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Abstract: This work is an extension of the paper by Cea and Malanowski to the nonlocal and
nonlinear framework. The addressed topic is the study of an optimal control problem driven by a
nonlocal p-Laplacian equation that includes a coefficient playing the role of control in the optimization
problem. The cost functional is the compliance, and the constraint on the states are of the Dirichlet
homogeneous type. The goal of the present work is a numerical scheme for the nonlocal optimal
control problem and its use to approximate solutions in the local setting. The main contributions of
the paper are a maximum principle and a uniqueness result. These findings and the monotonicity
properties of the p-Laplacian operator have been crucial to building an effective numerical scheme,
which, at the same time, has provided the existence of optimal designs. Several numerical simulations
complete the work.
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1. Introduction

In recent decades, nonlocal modelization has been employed to solve a wide variety
of problems in applied mathematics, and nowadays it is a very appealing alternative to
classical methods. In the development of this type of modelling, it has been fundamental
to dispose of a nonlocal vector calculus that has made it possible to obtain nonlocal rep-
resentations of operators such as the gradient or the divergence (see [1,2]). Of particular
interest is the application of nonlocal models to the study of certain phenomena in the field
of mechanics, a fact that is evident in a large number of works (see for instance [3–6]). This
type of formulation has been employed to model and solve classical differential equations
where the aim is the approximation of solutions through the solutions of nonlocal models.
Several papers have studied stationary configurations for a local classical problem by
exploring the asymptotic behavior of the corresponding nonlocal or fractional equation.
The reader may consult, among others, the pioneering works [1,7–9].

Another aspect to be taken into account is the way in which solutions to nonlocal prob-
lems are approximated. It has commonly been seen in the literature how, through numerical ex-
amples of problems such as the nonlocal fractional Laplacian problem ((−∆)s with s ∈ (0, 1)),
the usage of finite elements has provided meaningful results of existence and convergence.
Moreover, it has been shown that by solving the nonlocal problem it is possible to obtain
accurate approximations of the local problem. References of interest in this sense are [10–15].
Noteworthy is the work [16] in which, besides analyzing the fractional diffusion model in-
volving the fractional Laplacian, the authors make an extensive discussion about different
numerical methods that can be applied in the approximation of solutions of the nonlocal
fractional diffusion model. In addition to the finite element method, they discuss the finite dif-
ference method and spectral methods. Concerning significant examples, in the reference [17],
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a large part of the most recent mathematical and computational developments applied to the
analysis of nonlocal peridynamic models are collected.

A more specific issue is the nonlocal optimal design and its application to the nu-
merical approximation of the underlying local optimal design problem. Searching for
an approximate solution to a classical optimal design problem is a rather arduous task.
This is mainly due to the requirements imposed on the formulation of the state equation
and the set of admissibility. A broad overview of this issue can be found in the classical
books [18–21]. The nonlocal framework can be proposed as an alternative to overcome
some of these difficulties. One of the first works with this approach is [22]. This paper
focuses on an optimal control problem in which the state equation is a nonlocal diffusion
equation, the control is the source and a finite elements scheme is the tool employed to
solve the heat transfer problem in a rod with a discontinuous conduction coefficient.

In the present paper, we deal with a problem of optimal distribution of conductivities
in a nonlocal diffusion framework. We study a system governed by a nonlocal p-Laplacian
equation containing a diffusion coefficient that plays the role of control in the optimization
problem. The aim of our analysis is the numerical approximation of solutions for this
nonlocal optimal control problem. The original source of this problem in the local classical
context dates back to the work of Cea and Malanowski ([23]). In that problem, the goal was
to minimize the compliance functional under a system governed by a linear elliptic equation
(p = 2), with the control in the diffusion coefficient and constrained by homogeneous
Dirichlet conditions on the boundary. More concretely, they addressed the minimization of
the compliance functional constrained to the problem{

−divx(h(x)∇u(x)) = f (x) in Ω

u ∈ H1
0(Ω)

(1)

This is a problem of optimal design where h is the control. It is used for the description
of the distribution of a conducting material in a fixed domain Ω. Here, h is the conductivity
(or diffusion); the compliance functional, which measures the energy dissipated in Ω ⊂ RN ,
is defined as

Jloc(h, u) =
∫

Ω
f (x)u(x)dx, (2)

and u is the potential (or temperature) satisfying (1). To complete the formulation, the
source f is assumed to be in L2, and the set of controls participating in the optimization is

H =

{
h : h(x) ∈ [hmin, hmax] a.e. x ∈ Ω and

∫
Ω

h(x)dx = V0

}
where 0 < hmin < hmax and hmin|Ω| < V0 < hmax|Ω|.

In the sequel, when we talk about the nonlinear classical problem (p > 1), we will be
referring to the optimal control problem

min
(h,u)∈Aloc .

Jloc(h, u) (3)

where f ∈ Lp′(Ω), with 1
p + 1

p′ = 1,

Aloc =
{
(h, u) ∈ H×W1,p

0 ( Ω) : u is the unique solution to (5)
}

(4)

and the state equation is{
−divx

(
h(x)|∇u(x)|p−2∇u(x)

)
= f (x) in Ω

u ∈W1,p
0 (Ω)

(5)
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Problem (5) is the p-Laplacian equation. It has been employed for the modelization of
meaningful phenomena in diffusion or in conductivity theory where, for some purposes, the
compliance functional (2) has been considered as the objective to optimize. See [18–20] for p = 2.
In addition, a remarkable field where the optimization of the compliance functional plays
an important role is the design of material with a maximum global stiffness (see [24,25]).
There are also a large number of outstanding papers dealing with different fractional
Laplacian equations modelling diffusion (see [26,27] and references therein).

