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Abstract: A tool remaining useful life prediction method based on a non-homogeneous Poisson
process and Weibull proportional hazard model (WPHM) is proposed, taking into account the
grinding repair of machine tools during operation. The intrinsic failure rate model is built according
to the tool failure data. The WPHM is established by collecting vibration information during operation
and introducing covariates to describe the failure rate of the tool operation. In combination with the
tool grinding repair, the NHPP-WPHM under different repair times is established to describe the
tool comprehensive failure rate. The failure threshold of the tool life is determined by the maximum
availability, and the remaining tool life is predicted. Take the cylindrical turning tool of the CNC
lathe as an example, the root mean square error, mean absolute error, mean absolute percentage error,
and determination coefficient (R2) are used as indicators. The proposed method is compared with the
actual remaining useful life and the remaining useful life prediction model based on the WPHM to
verify the effectiveness of the model.
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1. Introduction

The CNC machine tool is a complex system that integrates machine, electricity, and
fluid. The system’s operating reliability is not only related to the reliability of components
themselves but is also affected and restricted by several factors, such as working envi-
ronment, working load, and maintenance [1]. In actual production, the health level of
the machine tool in direct contact with the workpiece affects not only the quality of the
workpiece but also its performance and efficiency. The operating state of the tool must
be monitored, and its remaining useful life must be predicted to ensure safe and orderly
production and process.

At present, the tool remaining useful life prediction is mainly based on failure infor-
mation, performance degradation information, or wear amount. Wiener process, Gamma
process, or competitive failure model are applied and combined with the failure thresh-
old [2–10]. However, collecting a large amount of life data for mechanical products, such
as machine tools, in a short period of time is difficult compared with electronic products.
Accordingly, tool reliability research under small sample conditions has gradually become a
popular research topic. Yuan et al. [11] combined historical degradation data with empirical
information and proposed a Bayesian-based reliability analysis method for accelerated
performance degradation to realize tool life prediction without or with less failure data.
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Duan et al. [12] combined the irrelevant and related degradation data and proposed a relia-
bility evaluation method based on several irrelevant and related degradation data to realize
the joint reliability modeling of the equipment. Guan [13] established the autoregressive
model of the intrinsic mode function based on the stabilized acoustic emission signal,
extracted the model coefficients, constructed the characteristic vector, and used the least
squares support vector machine regression algorithm to forecast the tool wear, which can
effectively predict the tool wear after 10 s under the current cutting state. This mechanism
has a higher forecasting accuracy compared with the neural network forecasting algorithm.

Jamie [14] established the remaining useful life prediction model of the tool based
on the linear regression model, estimated the parameters using the classical least square
method, and updated the unknown parameters with prior information, thereby improving
the precision of the remaining useful life prediction model of the tool. The other mechanism
is based on a similar model. The model can obtain the remaining useful life of the tool by
the weighted average of the data by calculating the health factors of the current tool and
comparing the similarity with the historical health factor data. Serin et al. [15] collected a
large amount of information about the vibration, power, and stability of the machine tool
by sensors, extracted the signal characteristics from the original data, established the SVR
model considering different signal lengths to reflect the relationship between monitoring
signal and tool life, obtained the best signal length of the accurate prediction result, and
realized the prediction of the tool remaining useful life, with a prediction accuracy of
94.35%. Liu [16] extracted 14 characteristic values from the signals in the cutting process
of the tool, obtained six characteristic quantities with the highest correlation using the
Pearson correlation algorithm, and predicted the remaining useful life of the tool by using
the support vector regression algorithm. Zhang [17] used a variety of machine learning
mechanisms to evaluate the remaining life of the tool. Nicolas et al. [18] developed a data
processing system that uses data collected from the processing lines of the common data
sets. Tool wear prediction will enable the system to infer the type of problem causing
this wear, the possible root cause, and the maintenance required based on an ontological
reasoning tool. Wang [19] proposed that the prediction of the tool remaining useful life is
based on time series prediction and is related to the current state of the tool, the predicted
time point, and the current time point. Liao et al. [20] developed a tool wear monitoring
system that uses an indirect measurement method that selects signal characteristics that are
strongly correlated with tool wear to determine the tool wear status.

The reliability model and life prediction of the traditional cutting tools only consider
the reliability level of the cutting tools themselves, but ignore the influence of cutting
tools on the process of machining environment load and grinding repair. Accordingly, a
reliability model, which integrates the overall and individual differences of the tool, is
established. Based on the reliability level of the tool after different times of tool replacement,
the real-time state monitoring of the tool is realized by means of sensor acquisition signal,
and the remaining useful life of the tool is further predicted.

