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Abstract: In the real world there are many applications that find the Bell distribution to be a useful
and relevant model. One of these is the normal distribution. In this paper, we develop a new subclass
of analytic bi-univalent functions by making use of the Bell distribution as a building block. These
functions involve the Gegenbauer polynomials, and we use them to establish our new subclass. In
this study, we solve the Fekete–Szegö functional problem and analyse various different estimates of
the Maclaurin coefficients |D2| and |D3| for functions that belong to the built class.
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1. Definitions and Preliminaries

As soon as Legendre discovered orthogonal polynomials, they were thoroughly re-
searched by Legendre (1784) [1]. Orthogonal polynomials frequently appear in the mathe-
matical study of model issues to locate solutions to ordinary differential equations under
specific model-imposed constraints. There is no question concerning the significance of
orthogonal polynomials for modern mathematics or the variety of uses they have in physics
and engineering. It is common knowledge that these polynomials are crucial in issues with
approximation theory. Both mathematical statistics and the theory of differential equations
contain them. They have also been used in the fields of signal analysis, automatic control,
quantum physics, scattering theory, and axially symmetric potential theory [2].

The Gegenbauer polynomial is a great example of a polynomial that is orthogonal.
Fekete–Szegö (1933) [3] discovered a sharp bound for the functional |D3 − ηD2

2 |, with real
η(0 ≤ η ≤ 1) for a univalent function f . Since then, the challenge of establishing sharp
bounds for this function of any compact family of functions f ∈ A with any complex n as
defined by the Fekete–Szegö inequality has been one of the most well-known problems
associated with the coefficient of univalent analytic functions. |D2| ≤ 1.51 was discovered
by Lewin (1967) [4] while researching the bi-univalent function class Σ.

Assume that A represents the classification of all analytical functions, where f is
defined on the open unit disc F = {ξ ∈ C : |ξ| < 1} where f (0) = 0 and f ′(0)− 1 = 0 are
the necessary conditions. This leads to an expansion in each f ∈ A form according to the
Taylor series:

f (ξ) = ξ + D2ξ2 + D3ξ3 + · · · = ξ +
∞

∑
k=2

Dkξk, (ξ ∈ F). (1)
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Furthermore, the letter S will stand for the group of all functions f ∈ A that are
univalent in F.

Let us make the assumption that the functions f and g are analytical in F. It is
conceivable for one function, given by the notation f ≺ g, to be subordinate to another
function, g. This is possible if there is a Schwarz function v that is analytical in F with
respect to

v(0) = 0 and |v(ξ)| < 1 (ξ ∈ F)

Similar to

f (ξ) = g(v(ξ)). (ξ ∈ F)

One other thing to keep in mind is that if the function g is univalent in F, then the
equivalence stated in the following sentence is:

f (ξ) ≺ g(ξ) if and only if the condition is met f (0) = g(0)

and
f (F) ⊂ g(F).

It is well known that for every function f ∈ S , there is an inverse or opposite, named
f−1. The following describes what f−1 is:

f−1( f (ξ)) = ξ

and
f ( f−1(w)) = w (|w| < r0( f ); r0( f ) ≥ 1

4
)

where

f−1(w) = w− D2w2 + (2D2
2 − D3)w3 − (5D3

2 − 5D2D3 + D4)w4 + · · · . (2)

When both f (ξ) and f−1(ξ) are judged to be bi-univalent in F, we refer to a function
as being bi-univalent in F.

Let us designate the class of bi-univalent functions by the symbol Σ in the unit space
F given by (1). For Σ subclasses that include interesting functions, see [5–19].

Amourah et al. [20] conducted research to examine the following Gegenbauer polyno-
mial generating function:

∂α(γ, ξ) =
1

(1− 2γξ + ξ2)
α , (3)

where γ ∈ [−1, 1] and ξ ∈ F. Because the function ∂α is analytic in F when γ is held
constant, it is possible to expand it using a Taylor series as follows:

∂α(γ, ξ) =
∞

∑
k=0

Cα
k (γ)ξ

k, (4)

where Cα
k (γ) represents a polynomial with degree k belonging to the Gegenbauer family.