The problem we pose now is the nonlocal counterpart of (5). The explicit formulation
needs to introduce the following definitions: the state equation is

(Pδ) ≡
{

Lδ(u) = f (x), in Ω

u = 0 in ∂Ωnl := Ωδ \Ω
(6)

where Ωδ := Ω ∪
{
∪p∈∂ΩB(p, δ)

}
,

Lδ(u) = −2
∫

B(x,δ)
H

kδ(|x′ − x|)
|x′ − x|p

∣∣u(x′)− u(x)
∣∣p−2(u(x′)− u(x)

)
dx′, x ∈ Ω

and

(1) Ω is a smooth bounded domain in RN , and B(x, r) is the notation for an open ball
centered at x ∈ RN and radius r > 0.

(2) f ∈ Lp′(Ω), and the design function H is given by H(x′, x) := h(x)+h(x′)
2 with h in

the space

Hδ =

{
h : h(x) ∈ [hmin, hmax] a.e. x ∈ Ω, h = 0 in Ωδ \Ω and

∫
Ω

h(x)dx = V0

}
and the constants 0 < hmin < hmax are assumed to satisfy the volume constraints
hmin|Ω| < V0 < hmax|Ω|. These inequalities are usually assumed to avoid trivial
solutions for the optimal design problem.

(3) The index δ, the horizon parameter, is fixed, and it is assumed to be small. Here, (kδ)δ
is a non-negative radial function such that:

(a)
1
N

∫
RN

kδ(|z|)dz = 1, (7)

(b) for every δ ≤ δ0 (δ0 is small and has been previously fixed) the following
inclusion holds

supp kδ ⊂ B(0, δ),

(c) there is a positive constant C0, s ∈ (0, 1) and such that

kδ(|z|) ≥
C0

|z|N+2s−2 ∀z ∈ supp kδ \ {0}. (8)

Problem (6) must be understood in a weak sense. To be precise, we are going to specify
the functional spaces we will deal with. Throughout the paper, Lp

0 (Ωδ) is

Lp
0 (Ωδ) = {u : Ωδ → R : u ∈ Lp(Ω), u = 0 in Ωδ \Ω},

and the space X is defined as

X =
{

u ∈ Lp
0 (Ωδ) : Bh(u, u) < ∞

}
, (9)

where
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Bh(u, v) =
∫

Ωδ

∫
Ωδ

H
kδ(|x′ − x|)
|x′ − x|p

∣∣u(x′)− u(x)
∣∣p−2(u(x′)− u(x)

)(
v
(
x′
)
− v(x)

)
dx′dx. (10)

We also define the space X0 as

X0 = C∞
co(Ωδ),

where
C∞

co(Ωδ) = {v : Ωδ → R : v ∈ C∞
c (Ω) and v = 0 in Ωδ \Ω} ⊂ X,

C∞
c (Ω) is the set consisting of all infinitely differentiable functions with compact support,

and C∞
c (Ωδ) is its closure with respect to the norm ‖·‖ given in X trough the quadratic

form Bh(·, ·), that is

X0 =

{
v ∈ X : there is

(
vj
)

j ⊂ C∞
c (Ωδ) such that lim

j→∞
Bh
(
vj − v, vj − v

)
= 0

}
.

Definition 1. It is said that u ∈ X0 is a solution for the problem (Pδ) described in (6) if the equality

Bh(u, v) =
∫

Ω
f (x)v(x)dx (11)

holds for any v ∈ X0.

In summary, the nonlocal problem is defined as

min
(h,u)∈Aδ

Jδ(h, u), (12)

where the cost functional is

Jδ(h, u) :=
∫

Ω
f (x)u(x)dx, (13)

and the set of admissibility is given by

Aδ = {(h, u) ∈ H× X0 : u is the unique solution to (6)}. (14)

The analysis of problems such as (12)–(14) has been accurately studied in previous
works. Reference [28] proposes nonlocal models and employs a refined analysis of the
nonlocal vector calculus to show the existence of solutions and to take the first steps in their
approximation. References [29,30] provide the well-posedness of the weak formulation
of nonlocal boundary value problems for general kernel functions that are practical in
the peridynamics setting. References [22,31] formulate the first nonlocal optimal control
problems and perform the first numerical approximations. The first paper considers the
source of the steady equation as control, and the second one faces a distributed optimal
problem. Both cases analyze the noncal Laplacian. Some interesting papers dealing
with nonlocal control problems with the p-Laplacian equation are: [32], where different
formulation of the obstacle problem are analyzed; References [33,34], where different
approaches to the optimal control of the coefficient under the assumption of bounded
variation are treated; and also [35], where the control is the source, and the study is
performed by means of a descent method.

A key point for the study of the above optimization problem is the asymptotic analysis,
the Γ-convergence or the G-convergence, applied both to the steady equation and to the
control problem. References [1,8,31,36–47] are papers where the reader can obtain a fairly
detailed idea of this issue when the state equation is of a p-Laplacian type.

