¢ B?(.A), which we have proved
above. Thus, (l1x; — x2)" & B"(A) when n is even.
When n = 2j 4 1 is odd, we have

(lhixy — x2) (Bx3 +x3) = (Iixy — x2)" = d4[x1 %0 f + X1x38 + xox3H]

= (mnx% + mux% + m13x§)x2f — llxl(mnx% + mux% + m13x§)f

+ (my1x3 4 m1px3 + mi3x3)x3g — Lxy (my1x% 4 mipx3 + mizx3)g

+ ll(mllx% + mlzx% + m13x§)x3h — lzxz(mnx% + mux% + m13x§)h

= xz(mllx% + mlzx% + mlgxg)(f —bh) —x (mnx% + mlzx%_ + mlgxé)(llf +1g)
+ xg(mllx% + mlzx% + m13x§)(g + I1h)

= (mnx% + m12x§ + m13x§)[x2(f —Ihh) —x1(hf + 1g) + x3(g + 11h)]

= x1[—04(x2)f —0a(x3)8] + x2[0.4(x1)f — Oa(x3)h] + x3[0 4 (x2)h + 9 4 (x1)g]-

This implies that
L(Bx3 4+ x3) = —(Iif + bbg) (m11x + mypx3 + my3x3)

(B3 +x3) = (m11x3 + mipx + mzxd) (bh — f)
0=g+hh
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Then, (2x2 +x3)/ = (l1x; — x2)% € B2 (A), which contradicts with the proved fact that
(l1x1 — x2)" & B"(A) when n is even. Therefore, (I1x7 — x2)" ¢ B"(A) when n is odd.
Then, (l1x1 — x2)" & B"(\A) for any n > 3. Similarly, we can show that

(Iyxy — x3)" & B"(A), forany n > 3

(hxy — x2)2 (lyxy — x3)% & BHH2H1(A), forany i,j > 1
(hxy — x2)% (lpxy — x3)7 41 & B¥H2H1(A), forany i,j > 1
(hxy — x2)% (lx; — x3)% & B¥T3(A), forany i,j > 1.

It remains to prove (l1x —‘x2)‘2i+1(lzx1 — x3)%11 & B2H212(A) forany i,j > 1. 1f (I1xg —
x2)21+1 (lle _ x3)2]+1 c BZH—Z]—&-Z(A), then
(hlpx} — lixyxs + bayxo + xox3) (1337 + x3) (13x7 + x3)/
= (lix — x2)* (loxy — x3) ™!

= (mllx% + 111129(% + m13x§)f + L (mllx% + m12x§ + m13x§)g

=dy [Jqf + x29 + x3h + X1XpX3U]

2 2 2 2 2 2
+ lz(mnxl + mip x5 + m13x3)h + (m11x1 + mip Xy + m13x3)x2x3u
2 2 2 2 2 2
—x1lh (m11x1 + mipx5 + m13x3)X3u + X1X7_l;7_(m113€1 + mizx5 + m13x3)u.

where f,g,h and u are all linear combinations of monomials with non-negative even
exponents. Hence

hloxi (1] +x3) (1337 + x3)) = (mnag + miaxh +mizx3) f
+ 11("1119(% + mlzx% + m13x§)g + lz(mnx% + mux% + m13x§)h
and ‘ ‘
(Bxd +23) (13x3 + x3) = (myyxd + mpaxd + myzxd)u € (94(x1)).
Since (9.4 (x1)) is a prime ideal in k[x3, x3, x3], we conclude that (I2x% 4+ x3) € (d.4(x1)) or
13x2 + x3 € (d.4(x1)). This contradicts with (6). By the discussion above,

k([hx1 —x2], [l2x1 — x3])

(m1a [l — x212 4+ miz[lxy — x3]2 — [lx1—x2] fllefxil;zﬂzxrxﬂ [l1x1—xp] )