∂α, obviously accomplishes nothing when α = 0. The Gegenbauer polynomial’s
generating function is therefore set to be

∂0(γ, ξ) = 1− log
(

1− 2γξ + ξ2
)
=

∞

∑
k=0

C0
k (γ)ξ

k (5)
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for α = 0. In addition, it is important to highlight the fact that it is preferable for the
normalization to be higher than −0.5, as stated in [21]. Recurrence relations, such as the
ones shown below, can also be used to define Gegenbauer polynomials.

Cα
k (γ) =

1
k
[
2γ(k + α− 1)Cα

k−1(γ)− (k + 2α− 2)Cα
k−2(γ)

]
, (6)

with the starting values in mind

Cα
0 (γ) = 1, Cα

1 (γ) = 2αγ and Cα
2 (γ) = 2α(1 + α)γ2 − α. (7)

The Chebyshev polynomials are obtained when α = 1 is used, while the Legendre poly-
nomials are obtained when α = 0.5 is used. These are all special cases of the Gegenbauer
polynomials Cα

k (γ).
The distributions of random variables, which represent the distribution of probabilities

over the values of the random variable, serve a fundamental role in the statistics and proba-
bility and are widely used to describe and model a variety of real-world occurrences [22].
Geometric function theory has used some of the fundamental distributions, including the
Poisson, Pascal, logarithmic, binomial and Borel distributions, see [23,24].

The Bell distribution was originally presented by Castellares et al. [25], in 2018,
marking a significant improvment from the Bell numbers [26].

Using the Bell distribution, one can write X, a discrete random variable, as well as the
probability density function associated with it by using the formula:

P(X = m) =
λmee(−λ2)+1

Lm

m!
; m = 1, 2, 3, . . . (8)

where Lm = 1
e

∞
∑

b=0

bm

m! are the Bell numbers, m ≥ 2 and λ > 0 .

The first few Bell numbers are L2 = 2, L3 = 5, L4 = 15 and L5 = 52.
Now, we are going to provide a new power series, and the coefficients of this series

will be the probabilities of the Bell distribution

L(λ, ξ) = ξ +
∞

∑
k=2

λk−1ee(−λ2)+1
Lk

(k− 1)!
ξk, ξ ∈ F. where λ > 0. (9)

Let us now look at the Hadamard product or convolution, which defines the linear
operator, represented by the symbol Pλ : A → A

Pλ f (ξ) = L(λ, ξ) ∗ f (ξ) = ξ +
∞

∑
k=2

λk−1ee(−λ2)+1
Lk

(k− 1)!
Dkξk, ξ ∈ F. (10)

The relationships between orthogonal polynomials and bi-univalent functions have
been studied by a great deal of academics in recent years (see references [27–31]). Regarding
the Gegenbauer polynomial, as far as we are aware, there is very little work in the literature
that is linked with bi-univalent functions.

With the Gegenbauer polynomial and the Bell distribution, we create a new subclass of
functions in this new class, primarily influenced by the research of Amourah et al. [32,33],
given the upper bounds for the Fekete–Szegö functional and the Taylor–Maclaurin coeffi-
cients, |D2| and |D3|.

2. Boundaries for the Class Coefficients Gα
Σ(γ, λ, ν, β)

This section begins by defining the new subclass Gα
Σ(γ, λ, ν, β) associated with the

Bell distribution.
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Definition 1. If the conditions in the subordinations that follow are met, the function f ∈ Σ
denoted in (1) is a member of the class Gα

Σ(γ, λ, ν, β),

(1− ν)
Pλ f (ξ)

ξ
+ ν(Pλ f (ξ))′ + βξ(Pλ f (ξ))′′ ≺ ∂α(γ, ξ) (11)

and

(1− ν)
Pλ f (w)

w
+ ν(Pλ f (w))′ + βw(Pλ f (w))′′ ≺ ∂α(γ, w), (12)

when α > 0, ν, β ≥ 0, γ ∈ ( 1
2 , 1] and the function g = f−1 are both supplied by Equation (2), and

the function ∂α, that generates the Gegenbauer polynomial, is given by Equation (3).

By specialising the parameter ν, one can obtain multiple new Σ subclasses, as the next
example will demonstrate.