To understand the intimate relationship between the above two problems, and there-
fore the purpose of this manuscript, we must point out that an essential part of the design



Mathematics 2023, 11, 1679 5 of 22

of the nonlocal model lies in the degree of nonlocality that we consider for the intercon-
nection between two points that may be far apart. This issue is reflected in the model
by a parameter δ > 0 known as the horizon. Due to the analysis carried out in previous
works it is now well-known that the nonlocal problem does have a solution and that when
the horizon tends to zero, it strongly converges to the classical solution (see Theorem 3
and the references from above concerning Γ-convergence or G-convergence). This fact is
undoubtedly essential because it offers the possibility of approximating the solution of
the local problem at “a lower cost”. This is an aspect that we will try to highlight in the
present paper. In this regard, it will be worth comparing the numerical approximations
obtained here with the results reported in the bibliography. While [20,23,48] deal with
the minimization of the compliance, [49,50] are papers focusing on the maximization of
that functional.

Organization and Contributions

The purpose of Section 2 is to recall the basic tools for the setting of the problem. Con-
cerning the state equation, the following issues are examined: existence and uniqueness of
solution (Theorem 1) and the G-convergence result with respect to the control (Theorem 2).
Regarding the optimal design problems (12)–(14), the existence of a solution is proved, and
its convergence to the corresponding solution of the local optimal design problems (2)–(4)
are recalled (see Theorem 3).

After these preliminaries, the article will be devoted to presenting a series of contribu-
tions, which are organized as follows.

(1) The obtainment of a maximum principle as a tool to characterize optimal controls:
Section 3 contains all the details on which our numerical algorithm is based. The main
foundation is a maximum principle on the control (Theorem 4).

(2) Uniqueness of the state: Section 3 provides a uniqueness result for the states (see Theorem 5
and Corollary 1) and a characterization of the optimal designs (Corollary 2).

(3) Numerical algorithm: based on the maximum principle and on the properties of the
p-Laplacian operator the development of a descent method is obtained (see Section 4).

(4) True convergence of the numerical procedure towards an optimal control:
see Theorems 6 and 7 in Section 4.

(5) Explicit numerical approximations, both for the nonlocal and local problem
(with δ small enough): Section 5 shows the result of some numerical simulations
for the case p = 2.

Section 6 concludes the work by emphasizing again all the previous points.

2. Preliminary Results

Our goal now is to clarify some of the definitions and formulations given in Section 1.
The first issue to analyze is the existence and uniqueness of the solution of (6). Next, we
study the convergence of the sequence of solutions

(
uj
)

j that corresponds to the sequence
of Problem (6) when we put h = hj. This convergence for each δ > 0 will serve to ensure
existence of nonlocal optimal control. Finally, we approximate the solution of the local
problem by the one attained for the nonlocal problem when δ is small enough.

2.1. A Dirichlet Principle

The first step in our approach is to solve the state equation. This issue has al-
ready been thoroughly analyzed. It was proved that the solution of this nonlocal
boundary problem is characterized as the unique minimizer on X0 of the functional
E(w) := 1

p Bh(w, w)−
∫

Ω f (x)w(x)dx :
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Theorem 1. For each h ∈ H, there exists a unique function u ∈ X0 that solves in a weak sense the
state equation

(Pδ) ≡

 Bh(u, w) =
∫

Ω
f (x)w(x)dx, for any w ∈ X0

u = 0 in ∂Ωnl := Ωδ \Ω.
(15)

This solution is unique, and it is characterized as the solution of the problem

min
w∈X0

{
1
p

Bh(w, w)−
∫

Ω
f (x)w(x)dx

}

and the minimum value is
(

1− 1
p

)∫
Ω

f (x)u(x)dx.

(For the proof, see for instance [51] Theorem 1.2) In the sequel, if given h ∈ H, the
function u ∈ X0 is the solution of (15). Then, (h, u) ∈ Aδ will be called an admissible pair
for that problem.

We also recall that the same characterization is true for the local problem: (h, u) ∈ Aloc
if and only if

u = argmin
w∈X0

{
1
p

bh(w, w)−
∫

Ω
f (x)w(x)dx

}
,

where
bh(v, w) =

∫
Ω

h(x)|∇v(x)|p−2∇v(x)∇w(x)dx.

2.2. G-Convergence and Existence of Optimal Control

The pass to the limit in (15) when we are considering a sequence of controls, say
(
hj
)

j,
is a crucial step in our study (see [36]).

Theorem 2. If
(
uj
)

j is the sequence of solution of the problem

min
w∈X0

{
1
p

Bhj(w, w)−
∫

Ω
f (x)w(x)dx

}
and hj ⇀ h weak-∗ in L∞(Ω), then we can extract a subsequence from

(
uj
)

j (which is denoted

again by
(
uj
)

j), and there exists u ∈ X0 such that

uj → u strongly in Lp(Ω) and Bhj

(
uj − u, uj − u

)
→ 0 as j→ ∞.

Moreover, u is the solution of minw∈X0

{
1
p Bh(w, w)−

∫
Ω f (x)w(x)dx

}
.