’”12’%+"11315

is a subalgebra of H(.A). On the other hand, we have dim; H'(A) = i + 1. Then, we can
conclude that H(.A) is

k([hix1 — x2], [laxg — x3])

Iixy—xo | [lhox;—x3]+[lhx;—x3][I1x1—x :
(mia[lxy — x]2 4 miz[laxy — x3)2 — [ —x][lhx 3llll£2 1—%31[hx ﬂ)
’”121%

+n1131%
(b) In this case, m12l3 + my313 # my; and 11, = 0. One sees that

(hx1 — x2)% = I2x3 + 3,
(lle — X3)2 = l%x% + x%,
(llxl — xz)(lle — X3) + (lle — JC3)(Z]X1 — XZ) = 211129(% =0.

It is straight forward to check that
ZZ(A) = kx% ©® k(l1x1 — XZ)Z &b k(lzX1 — X3)2 ©® k(11x1 — xz)(lzx1 — X3).

Since
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mip(lhxy — x2)% + myz(laxy — x3)% — (mapl§ + magls — myq)xg

= mipx3 + my3x3 + myx; € B3(A),
we have
H?*(A) = k[lix) — %212 @ k[bxy — x31% @ k[ (lhixy — x2) (lyxy — x3)].
Just as the proof of (a), we can show that

k([hx1 — x2], [lhx1 — x3])
([lhixy — x2][lax1 — x3] + [laxy — x3][lix1 — x2])

is a subalgebra of H(A). On the other hand, we have dimy Hi(.A) =i+ 1. Then, we can
conclude that

k([lhx1 — x2], [lax1 — x3])

HA) = ([hxr = xa][lx1 — x3] + [bx1 — x3] [l — x2])

(c) In this case, mlzl% + m13l§ = my; and l11> # 0. So, we have

mip(lixy — xz)z + myz(lxy — x3)2 = (mul% + mlSZ%)x% + mlzx% + m13x§

= myx3 + mypx3 + myzx3 = 0 4(x1)
and
{(11961 — x2)(lx1 — x3) + (laxy — x3) (lhx1 — x2) = 2l11px3
(Ihxq — x2) (laxy — x3) — (Iaxy — x3) (lix1 — x2) = 2[xpx3 — lix1x3 + Lhxyxs].
Hence, H?(A) is

k(lixy — x2) (lxy — x3) @ k(lx1 — x3) (lixy — x3) @ k(lixy — x2)? @ k(lpxy — x3)?
k[maa(13x2 + x3) 4+ my3 (1332 + x3)] )

Just as the proof of (a), we can show that

k([hx1 — x2], [l2x1 — x3])
(mia[lixy — %212 + mi3[laxy — x312)

is a subalgebra of H(.A). Since dimy H(.A) = i + 1, we can conclude that

k([lhix1 — x2], [lax1 — x3])

HA) = (mia[lixy — x2]2 + myz[xy — x3]2)°

(d) Since mul% + m13l§ =m1, 1 # 0and I, =0, we have mlzl% = myq,
mlz(llxl — X2>2 + I’I’Z13X§ = mul%x% + mlzJC% + m13x§
= mux% + mlzx% + m13x§ = aA(x1>
and (lix1 — x2)x3 + z(lix1 — x2) = Iy (x1x3 + x3%7) — (xX2x3 + x3%2) = 0. Thus

H2(A) = kx3 @ k(1fx} + x3) @ k(hxy — x2)x3 @ kg
N k[m12(11x1 — Xz)z + m13x§]

Just as the proof of (a), we can show that
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k([hx —x2], [x3], [%3])
mip[lixy — x2]% 4 myz[x312
[x31 [l — x2] — [l — x2][x7]
[x§][x3] — [x3] (3]

[ —x2][x3] + [x3] [lix1 — x2]

is a subalgebra of H(.A). Since dimy H'(A) = i + 1, we obtain

k([lix1 — %21, [x3], [%3])
mip[l1x1 — %212 + my3[x3]?
[x31 [l — x2] — [l — x2][%7]
[x3][x3] — [x3][3]