The main contributions of this work are as follows:

(1) A parameter estimation method suitable for different sample types is proposed. The
overall reliability model of the tool is established according to the test data.

(2) The grey prediction model is improved using the artificial fish swarm algorithm, and
the covariate prediction value is obtained. The Weibull proportional hazard model
(WPHM) is constructed to describe the change rule of the tool failure rate.

(3) Covariate parameters are added to the reliability model, and the non-homogeneous
Poisson process (NHPP)-WPHM is established under different repair times. The
remaining useful life prediction of the tool is realized, with the maximum availability
as the goal.

The rest of this paper is organized as follows: Section 2 extensively elaborates on the
prediction method of the tool remaining useful life based on NHPP-WPHM; Section 3
demonstrates an application example; Section 4 verifies the effectiveness and superiority of
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the method by comparing the results with those of existing forecasting models; Section 5
presents conclusions.

2. Prediction of the Tool Remaining Useful Life Based on NHPP-WPHM

The tool degradation and vibration data during machining are collected on the basis
of the inherent failure rate model of the cutting tool. A sequence of predictive character-
istic values is established through noise reduction and feature extraction of the vibration
information, and a WPHM is introduced to model the tool operation failure rate. On this
basis, the NHPP-WPHM is obtained by non-homogeneous Poisson process with different
numbers of grinding repairs. Taking the maximum availability as a monitoring target, the
monitoring threshold is analyzed, with the vibration signal collected as the input variable.
The real-time state of the tool is monitored, and the remaining useful life of the tool is
predicted after different repair times. Taking the NC lathe cylindrical turning tool as an
example, the validity of the model based on NHPP-WPHM is validated by comparing it
with existing models. The results show that the NHPP-WPHM improves 40% over the
mean square root index of the WPHM, 13% of the precision of the determination coefficient
index, and reduces average absolute error by 51%. The research results of this work are
of great significance to the improvement of product quality and processing efficiency in
production and processing.

The process of the tool remaining useful life prediction based on the NHPP-WPHM
model is shown in Figure 1.

Figure 1. Flow chart of the tool remaining useful life prediction based on NHPP-WPHM.

2.1. Tool Inherent Failure Rate Modeling Based on Degraded Failure Information

The key to modeling the tool inherent failure rate is the selection of a distribution
model. The commonly used reliability models include exponential distribution, normal
distribution, logarithmic normal distribution, and Weibull distribution. Given that the
Weibull distribution is compatible with other distribution forms, it can be converted to other
distributions by changing its distribution parameter size. Accordingly, this work chooses a
two-parameter Weibull distribution as an intrinsic failure rate model of the tool [21]. The
parameters of the two-parameter Weibull distribution are estimated based on the sum of
squares of the accumulated errors, and K–S is selected to test the validity of the model.
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2.1.1. Estimation of the Tool Reliability Model Parameters

We assume that N test samples and n samples fail at time ti. The reliability of the
product at time ti can be expressed as follows:

R(ti) = R(ti−1)S(ti). (1)

The initial reliability of the product is 1. At this time, R(t0) = 1, which means that
the performance is perfect; S(ti) is the residual probability of the product in the (ti−1, ti)
period, and its calculation formula is as follows:

S(ti) =
ns(ti−1)−4n(ti)

ns(ti−1)
, (2)

where4n(ti) is the number of failed products within the time period (ti−1, ti), ns(ti−1) is
the number of products that still participate in the test at time ti−1; the calculation formula
is as follows:

ns(ti) = N −∑i
j=1

[
4n(tj) +4k(tj)

]
, (3)

where ∆k
(
tj
)

is the number of products that lost information within the time interval(
tj−1, tj

)
.

The empirical distribution function of ti time is obtained using the residual ratio
method as follows:

Fn(ti) = 1− R(ti) = 1−∏i
j=1 S

(
tj
)
. (4)

2.1.2. Fitting Test of the Tool Reliability Model

The χ2 and K–S tests are the two test methods that are frequently used to analyze the
fitting degree of the observed value distribution and the theoretical value. Considering the
differences of the samples, this work selects the K–S test to evaluate the fitting effect of the
parameter estimation.

The specific steps of the K–S inspection are as follows:

(1) According to the order i of collected life data from small to large, calculate the empiri-
cal distribution function Fn(ti) of life data ti.

(2) Calculate the value of the cumulative distribution function F(t, α, β) under each life
data under the two-parameter Weibull distribution model.