By using the above convergence, the existence of optimal controls for (12)–(14) is
automatic. Factually, this existence result can be extended to a wider class of cost functionals
(see [36] Theorem 7). Thus, throughout the paper and for each δ, we assume the existence
of a pair (hδ, uδ) that solves (12)–(14). Moreover, the solution is unique with respect to the
state. As we shall point out later, that means that if (hδ, uδ) and (gδ, vδ) are two solutions
of (12)–(14), then uδ = vδ.
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2.3. Approximation

The path we take to solve Problems (3) and (4) is marked by

Theorem 3. Let (hδ, uδ)δ be a sequence of minimizers for Problems (12)–(14). Then, there is a
subsequence of index δ, and there is a pair (h, u) ∈ H×W1,p

0 (Ω) for which

hδ ⇀ h weakly-* in L∞(Ω),

uδ → u strongly in Lp(Ω)

and
lim
δ→0

Bhδ
(uδ − u, uδ − u) = 0.

Furthermore,

lim
δ→0

min
w∈X0

{
1
p

Bhδ
(w, w)−

∫
Ω

f (x)w(x)dx
}

= min
w∈X0

{
1
p

bh(w, w)−
∫

Ω
f (x)w(x)dx

}
and (h, u) is a solution to the classical Problems (3) and (4).

See [36] Theorem 8 for the details.

Remark 1. As we shall see in the nonlocal case, if (h, u) and (g, v) are two solutions of
Problems (3) and (4), then u = v.

3. Maximum Principle and Numerical Algorithm

We are now concerned with computing a numerical approximation of the problem
min(h,u)∈H×X0.

∫
Ω

f udx

subject to Bh(u, v) =
∫

Ω
f (x)v(x)dx for any v ∈ X0

u = 0 in ∂Ωnl .

(16)

We shall build a descent method, and we shall show its convergence to the optima. In
this procedure, we shall prove a maximum principle for the controls that will determine
the direction of descent. This maximum principle is the key part of the construction of the
algorithm, and from it we shall deduce a uniqueness theorem for the states.

3.1. Maximum Principle

Theorem 4. Let (h, u) be a solution to Problem (16), then (h, u) satisfies the next
maximum principle:

Bh(u, u) ≥ Bg(u, u) for every g ∈ H. (17)

Proof. Take g ∈ H and any ρ such that 0 ≤ ρ ≤ 1 and h + ρ(g− h) ∈ H. If u + ∆u is the
state associated to the control h + ρ(g− h), then

Bh+ρ(g−h)(u + ∆u, v) =
∫

f vdx for any v ∈ X0.

For clarity, in most subsequent discussions we will delete the domain of integra-
tion Ω and omit the dependence on x. For instance, we shall write

∫
f vdx instead of∫

Ω f (x)v(x)dx.
By linearity with respect to the control, this is equivalent to write

Bh(u + ∆u, v) + ρBg−h(u + ∆u, v) =
∫

Ω
f vdx.
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Since (h, u) is a solution to the state equation, we have Bh(u, v) =
∫

Ω f vdx, and thus

Bh(u + ∆u, v) + ρBg−h(u + ∆u, v)− Bh(u, v) = 0 for any v ∈ X0. (18)

Since u + ∆u ∈ X0, the above formula gives

Bh(u + ∆u, u + ∆u) + ρBg−h(u + ∆u, u + ∆u)− Bh(u, u + ∆u) = 0. (19)

We compute the cost for the admissible pair (h + ρ(g− h), u + ∆u) ∈ Aδ, and we note

Jδ(h + ρ(g− h), u + ∆u) =
∫

Ω
f (u + ∆u)dx = Jδ(h, u) + Bh(u, ∆u), (20)

From (20) and the minimality of the pair (h, u) in (16), we obtain∫
f ∆udx ≥ 0. (21)

Again, the fact that (h, u) ∈ Aδ implies

1
p

Bh(u, u)−
∫

f udx ≤ 1
p

Bh(u + ∆u, u + ∆u)−
∫

f (u + ∆u)dx

i.e.,
1
p

Bh(u, u) ≤ 1
p

Bh(u + ∆u, u + ∆u)−
∫

f ∆udx

By using (21), we obtain

Bh(u, u) +
∫

f ∆udx ≤ Bh(u + ∆u, u + ∆u)

or equivalently
Bh(u, u + ∆u) ≤ Bh(u + ∆u, u + ∆u).

This inequality and (19) ensure

Bg−h(u + ∆u, u + ∆u) ≤ 0

and therefore
Bg(u + ∆u, u + ∆u) ≤ Bh(u + ∆u, u + ∆u).

We take limits (if it is necessary for a subsequence) and have in mind that u + ∆u→ u
strongly in Lp, if ρ→ 0, and we use Theorem 2 to realize that

lim
ρ→0

Bh(u + ∆u, u + ∆u)

= lim
ρ→0

Bh+ρ(g−h)(u + ∆u, u + ∆u)− lim
ρ→0

Bρ(g−h)(u + ∆u, u + ∆u)

= Bh(u, u)− lim
ρ→0

ρBg−h(u + ∆u, u + ∆u)

In addition, it is clear that there exists a constant C > 0 such that∣∣∣Bg−h(u + ∆u, u + ∆u)
∣∣∣ ≤ ∣∣∣∣B g−h

h+ρ(g−h) h+ρ(g−h)
(u + ∆u, u + ∆u)

∣∣∣∣
≤ 2hmax

hmin
‖ f ‖Lp′ ‖u + ∆u‖Lp < C
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for any ρ. Consequently, limρ→0 ρB(g−h)(u + ∆u, u + ∆u) = 0 and hence

lim
ρ→0

Bg(u + ∆u, u + ∆u) ≤ Bh(u, u).