[hx1 — x2][x3] + [x3] [l — x2]

H(A) =

(e) In this case, we have mlzl% + m13l§ =my, l» #0and [; = 0. So, m13l§ = my,
miz(bx1 — x3)% + mipx3 = mislax; + mipx3 + my3x3
= myx3 + mypxs + myzx3 = 0 4(x1)
and (lpxq — x3)x0 + xp(lax1; — x3) = Ix(x1%2 + x2x1) — (x2x3 + x3%2) = 0. Thus

() = kx3 @ k(3x% 4 x3) @ k(lax1 — x3)xp © kx?
a k[myz(loxy — x3)2 4 mypx3]

Just as the proof of (1), we can show that

k([hx —x3], [x2], [x3])
miz[lhx1 — x3]% + mp[x2]?
[x31[2x1 — x3] — [lox1 — x3][x%]
(23] [x2] = [x2] 7]

[hx1 —x3][x2] + [x2][l2x1 — x3]

is a subalgebra of H(A). Since dim; H!(A) =i + 1, we have

k([lx1 — x3], [x2], [%3])

H(A) =

“) miz[lxy — x3]% + mip[x2 ]2

[xﬂ [lpx1 — x3] — [lax1 — x3] [x%]
[x3][x2] — [x3] [%7]
[laxy — x3][x2] + [x2][l2x1 — x3]
d4(x1) = m1px3 + my3x3
(f) In this case m1; = 0, and hence ¢ 9 4(x2) =0 So,
da(xz) = 0.
HZ(A) _ kx% ) kx% &) kxg ) kaX?,'

k(mypx3 + my3x3)

Just as the proof of (a), we can show that

k([x3], [x2], [%3])
mip[x2]% + myz[x3]2
[x7][x3] = [x3][%7]
[x7][x2] = [x2] 7]
[x3] [x2] + [x2][x3]
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is a subalgebra of H(.A). Since dimy H'(A) = i + 1, we conclude

k([x3], [x2], [%3])
HA mip [x2]% + myz[x3]?
(%3] [x3] — [x3] 3]
(xﬂ [x2] — [x2] [xﬂ
[x3][x2] + [x2][x3]

O

5. Some Applications

Let A be a connected cochain DG algebra such that its underlying graded algebra A*
is the graded skew polynomial algebra

X1X2 + X2X1
k(x1,x2,x3)/ | Xox34x3x2 |, |x1] = |x2| = [x3] = 1.
X3X1 +x1x3

Then, 0 4 is determined by a matrix M € M3(k) such that

d4(x1) x]
d4(x2) | =M| x5 |, forsomeM € M;(k).
3
By the computations in Section 4, we reach the following conclusion.
Proposition 4. H(.A) is an AS-Gorenstein graded algebra when r(M) # 1.

Proof. If r(M) = 0, then H(A) = A" is obviously an AS-Gorenstein graded algebra since
A* is an AS-regular algebra of dimension 3. By Proposition 1, we have H(A) = k if
r(M) = 3. So, the statement of the proposition is also right when (M) = 3.

For the case r(M) = 2, let k(s1,s2,53)T and k(t;,t2,t3)" be the solution spaces of
homogeneous linear equations MX = 0 and MTX = 0, respectively. By Proposition 2,
H(.A) = k[[tlxl + trxp + t3X3-|] if Sli’% + Szt% + ng% # 0; and H(.A) equals to

k[[t1x1 + taxy + ta3x3], [s125 + 5023 4+ 53x3 1]/ ([t1x1 + taxy + t3x3]?)
when slt% + SZt% + 331% = 0. Since

k[ [tlxl + frxo 4+ t3X3~|, [slx% + S2x§ + ng%”/( [tlxl + frxo 4+ t3X3-|2)
~ k[ftlxl + thxy + i‘3X3-|]

2 2 2
-~ ([hxg + o + t3x3]2) [[s127 + 5223 + 5323 ],

it is AS-Gorenstein by Lemma 1. Thus, H(.A) is an AS-Gorenstein graded algebra when
r(M)=2. O

Now, it remains to consider the case that 7(M) = 1. We may assume that
mi miz M3
M= | Iimyy Limyp Lmyz |, with Iy, € k and (myq1,mqp,mi3) # 0.
Lmiy lhmiy  lmas
We have the following proposition.