Remark 1. We have Gα
Σ(γ, λ, 1, 0), for ν = 1, and β = 0 where Gα

Σ(γ, λ, 1, 0) is the collection of
functions f ∈ Σ provided by (1) and meet the following criteria

(Pλ f (ξ))′ ≺ ∂α(γ, ξ) (13)

and
(Pλ f (w))′ ≺ ∂α(γ, w), (14)

when α > 0, γ ∈ (0.5, 1], and the function g = f−1 are both supplied by Equation (2), and the
function ∂α, the generates the Gegenbauer polynomial, is given by Equation (3).

Remark 2. We have Gα
Σ(γ, λ, ν, 0), for β = 0, where Gα

Σ(γ, λ, ν, 0) is the collection of functions
f ∈ Σ provided by (1) and meet the following criteria

(1− ν)
Pλ f (ξ)

ξ
+ ν(Pλ f (ξ))′ ≺ ∂α(γ, ξ) (15)

and

(1− ν)
Pλ f (w)

w
+ ν(Pλ f (w))′ ≺ ∂α(γ, w), (16)

when α > 0, γ ∈ (0.5, 1] and the function g = f−1 are both supplied by Equation (2), and the
function ∂α, that generates the Gegenbauer polynomial, is given by Equation (3).

In this paper, we will assume that α > 0, θ ≥ 0 and γ ∈ (0.5, 1].
To begin, we provide some estimates for the coefficients that belong to the class

Gα
Σ(γ, λ, ν, β), as described in Definition 1.

Theorem 1. Assume that the function f ∈ Σ, in Definition(1), is a member of the classGα
Σ(γ, λ, ν, β).

Then

|D2| ≤
4αγ
√

αγ√∣∣∣5λ2(1 + 2ν + 6β)ee(1−λ2)
(2αγ)2 − 8λ2(1 + ν + 2β)2ee(1−λ2)

(2α(1 + α))γ2 − α
∣∣∣ ,

and

|D3| ≤
α2γ2

λ2(1 + ν + 2β)2e2e(1−λ2)
+

4|α|γ
5λ2(1 + 2ν + 6β)ee(1−λ2)

.
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Proof. Assume f ∈ Gα
Σ(γ, λ, ν, β). For certain analytical tasks w and τ, we can write

ξ, w ∈ F such that w(0) = τ(0) = 0 and |w(ξ)| < 1, and |τ(w)| < 1 for all functions from
the Definition 1.

(1− ν)
Pλ f (ξ)

ξ
+ ν(Pλ f (ξ))′ + βξ(Pλ f (ξ))′′ = ∂α(γ, w(ξ)) (17)

and

(1− ν)
Pλ f (w)

w
+ ν(Pλ f (w))′ + βw(Pλ f (w))′′ = ∂α(γ, τ(w)). (18)

This is what we obtain as a result of the equalities shown in (17) and (18).

(1− ν)
Pλ f (ξ)

ξ
+ ν(Pλ f (ξ))′ + βξ(Pλ f (ξ))′′ = 1 + Cα

1 (γ)c1ξ +
[
Cα

1 (γ)c2 + Cα
2 (γ)c

2
1

]
ξ2 + · · · (19)

and

(1− ν)
Pλ f (w)

w
+ ν(Pλ f (w))′ + βw(Pλ f (w))′′ = 1 + Cα

1 (γ)d1w +
[
Cα

1 (γ)d2 + Cα
2 (γ)d

2
1

]
)w2 + · · · . (20)

It is common knowledge that if

|w(ξ)| =
∣∣∣c1ξ + c2ξ2 + c3ξ3 + · · ·

∣∣∣ < 1, (ξ ∈ F)

and
|τ(w)| =

∣∣∣d1w + d2w2 + d3w3 + · · ·
∣∣∣ < 1, (w ∈ F),

then
|cj| ≤ 1 and |dj| ≤ 1 for all j ∈ N. (21)

Therefore, after comparing the relevant coefficients in (19) and (20), we come to the
conclusion that

2λ(1 + ν + 2β)ee(1−λ2)
D2 = Cα

1 (γ)c1, (22)

5
2

λ2(1 + 2ν + 6β)ee(1−λ2)
D3 = Cα

1 (γ)c2 + Cα
2 (γ)c

2
1, (23)