Theorem 2 and the above inequality ensure

Bg(u, u) ≤ Bh(u, u) for any g ∈ H

which is what we pursued.

3.2. Uniqueness

Theorem 5. If (h, u) is a solution of (16) and (g, w) is an admissible pair that satisfies the maximum
Principle (17), then u = w.

Proof. The maximum principle on (h, u) ensures

BH(u, u) ≤ Bh(u, u) for any H ∈ H

In addition, we know

BG(w, w) ≤ Bg(w, w) for any G ∈ H

By using these inequalities, we derive(
1− 1

p

) ∫
f wdx = min

v

{
1
p

Bg(v, v)−
∫

f vdx
}

≤ 1
p

Bg(u, u)−
∫

f udx ≤ 1
p

Bh(u, u)−
∫

f udx

= min
v

{
1
p

Bh(v, v)−
∫

f vdx
}

≤ 1
p

Bh(w, w)−
∫

f wdx ≤ 1
p

Bg(w, w)−
∫

f wdx

= min
v

{
1
p

Bg(v, v)−
∫

f vdx
}

=

(
1− 1

p

) ∫
f wdx

and hence Bh(u, u) = Bg(u, u) and Bh(w, w) = Bg(w, w). Moreover,∫
f udx =

∫
f wdx,

That means (g, w) is a solution of (16). Since, in particular,

1
p

Bh(w, w)−
∫

f wdx = min
v

{
1
p

Bh(v, v)−
∫

f vdx
}

,

then, by the uniqueness, it implies that w = u.

Corollary 1. If (h, u) and (g, w) are two solutions of (16), then u = w.

Corollary 2. Any admissible pair that satisfies the maximum principle is a solution of (16).
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Proof. If (h, u) satisfies the maximum principle (17) and (g, w) is any other admissible
pair, then (

1− 1
p

)
Bh(u, u) =

1
p

Bh(u, u)−
∫

f udx

≥ 1
p

Bg(u, u)−
∫

f udx

≥ inf
v

{
1
p

Bg(v, v)−
∫

f vdx
}

=
1
p

Bg(w, w)−
∫

f wdx

=

(
1− 1

p

)
Bg(w, w),

which is equivalent to claiming that (h, u) is a solution of (16).

4. The Algorithm Construction

Here, we detail the descent mechanism that ensures convergence towards the optimum.
To do that, we follow the ideas of [23] which for clarity are reproduced here in the nonlocal
context and for the nonlinear case p > 1. The final goal is to search a sequence of admissible
pairs {(hr, ur)}r such that

lim
r→∞

Jδ(hr, ur) = min
(h,u)∈H×X0

∫
Ω

f (x)u(x)dx

From an initial pair (h0, u0) ∈ Aδ, we assume we have built until (hr, ur) ∈ Aδ and
Jδ

(
hj, uj

)
≤ Jδ

(
hj−1, uj−1

)
for all j ∈ {0, 1, ..., r}. Now, we search a pair (hr+1, ur+1) ∈ Aδ

such that Jδ(hr+1, ur+1) ≤ Jδ

(
hj, uj

)
. To do that, we select ρ > 0, g ∈ H, and we define

hr+1 = hr + ρ(g− hr) ∈ H. Let ur+1 = ur + ∆ur be the underlying state, which clearly de-
pends on ρ. The corresponding costs to the pairs (hr, ur) and (hr+1, ur+1) are, respectively,

Jδ(hr, ur) = Bhr (ur, ur) =
∫

f urdx

and
Jδ(hr+1, ur+1) = Bhr+1(ur + ∆ur, ur + ∆ur) =

∫
f (ur + ∆ur)dx.

We also consider the increment of the cost:

Er := Jδ(hr, ur)− Jδ(hr+1, ur+1).

It is immediate to check

Er =
∫

f urdx−
∫

f (ur + ∆ur)dx = −
∫

f ∆urdx (22)

This section is devoted to choosing g and ρ. We divide the study into four subsections:
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4.1. Direction

We look for the optimal g. Since the pair (hr, ur) is optimal, we have

1
p

Bhr (ur, ur)−
∫

f urdx ≤ 1
p

Bhr (ur + ∆ur, ur + ∆ur)−
∫

f (ur + ∆ur)dx

=
1
p

Bhr+1(ur + ∆ur, ur + ∆ur)−
∫

f (ur + ∆ur)dx

− 1
p

Bρ(g−hr)(ur + ∆ur, ur + ∆ur)

However, this estimate can be read as(
1
p
− 1
)[

Bhr (ur, ur)− Bhr+1(ur + ∆ur, ur + ∆ur)
]
≤ − 1

p
Bρ(g−hr)(ur + ∆ur, ur + ∆ur)

from where we have the inequality

Er ≥
ρ

p− 1
Bg−hr (ur + ∆ur, ur + ∆ur). (23)

Note that the same procedure when we take into account that (hr+1, ur+1) is optimal
gives the inequality ρ

p−1 Bg−hr (ur, ur) ≥ Er.
By (23), it is clear that we need Bg−hr (ur + ∆ur, ur + ∆ur) > 0 in order to ensure Er > 0.