Proposition 5. The graded algebra H(.A) is AS-Gorenstein if we have any one of the following
conditions:
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H’Zul% + Tl’llgl% ;é miy and 1112 =0

mlzl% + m13l§ = mjiq, ll f— 0 and l2 =0

71’1121% + m131§ = miq, 12 75 0 and l] =0

mlzl% + m13l% =mq1, 11 =0andl, =0;

mipl? 4+ myzl3 = myy, hlp # 0and mipmyz # 0;

miplf + masl3 # myy, iy # 0 and 4mipmizl3l3 # (mypl? 4+ masls — map)%.

Sk L=

Proof. By Proposition 3b, we have

_ k([lhix1 —x2], [bx1 — x3])
HA) = [ =51 — 7] + [lxs — o] [hx —57)

when mlzl% + m13l§ # myq and I11, = 0. In this case, H(.A) is an AS-regular graded algebra
of dimension 2.
By Proposition 3d,

k([hxy — x2], [x3], [x3])
mip[lix1 — %212 + myz[x3]?
(231 [l — x2] — [l — x2][x%]
[x3][x3] — [x3][x3]
[hx1 —x2][x3] + [x3][l1x1 — x2]

H(A) =

when mlzl% + my3l3 = myy, Iy # 0and I, = 0. We have

_ k([lhxy — xa], [x3], [x7])
HA) mip[lixy — x21% 4+ myz[x3]?
(23] [lhxy — x2] = [lhxg — x2] [ %]
(%3] [x3] = [x3] 7]
[hxy —x2][x3] + [x3] [lix1 — x2]
) k([lix1 — x2], [x3]) sz ]
( mia[lx1 — x2]% 4 miz[x3]? ) .
[hxy —xa][x3] + [x3] [lixn — x2]

By Rees Lemma, one sees that

k([hix1 — x2], [x3])
< mia[l1x1 — x2]% 4+ my3[x3]? )
[hx1 —x2][x3] + [x3][lx1 — x2]

is AS-Gorenstein. Applying Lemma 1, we obtain that H(.A) is AS-Gorenstein. By Proposition 3ef,
we can similarly show that H(.A) is AS-Gorenstein if we have either

mplf + myzls = myy,lp 0, =0
or
mlzl% + m13l% = m11,11 =0, lz =0.
When mlzl% + 711131% = my, l1lp # 0 and mymq3 # 0, we have

_ k([lx1 — x2], [laxy — x3])
H(A) = (mp[lixy — x212 + myz[hxy — x3]2)

by Proposition 3c. Since mipmys3 # 0, the graded algebra H(.A) is AS-regular by [51]
(Proposition 1.1).
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When mypl2 + my3l3 # may, llp # 0 and 4mipmy3l213 # (mypld + myzl3 — myq)?, the
graded algebra H(.A) is

k([lhx1 — x2], [lax1 — x3])

(mia[lxy — x212 4 miz[lxy — x3]2 — [lx1—xo] flle—xsll-]*-lzﬂle—xﬂ [Lxg—xo] )

n1121%+m13l%

by Proposition 3a. Since 4771127’1’1131%[% # (mlzl% + ml3l§ — mq1)?, one sees that H(A) is
AS-regular by Proposition 1.1 in [51]. O

Theorem 2. Let A be a connected cochain DG algebra such that

X1X2 + X2X1
A =k(x1,x0,23)/ | xax3+x3%0 |, |x1] = [x2| = |x3] =1,
X3X1 + X1X3

d4(x1) X7
( 9 4(x2) ) :N( x5 )
9 4(x3) x3

Then, the graded algebra H(A) is not left (right) Gorenstein if and only if there exists some
C = (cij)ax3 € QPL3(k) satisfying N = C_lM(CZZ]-)3><3, where