(3) Calculate the absolute value of the difference between the cumulative distribution
function and the empirical distribution function corresponding to each i, and take the
maximum absolute value as Dn, Dn = sup

−∞<t<∞
|F(t, α, β)− Fn(t)|.

(4) Determine the corresponding critical value Dn,a according to sample size n and
confidence level α.

(5) Compare Dn with the critical value Dn,a. If Dn < Dn,a, then the sample failure data
are considered to meet the Weibull distribution. Otherwise, the sample data do not
meet the Weibull distribution characteristics.

In this work, the root mean square error (RMSE) is used to determine the accuracy of
the different estimation methods. The calculation formula of the root mean square error is
as follows:

RMSE =

√
1
n ∑n

i=1

(
Fn(ti)−

∧
F(ti)

)2
, (5)

where n is the amount of invalid sample data, Fn(ti) is the empirical distribution value of

the cumulative distribution function of each group of data, and
∧
F(ti) is the estimated value

of the cumulative distribution function of each group of life data ti.
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2.2. Construction of NHPP-WPHM Considering Covariate

The reliability of cutting tools is not only related to the material quality of the tool
itself but also affected by certain factors, such as the material to be processed, the cutting
parameters, and the number of parts to be processed (processing time). NHPP-WPHM
can link inherent reliability with operational load information to create a more accurate
reflection of the equipment operational reliability level.

The state signals during tool machining can reflect the health of the tool and provide
important information for evaluating its reliability. According to the field operating con-
ditions and relevant literature, tool vibration is the main form of tool degradation during
machining. Therefore, tool vibration signal is taken as the monitoring object in this work,
and its running state is reflected by signal noise reduction and feature extraction.

2.2.1. Vibration Signal Acquisition and Covariate Parameter Extraction

(1) Signal acquisition and signal noise reduction

An acceleration sensor is used to collect the vibration information of the cutting tool
in machining, and the measuring point of the cutting tool is determined by comparing
the vibration amplitude of the vibration signal of the cutting tool collected by sensors at
different positions.

The original signal is doped with the influence of external noise, so the noise to must
be cleaned and reduced when analyzing the tool wear with the signal. Wavelet analysis
can only decompose signals in the low frequency band from signals, but it is insufficient
for signal processing in the high frequency band. Wavelet packet decomposition makes up
for the shortcomings of the wavelet analysis and makes the signal processing result highly
accurate [22,23]. Therefore, this work uses the wavelet packet analysis method to analyze
and process the test acquisition signal (Figure 2).

Figure 2. (a) 1A313 type acceleration sensor; (b) DH5922 signal acquisition instrument; (c) placement
of sensors.

(2) Covariate parameter extraction

The time variable depicts the trend of the signal, and the information obtained by this
signal processing method is called time domain information. The time-domain character-
istic parameters extracted from the time-domain signals can clearly reflect the real-time
changes of the signals. When the equipment performance gradually deteriorates, its time-
domain characteristic parameters typically change with the degradation of equipment
performance. Therefore, researchers select the time-domain characteristic parameters of
signals to evaluate the performance and life of equipment.

RMS can be selected as the covariant factor because it can effectively reflect the
intensity of the vibration signal.

2.2.2. Improved Grey Model Based on the Artificial Fish School Algorithm

The forecast accuracy of the classical grey forecasting model depends on the selection
of initial value and the construction of background value [24]. The background value of 0.5
is set in the traditional grey forecasting model, which is suitable when the time interval
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is small, but it is no longer applicable when the first-order cumulative sequence greatly
fluctuates. In this work, the minimum relative error of the predicted and original series
is taken as the optimization objective, and the artificial fish school algorithm is used to
analyze the optimal background value.

The nearest mean of the x(1)(k) sequence considering the dynamic background value
is expressed as follows:

z(1)(k) = Px(1)(k) + (1− P)x(1)(k− 1), k = 2, 3, . . . , n. (6)

Given that the original and the prediction series are arrays, rather than a single number,
the maximum value Y of the relative error array is used as the comparison object to find
the minimum relative error value.

Y = min

max

∣∣∣∣∣∣ x
(0) − ∧x

(0)

x(0)

∣∣∣∣∣∣
, (7)

where x(0) and
∧
x
(0)

are the original and prediction sequences, respectively.
The artificial fish school algorithm is a population intelligent optimization algorithm.