Therefore, to attain the inequality Er > 0, for ρ small enough, we impose Bg−hr (ur, ur) > 0.
However, this is to say g has to be selected so that

Bg(ur, ur) > Bhr (ur, ur). (24)

In practice, the above analysis indicates that g should be chosen as the solution of

max
g∈H

Bg(ur, ur),

namely,
g = gr := argmax

G∈H
BG(ur, ur). (25)

4.2. Size of the Step ρ

We now study how to select ρr such that Er > 0. We have already taken gr =
argmaxG∈H BG(ur, ur), and we have proved that

Er ≥
ρ

p− 1

{
Bgr−hr (ur + ∆ur, ur + ∆ur)− Bgr−hr (ur, ur)

}
+

ρ

p− 1
Bgr−hr (ur, ur)

Concerning the first term, the inequality |λp − µp| ≤ p|λ− µ|
(
λp−1 − µp−1) if p ≥ 1

and λ, µ ≥ 0, allows us to write

F :=
∣∣∣Bgr−hr (ur + ∆ur, ur + ∆ur)− Bgr−hr (ur, ur)

∣∣∣
=

∣∣∣∣∫Ωδ

∫
Ωδ

(Gr − Hr)
kδ(|x′ − x|)
|x′ − x|p

(∣∣∣(ur + ∆ur)− (ur + ∆ur)
′
∣∣∣p − ∣∣∣(ur)− (ur)

′
∣∣∣p)dx′dx

∣∣∣∣
≤ (hmax − hmin)

∫
Ωδ

∫
Ωδ

kδ(|x′ − x|)
|x′ − x|p p

∣∣∆ur − ∆u′r
∣∣∣∣∣(ur + ∆ur)− (ur + ∆ur)

′
∣∣∣p−1

dx′dx

+ (hmax − hmin)
∫

Ωδ

∫
Ωδ

kδ(|x′ − x|)
|x′ − x|p p

∣∣∆ur − ∆u′r
∣∣∣∣∣(ur)− (ur)

′
∣∣∣p−1

dx′dx
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If we use the Hölder inequality, we obtain

F ≤ (hmax − hmin)p‖∆ur‖X0

{
‖ur + ∆ur‖p−1

X0
+ ‖ur‖p−1

X0

}
where ‖w‖p

X0
:= B(w, w). Now, by using the inequalities

‖ur + ∆ur‖p−1
X0
≤
(
‖ur‖X0

+ ‖∆ur‖X0

)p−1
≤ 2p−2

(
‖ur‖p−1

X0
+ ‖∆ur‖p−1

X0

)
,

we obtaint

F ≤ (hmax − hmin)p‖∆ur‖X0

{
2p−2

(
‖ur‖p−1

X0
+ ‖∆ur‖p−1

X0

)
+ ‖ur‖p−1

X0

}
= (hmax − hmin)p

(
2p−2‖∆ur‖p

X0
+
(

2p−2 + 1
)
‖∆ur‖X0

‖ur‖p−1
X0

)
.

To complete the estimate, we use the monotonicity property of the p-Laplacian opera-
tor. Indeed, since for any λ ≥ 0 and µ ≥ 0,

C1|λ− µ|p ≤
(
|λ|p−2λ− |µ|p−2µ

)
(λ− µ)

where C1 = arg minz∈R+
1−zp−1

(1+z)p−2(1−z)
= (p− 1)e−(p−2)(log 2) (see [52] Proposition 17.3 and

Theorem 17.1), then

C1Bhr+1(∆ur, ∆ur) ≤ Bhr+1(ur + ∆ur, ∆ur)− Bhr+1(ur, ∆ur).

Thanks to the linearity with respect to the control, the above inequality can be expressed as

C1Bhr+1(∆ur, ∆ur) ≤ Bhr (ur, ∆ur)− Bhr (ur, ∆ur)− ρBgr−hr (ur, ∆ur)

= −ρBgr−hr (ur, ∆ur).

In addition, the Hölder inequality provides∣∣∣Bgr−hr (ur, ∆ur)
∣∣∣ ≤ (hmax − hmin)‖ur‖p−1

X0
‖∆ur‖X0

and consequently, since hmin‖∆ur‖p
X0
≤ Bhr+1(∆ur, ∆ur), we derive

C1hmin‖∆ur‖p
X0
≤ ρ(hmax − hmin)‖ur‖p−1

X0
‖∆ur‖X0

,

and hence the estimate

‖∆ur‖X0
≤
[

ρ(hmax − hmin)

C1hmin

]1/(p−1)
‖ur‖X0

.

We gather all the previous estimates by writing

F ≤ Aρp′‖ur‖p
X0

+ Bρ1/(p−1)‖ur‖p
X0

,

where

A = (hmax − hmin)p2p−2
[

hmax − hmin

C1hmin

]p/(p−1)
,

B = (hmax − hmin)p
(

2p−2 + 1
)[ (hmax − hmin)

C1hmin

]1/(p−1)
.
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We conclude

Er ≥
ρ

p− 1
Bgr−hr (ur, ur)−

ρ

p− 1

(
Aρp′‖ur‖p

X0
+ Bρ1/(p−1)‖ur‖p

X0

)
=

ρ

p− 1
Bgr−hr (ur, ur)−

‖ur‖p
X0

p− 1

(
Aρp′+1 + Bρp′

)
≥ ρ

p− 1
Bgr−hr (ur, ur)−

ρp′‖ur‖p
X0

p− 1
(A + B)

Proposition 1. By denoting α =
Bgr−hr (ur ,ur)

p−1 and β =
‖ur‖p

X0
p−1 (A + B)

Er ≥ αρ− βρp′ .