1 1 0 miq mip my3
M=[11 0 |orM=| Limy Lmp ILmy
11 0 Iymyy lhmyy  lpmys

with mlzl% + m13l% # myy, lily # 0and 41’1112111131%1% = (mlzl% + m13l§ — mn)z.

and 9 4 is determined by

Proof. First, let us prove the ‘if” part. Suppose that there exists some C = (cjj)3x3 €
QPL; (k) satisfying N = C_lM(Cle)gxg, where

1 10 miq mio mi3

M= 1 1 0 or M = llmll 1111112 llm13

1 10 127’}111 12m12 121’1113
with mlzl% + 711131% # mq1, 1l # 0 and 41’11121’}’[131%12 = (mlzl% + 1’/’1131% — 71111)2. Note that
A=Ay ) (N). Inboth cases, Ay | 3)(M) = Ay | 3)(N) by [1] (Theorem B). When

1 10
M = 1 1 0 |,wehave
110

H(Aofl(ks)(M)) _ k{[x1 —x2], [x1 — x3])

([x1 = x2]2)
by Proposition 3c. By Lemma 3, H(A¢ |, (43)(M)) is not left (right) Gorenstein. If

miq mip miz ) )
M= | hmy Limyp Limgz |, mply +mgly # myg, il #0
Lmy Lmypy  lhmys

and 411’[1211’[13[%1% = (111121% + mlgl% - mn)z, then H(Ao,l(kS) (M)) is
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k({[hx1 —x2], [lx1 — x3])
lixy =] [lax —x3 ]+ [lpx1 —x3] [l %1 —
(mia[lixy — x2]2 + myz[laxy — x3]2 — [lhx1—xp][lxy Xallllg 2x1—x3] [l —7] )
m]zl%-%—mwl%
by Proposition 3a. Since 4m12m13l%l% = (mlzl% + m13l§ — mq1)?, the graded algebra

H(Ap ,(»y(M)) is not left (right) graded Gorenstein by Lemma 2. Thus, H(A) is not
left (right) graded Gorenstein in both cases.

It remains to show the ‘only if’ part. If H(Ap | ) (N)) is not left (right) Gorenstein,
then 7(N) = 1by Proposition 4. By [1] (Remark 5.4), we have Ay  3)(N) = Ay 43)(M),

where
miq m13 m3
M= | Lmy Imyp hLmg |,
lomyy  lymyp  lhmys

(0,0,0) # (myq,mya,my3) € k> and I, I € k. By Propositions 3d—f and 5, we have either
il #0,mypymy3 = 0 and mlzl% + m13l% = my

or
lily # 0,mypl? + mysl3 # myy, dmppmis 313 = (mypl? + mysl3 — myy)?.

By [1] (Proposition 5.8), there exists B = (b;j)3x3 € QPL3(k) such that

10
1 0],
1 0

if 11, # 0,mpmy3 = 0 and mul% + m13l% = mqq. In this case,

Ao ) (N) = Ay 3)(M) = Ap_415)(Q)

by [1] (Theorem B), where
110
Q= ( 110 ) .
110

Now, we obtain the following concrete counter-examples to disprove Conjecture 1.

_

BilM(bizj)gxg, = (

O

Example 1. Let A be a connected cochain DG algebra such that

X1X2 + X2X1
.A# = k<X1,X2,X3>/ XpX3 + X3X2 , \x1| = |X2| = |X3| =1,
X3X1 + X1X3

(5)-(3)
da(x) | =M 25 |.
9.4(x3) x5

Then, by Proposition 2, H(.A) is not left (right) Gorenstein when M is one of the following three

matrixes:
1 10 011 1 11
11 0},{0 1 1]),{1 1 1]
1 10 01 1 2 2 2

and d 4 is determined by
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