In the water area, most fish are concentrated in the area with the richest food. The afore-
mentioned algorithm uses this feature to explore the optimal solution of the problem by
simulating the process of a fish school searching for food. The algorithm simulates four
basic behaviors of a fish school in searching for food and has the advantages of parallelism,
simplicity, and fast optimization speed. The steps of the artificial fish school algorithm to
solve the optimal background value are as follows [25]:

(1) Setting of the relevant parameters of the artificial fish school algorithm (Table 1).

Table 1. Parameters of the artificial fish school algorithm.

Item Symbol Value

Number of fish schools NF 50
Maximum moving step Step 0.01

Maximum number of attempts MA 100
Maximum iterations MI 50

Crowding degree of fish school δ 0.618
Perceived distance range Visual 1

(2) Initialize fish shoal.

The background value range of the optimized grey prediction model is [0, 1]. Accord-
ingly, the initial value of each fish in the fish school should randomly generate a value
within [0, 1], thus obtaining a 1D random array.

(3) Clustering behavior (Figure 3).

Figure 3. Clustering behavior.
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(4) AF-Follow (Figure 4).

Figure 4. AF-Follow.

(5) The specific process of fish feeding behavior is shown in Figure 5.

Figure 5. Feeding behavior.

(6) AF-Follow.

Random behavior: under the random behavior, the next position Xi|next of the individ-
ual fish Xi in the school can be expressed as follows:

Xi|next = Xi + c ·Visual, (8)

where c is a random number within the range of [0, 1].

(7) Let Ybest = min{Yi}. At this time, the optimization process of fish schools has been
completed, and the current iteration number is gen = gen + 1.

(8) If gen < MAXGEN, then return to step 3; otherwise, the algorithm ends, and the best
background value is outputted.

2.2.3. Establish the WPHM

The WPHM can combine the operation status information of the tool with the inher-
ent failure rate, comprehensively consider the operating time of the tool and the status
information at the current time, and establish a remaining useful life prediction model
by combining the historical data and degradation information of the tool to guide the
maintenance and avoid the occurrence of failures.

The WPHM is as follows.

h(t, Z) = h0(t)exp(γZ(t)), (9)

where t is the tool working time, h0(t) is the tool inherent failure rate, h(t, Z) is the tool
operation failure rate, Z(t) = (Z1, Z2, . . . , Zn)

T is the column vector formed by the covariate
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of the tool at time t, and r = [r1, r2, · · · , rn] is the row vector formed by the regression
coefficient corresponding to the covariate.

This value reflects the degree of influence of each covariate factor on the tool reserve
efficiency. When the regression coefficient of the covariate is greater than zero, the covariate
is a risk factor and has a negative influence on the reliability of the equipment. If the
covariate is less than zero, then the covariate is a protective factor and has a positive
influence on the reliability of the equipment.

In this work, the inherent failure rate h0(t) is taken as the Weibull distribution,
h0(t) =

(
β
α

)( t
α

)β−1, and the WPHM is as follows:

h(t, Z) =
(

β

α

)(
t
α

)β−1
exp(γZ(t)). (10)

According to the reliability function relationship, the reliability function and cumula-
tive fault distribution can be obtained as follows:

R(t, Z) = exp

(
−
(

t
α

)β
)

exp(γZ(t)), (11)

F(t, Z)= 1− exp

(
−
(

t
α

)β
)

exp(γZ(t)). (12)

2.3. Prediction of the Tool Remaining Useful Life Considering Covariates and Repair

In certain cases, the tool performance cannot be restored after repair based on the tool
WPHM considering covariates and the characteristics of tool repair. The tool NHPP-WPHM
considering covariates under different repair times is established in accordance with the
non-homogeneous Poisson process [26,27].

Under the non-homogeneous Poisson process, the probability of n failures within the
time interval t can be expressed as follows:

P{N(t + m)− N(m) = n} = (λ(t) · t)
n!

e−λ(t)·t n = 0, 1, 2, . . . . (13)

The cumulative failure intensity function Λ(t) =
∫ t

0 λ(u)du represents the average
number of failures in time 0, t; N(t) represents the total number of failures during the
period from the beginning of the monitoring time to the operating time t.

The non-homogeneous Poisson process is a generalized updating process. The cumu-
lative fault distribution function and reliability function of the tools with covariates are as
follows:

F(ti, Z) =


1− exp

(
−
( tj

α

)β
)

exp
(
γZ
(
tj
) )

, i = 1

1− exp

{[(
1
α ∑i−1

j=1 tj

)β
−
(

tj+∑i−1
j=1 tj

α

)β
]

exp
(
γZ
(
tj
) )}

, i = 2, 3, . . .
, (14)

where i represents the ith fault, j represents the jth moment, and Z
(
tj
)

represents the
covariate.