Notice the derivative of the function ψ(ρ) := αρ− βρp′ with respect to ρ is ψ′(ρ) =
α− βp′ρp′−1 and the only critical point is

ρ0 =

(
α

βp′

)p−1
=

(
Bgr−hr (ur, ur)

p′‖ur‖p
X0
(A + B)

)p−1

.

The function ψ(ρ) = αρ− βρp′ attains the absolute maximum at this point, and this
maximum value is

ψ(ρ0) =

[
(p− 1)α

pβ

]p−1 α

p
. (26)

Our choice of the step of the size is

ρr = min{ρ0, 1}. (27)

The above discussion leads us to choose g = gr and ρ = ρr in order to majorize Er. In
either case, with these selections we have Er ≥ 0.

4.3. An Essential Remark

A crucial term for the development of our descent method is the analysis of the
sequence br := Bgr−hr (ur, ur). We know

lim
r

br = Bg−h(u, u)

where g and h are the weak-∗ limits in L∞ of the sequences (gr)r and (hr)r respectively, at
least for a subsequence of r′s. In addition, u is the strong limit in X0 of (ur)r so that (h, u) is
an admissible pair. Now, we look at the following fact:

Theorem 6. limr br = 0, that is, Bg−h(u, u) = 0.

Proof. It is clear that
0 = lim

r
Er (28)
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and

Er ≥
ρr

p− 1
Bgr−hr (ur, ur)−

ρ
p′
r ‖ur‖p

X0

p− 1
(A + B)

=


1

p−1 Bgr−hr (ur, ur)−
‖ur‖p

X0
p−1 (A + B) if ρr = 1

ρr
p−1 Bgr−hr (ur, ur)−

ρ
p′
r ‖ur‖p

X0
p−1 (A + B) if ρr = ρ0.

Because of the choice (27) ρr = 1 occurs if and only if
(

Bgr−hr (ur ,ur)

p′‖ur‖p
X0

(A+B)

)p−1
> 1 and

Er > ψ(ρ0) if ρr = ρ0 (see (26)), therefore

Er ≥


Bgr−hr (ur, ur)

(
1

p−1 − 1
p

)
if ρr = 1[

(p−1)α
pβ

]p−1
α
p if ρr = ρ0.

=


Bgr−hr (ur, ur)

(
1

p−1 − 1
p

)
if ρr = 1(

Bgr−hr (ur, ur)
)p
[

1
p′‖ur‖p

X0
(A+B)

]p−1
1

(p−1)p if ρr = ρ0.

The above estimate and (28) provide the result.

4.4. Convergence toward the Optima

The steps described in the previous subsections have served to construct a sequence
of admissible pairs (hr, ur)r. We know the sequence (hr)r is uniformly bounded in L∞(Ωδ),
and therefore, for a subsequence of index r, hr ⇀ h weakly ∗ in L∞(Ωδ) for some h ∈ H.
Under the circumstances that convergence guarantees the existence of a function u ∈ X0,
and subsequence of (ur)r, which will be denoted again (ur)r, such that ur → u strongly in
X0 (also in Lp) in the sense that

lim
r→∞

Bhr (ur − u, ur − u) = 0

and (h, u) is an admissible pair, that is

Bh(u, v) =
∫

Ω
f (x)v(x)dx for any v ∈ X0.

It remains to show (h, u) is an optimal pair for the problem (16), or in other words, it is
still to be shown whether (h, u) satisfies the maximum principle (17). For this purpose, we
recall that the choice of gr had been made so that the following inequality would be satisfied

Bgr (ur, ur) ≥ BG(ur, ur) for any G ∈ H.

Then, by adding and subtracting the term Bhr (ur, ur) in the left part of the above
inequality we have

Bhr (ur, ur) + Bgr−hr (ur, ur) ≥ BG(ur, ur) for any G ∈ H,

which amounts to∫
Ω

f (x)ur(x)dx + Bgr−hr (ur, ur) ≥ BG(ur, ur) for any G ∈ H. (29)
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Since (ur)r strongly converges to u in Lp(Ωδ) and limr→∞ Bgr−hr (ur, ur) = 0, as we
have just proved above, the inequality (29), in the limit as r → ∞, gives∫

Ω
f (x)u(x)dx ≥ lim

r→∞
BG(ur, ur) for any G ∈ H. (30)

However, if we pay attention to the lower semicontinuity of the operator BG(·, ·),
(30) establishes

Bh(u, u) =
∫

Ω
f (x)u(x)dx ≥ lim

r→∞
BG(ur, ur) ≥ BG(u, u) for any G ∈ H.

or equivalently, (h, u) satisfies the maximum principle. This assertion and Corollary 2 allow
us to claim that (h, u) is a solution to the control problem, and we have proved the iterative
method converges to a solution. Furthermore, thanks to Corollary 1, the state u is unique,
and therefore, it is straightforward to show the whole sequence of states (ur) is strongly
convergent to u.

We have proved

Theorem 7 (Convergence). The sequence of admissible pairs (hr, ur)r converges to an
optimal pair (h, u).

5. Numerical Simulations

Before proceeding further, these three considerations are of interest.