−2λ(1 + ν + 2β)ee(1−λ2)
D2 = Cα

1 (γ)d1, (24)

and
5
2

λ2(1 + 2ν + 6β)ee(1−λ2)
[
2D2

2 − D3

]
= Cα

1 (γ)d2 + Cα
2 (γ)d

2
1. (25)

It follows from (22) and (24) that

c1 = −d1 (26)

and
8λ2(1 + ν + 2β)2e2e(1−λ2)

D2
2 = [Cα

1 (γ)]
2
(

c2
1 + d2

1

)
. (27)

If we add (23) and (25), we obtain

5λ2(1 + 2ν + 6β)ee(1−λ2)
D2

2 = Cα
1 (γ)(c2 + d2) + Cα

2 (γ)
(

c2
1 + d2

1

)
. (28)
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The value of
(
c2

1 + d2
1
)

from (27) has been swapped into the right side of (28),
implying that[

5(1 + 2ν + 6β)− 8(1 + ν + 2β)2ee(1−λ2) Cα
2 (γ)[

Cα
1 (γ)

]2
]

λ2ee(1−λ2)
D2

2

= Cα
1 (γ)(c2 + d2). (29)

Moreover, using computations with (7), (21) and (29), we find that

|D2| ≤
4αγ
√

αγ√∣∣∣5λ2(1 + 2ν + 6β)ee(1−λ2)
(2αγ)2 − 8λ2(1 + ν + 2β)2ee(1−λ2)

(2α(1 + α))γ2 − α
∣∣∣ .

Moreover, if we subtract (25) from (23), we obtain

5λ2(1 + 2ν + 6β)ee(1−λ2)
(

D3 − D2
2

)
= Cα

1 (γ)(c2 − d2) + Cα
2 (γ)

(
c2

1 − d2
1

)
. (30)

Then, in view of (27), Equation (30) becomes

D3 =

[
Cα

1 (γ)
]2

8λ2(1 + ν + 2β)2e2e(1−λ2)

(
c2

1 + d2
1

)
+

Cα
1 (γ)

5λ2(1 + 2ν ++6β)ee(1−λ2)
(c2 − d2).

Thus, applying (7), we conclude that

|D3| ≤
α2γ2

λ2(1 + ν + 2β)2e2e(1−λ2)
+

4|α|γ
5λ2(1 + 2ν + 6β)ee(1−λ2)

.

The proof of Theorem 1 is now complete.

We can use the values of D2
2 and D3. to derive what comes next in the Fekete–Szegö

inequality for the class Gα
Σ(γ, λ, ν, β) functions.

Theorem 2. Assume that the function f ∈ Σ, in Definition (1), is a member of the class
Gα

Σ(γ, λ, ν, β). Then

∣∣∣D3 − ηD2
2

∣∣∣ ≤


4|αγ|
5λ2(1+2ν+6β)ee(1−λ2)

,

2(2αγ)3(1−η)

λ2ee(1−λ2)
[

5(1+2ν+6β)(2αγ)2−8(1+ν+2β)2ee(1−λ2)
(2α(1+α)γ2−α)

] ,

|η − 1| ≤ $

|η − 1| ≥ $,

where

$ =

∣∣∣∣∣∣1− 8(1 + ν + 2β)2ee(1−λ2)(
2α(1 + α)γ2 − α

)
5(1 + 2ν + 6β)(2αγ)2

∣∣∣∣∣∣.
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Proof. From (29) and (30)

D3 − ηD2
2

= (1− η)

[
Cα

1 (γ)
]3
(c2 + d2)

λ2ee(1−λ2)
[
5(1 + 2ν + 6β)

[
Cα

1 (x)
]2 − 8(1 + ν + 2β)2ee(1−λ2)Cα

2 (γ)
]

+
Cα

1 (γ)

5λ2(1 + 2ν + 6β)ee(1−λ2)
(c2 − d2)

= Cα
1 (γ)

[
h(η) +

1

5λ2(1 + 2ν + 6β)ee(1−λ2)

]
c2

+ Cα
1 (γ)

[
h(η)− 1

5λ2(1 + 2ν + 6β)ee(1−λ2)

]
d2,

where

h(η) =
[
Cα

1 (γ)
]2
(1− η)