(1) Here, we sketch the plots of the optimal pairs for different examples. We performed
serial computing on a 3.6 GHz Intel Core i9 with a RAM of 128, and we simplified
the computational task by limiting it to the case p = 2. Despite the fact that our
fundamental purpose has not been the development of a high-efficiency algorithm,
the convergence is accomplished and is very fast. To guarantee the convergence of
the numerical algorithm towards the optimal pair, the criterion we have chosen is the
zero decay of both sequences hj − hj−1 and uj − uj−1 in the Lp norm.

(2) The dimension is N = 2, and the type of kernel we have chosen is not the only
one that is possible, more specifically: for any sequence of non-negative radial func-
tions (kδ)δ such that 1

N
∫

B(0,δ) kδ(|s|)ds = 1, supp kδ ⊂ B(0, δ), Kr(z) := kδ(|z|)
|z| ∈

L1(B(0, δ)), and Ks(z) =
kδ(|z|)
|z|2 (z 6= 0) is singular near the origin, in the sense that

limθ→0+
∫

B(0,δ)−B(0,θ) Ks(z)dz = +∞, all the results we have previously considered
are still valid. The details can be checked in [51].

(3) The specific kernel we have used in all the examples is kδ(|s|) = Cδ exp(−|z|) (where
Cδ is a positive regularizing constant ensuring the constraint (7)). In addition, as
is done in many other papers, we can use the Riesz kernel kδ(r) = Cδ

1
|z|2s (where

s ∈ (0, 1)), and in such a case, the results and convergence of the method do not
essentially change.

5.1. Delfour and Zolésio Example

We face the minimization of the compliance when the source is the function f (x, y) =

56(1− |x| − |y|)6 defined on the diamond D =
{
(x, y) ∈ R2 : |x|+ |y| ≤ 1

}
. After a π

4 rotation,
the approximated solution obtained for the local problem can be seen at [20,48]. The com-
putations are given for hmin = 1 and hmax = 2.

The results provided by the numerical simulations seem to reflect an accurate approx-
imation of the local setting by the nonlocal model we have proposed (see [20,48]). It is
enough to have a look at the Figures 1–3 below to be convinced of that statement:
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Additional numerical information is contained in the adjoint table, where δ is the
horizon, n the number of points used to discretized Ω, N is the number of iterations and V0
the volume.

δ n N V0 Minimum Compliance

0.01 44, 521 100 1.5 1.886

5.2. Example 2: The Allaire Minimization Problem

Instead of the local maximization principle analyzed in [18], we consider the minimiza-
tion problem. The numerical procedure applied to the source f (x, y) = 1 defined on the
[0, 1]× [0, 1], with hmin = 1 and hmax = 2, have given rise to the next optimal configuration,
where again it is an approximation both of the nonlocal and local problem. The results are
plotted in Figures 4–6.
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have given rise to the next optimal configuration, where again, it is an approximation both of
the nonlocal and local problem. The results are plotted in the Figures 4-6.
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6. Conclusions

The methodology, the proposed numerical algorithm, applied to the cases studied above, pro-
vides the confidence that the optimum will be fully achieved in all situations. Moreover, the
scheme, by itself, demonstrates the existence of an optimum. Apart from this, from the ex-
posed methodology, we can infer a way to find minimizing sequences whose associated states
can belong to a broader set, beyond the classical functional framework in which strict regularity
conditions are assumed. We understand that this is an aspect that broadens the possibilities
in the modelling of a phenomenon.
Concerning the numerics and the convergence, we must remark that the paper does not pursue
any significant improving compared to other algorithms. Nevertheless, as we have mentioned, all
the examined examples have run at a very acceptable speed compared to the results obtained
in previous works ([29, 30, 1] or [11] for a nonlocal formulation). It is worth noting that
numerical analysis is necessary if we wish to effectively control the error of all the iterative
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6. Conclusions

The methodology, the proposed numerical algorithm, applied to the cases studied
above provides confidence that the optimum will be fully achieved in all situations. More-
over, the scheme by itself demonstrates the existence of an optimum. Apart from this,
from the exposed methodology, we can infer a way to find minimizing sequences whose
associated states can belong to a broader set beyond the classical functional framework in
which strict regularity conditions are assumed. We understand that this is an aspect that
broadens the possibilities in the modelling of a phenomenon.

Concerning the numerics and the convergence, we must remark that the paper does
not pursue any significant improvement compared to other algorithms. Nevertheless, as
we have mentioned, all the examined examples ran at a very acceptable speed compared
to the results obtained in previous works ([18,20,48] or [40] for a nonlocal formulation).
It is worth noting that numerical analysis is necessary if we wish to effectively control
the error of all the iterative processes. This aspect is particularly critical in a nonlocal
model. Although some elementary procedures have been implemented to ensure accuracy,
the problem is of some magnitude and requires further study. It must be noted that
the replacement of derivatives by double integrals is a clear advantage in some aspects
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(provides richer modelling and allows a good first approximation with a few iterations),
but, in contrast, the numerical complication derived from the double quadrature makes the
problem very demanding.

The conclusion is that in this manuscript we have obtained a numerical method for
compliance minimization, under the p-Laplacian constraint that proves the existence of
an optimum, that converges to such an optimum and that does so with a low computa-
tional cost.

Future steps to complete the study would focus on refining the numerical techniques
and verifying their use in problems with different constraints on the boundary or with
other geometries for the domain Ω. The possibility of extending the proposal to models
given by monotonic maximal operators has been the motivation of a work that is already
in progress and that could give rise to interesting models in continuous media.
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