λ2ee(1−λ2)
[
5(1 + 2ν + 6β)

[
Cα

1 (γ)
]2 − 8(1 + ν + 2β)2ee(1−λ2)Cα

2 (γ)
] ,

Given (7), we must therefore conclude that

∣∣∣D3 − ηD2
2

∣∣∣ ≤


2|Cα
1 (γ)|

5λ2(1+2ν+6β)ee(1−λ2)

2
∣∣Cα

1 (γ)
∣∣|h(η)|

0 ≤ |h(η)| ≤ 1

5λ2(1+2ν+6β)ee(1−λ2)
,

|h(η)| ≥ 1

5λ2(1+2ν+6β)ee(1−λ2)
.

The proof of Theorem 2 is now complete.

3. Corollaries and Consequences

The following is a list of corollaries that can be deduced from Theorems 1 and 2, which
correlate with Remarks 1 and 2.

Corollary 1. Assume that the function f ∈ Σ, in Definition (1), is a member of the class
Gα

Σ(γ, λ, 1, 0). Then

|D2| ≤
4αγ
√

αγ√∣∣∣15λ2ee(1−λ2)
(2αγ)2 − 32λ2ee(1−λ2)

(2α(1 + α))γ2 − α
∣∣∣ ,

|D3| ≤
α2γ2

4λ2e2e(1−λ2)
+

4|α|γ
15λ2ee(1−λ2)

.

and

∣∣D3 − ηD2
2

∣∣ ≤


4|αγ|
15λ2ee(1−λ2)

,

2(2αγ)3(1−η)

λ2ee(1−λ2)
[

15(2αγ)2−32ee(1−λ2)
(2α(1+α)γ2−α)

] ,

|η − 1| ≤ M

|η − 1| ≥ M.

where

M =

∣∣∣∣∣∣1− 32ee(1−λ2)(
2α(1 + α)γ2 − α

)
15(2αγ)2

∣∣∣∣∣∣
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Corollary 2. Assume that the function f ∈ Σ, in Definition (1), is a member of the class
Gα

Σ(γ, λ, v, 0). Then

|D2| ≤
4αγ
√

αγ√∣∣∣5λ2(1 + 2ν)ee(1−λ2)
(2αx)2 − 8λ2(1 + ν)2ee(1−λ2)

(2α(1 + α))x2 − α
∣∣∣ ,

|D3| ≤
α2γ2

4λ2(1 + ν)2e2e(1−λ2)
+

4|α|γ
5λ2(1 + 2ν)ee(1−λ2)

.

and

∣∣D3 − ηD2
2

∣∣ ≤


4|αγ|
5λ2(1+2ν)ee(1−λ2)

,

2(2αγ)3(1−η)

λ2ee(1−λ2)
[

5(1+2ν)(2αγ)2−8(1+ν)2ee(1−λ2)
(2α(1+α)γ2−α)

] ,

|η − 1| ≤ q

|η − 1| ≥ q.

where

q =

∣∣∣∣∣∣1− 8(1 + ν)2ee(1−λ2)(
2α(1 + α)γ2 − α

)
5(1 + 2ν)(2αγ)2

∣∣∣∣∣∣
Remark 3. More research was conducted on the conclusions from this study could result in a
wide range of other novel findings for the classes G1

Σ(x, λ, ν, β) of the Chebyshev polynomials and
G0.5

Σ (x, λ, ν, β) of the Legendre polynomials.

4. Conclusions

In this study, we created a new class Gα
Σ(γ, λ, ν, β) of normalized analytic and

bi-univalent functions connected to the Bell distribution. We found estimates for the
Taylor–Maclaurin coefficients, |D2| and |D3|, and the Fekete–Szegö functional problem for
functions that belong to this class. Furthermore, by correctly specializing the parameter,
one can find the results for the subclass Gα

Σ(γ, λ, 1, 0), defined in Remarks 1 and 2 and
linked to the Bell distribution. Using the Bell distribution series in (10), researchers could
estimate the Taylor–Maclaurin coefficients, |D2| and |D3|, and the Fekete–Szegö functional
problem for functions in new bi-univalent function subclasses defined by the associated
Gegenbauer polynomials.
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