The remaining useful life RUL(t) of the tool indicates the time difference between the
time when the tool has not failed at the current running time t and the time when the tool
has failed. The geometric meaning of the remaining useful life of the tool at time t is the
area of the reliability curve within the operating range [t, T].
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According to the geometric meaning of the remaining useful life, the function expres-
sion of the tool comprehensive remaining useful life considering covariates can be deduced
as follows:

RUL(t) =
∫ T

t R(τ)dτ

=
∫ T

0 exp
(
−
∫ x

0 h(u, Z)du
)
dx

=
∫ T

0 exp
(
−
∫ t+x

t

(
β
α

)( u
α

)β−1exp(γZ(t))du
)

dx
(15)

3. Application Examples

Taking a CNC lathe in excellent condition as the research object, the cutting parameters
are determined by the surface quality of the workpiece, the chip shape, and the specified
cutting speed range of the tool to make the model more consistent with the actual machining
conditions of the tool.

According to reference [28], the tool failure threshold is when the wear amount (VB)
of the back face of the test tool reaches 0.3 mm. The same type of workpiece must be
continuously processed under the same processing conditions. The processing parameters
are shown in Table 2. Under this processing parameter, the surface quality of the workpiece
is good, and the chip is C-shaped, indicating that the processing parameter is appropriate.

Table 2. Processing parameters.

Parameter

CNC lathe model CK6140
Tool information YBC251

Cutting parameters Cutting depth: 1 mm; feed rate: 200 mm/min; cutting speed: 235 m/min
Material of the workpiece 45# steel

3.1. Modeling of the Inherent Failure Rate of the NC Lathe Tools

The wear of the flank of the 10 NC lathe tools is measured during the continuous
processing to determine whether they are invalid. The wear degradation of the flank of the
tool is shown in Figure 6. The continuous machining test is carried out, and the first failure
times of the 10 tools are obtained according to the tool failure criteria, as shown in Table 3.
In this work, we used 70% of the data for training the model and the remaining 30% for
verification purposes.

Figure 6. (a) Electron microscope; (b) wear of the tool flank.
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Table 3. First tool failure time.

Sample No. 1 2 3 4 5 6 7 8 9 10

Processing time (s) 2100 3499.8 6360 6720 7560 8505 6011 4479 6625 5986

The first failure time of the 10 sample tools is sorted, and their empirical distribution
values are calculated. Table 4 illustrates the first failure time and its empirical distribution
value of the test tool.

Table 4. First tool failure time and experience distribution.

Sample No 1 2 3 4 5 6 7 8 9 10

Processing time (s) 2100 3499.8 4479 5986 6011 6360 6625 6720 7560 8505
Value of empirical

distribution 0.0673 0.1635 0.2596 0.3558 0.4519 0.5481 0.6442 0.7404 0.8365 0.9327

Three different parameter estimation methods are used to calculate the model parame-
ters, and the estimated values of the parameters of the aforementioned three parameter
estimation methods are shown in Table 5 [29].

Table 5. Parameter estimates of the Weibull model.

Estimation Method Shape Parameter Scale Parameter

Classical least square method 1.8295 6799.4
Weighted least squares method 1.9122 6910.1
Based on the minimum sum of

squares of cumulative error 2.3766 6977.9

The curve fitting tool box of MATLAB software is used for the parameter fitting and
fitting test. The models obtained using the three parameter estimation methods are tested.
The root mean square error and Dn are shown in Table 6.

Table 6. Root mean square error and K–S test value.

Classical Least
Square Method Weighted Least Squares Method Based on the Minimum Sum of Squares of

Cumulative Error

RMSE 0.0866 0.0991 0.0875
Dn 0.17114 0.1455 0.1401

Table 6 illustrates how the critical value Dn = 0.46799 is obtained when the significance
level α = 10%. The experimental data are consistent with the Weibull distribution, and the
parameter estimation accuracy based on the least square sum of cumulative error is the
highest.

Accordingly, the cumulative distribution function, reliability function, and failure
efficiency function are as follows:

F(t) = 1− e−(
t

6977.9 )
2.3766

, (16)

R(t) = e−(
t

6977.9 )
2.3766

, (17)

λ(t) =
(

2.3766
6977.9

)(
t

6977.9

)1.3766
. (18)
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3.2. Modeling of the NC Lathe Tool Comprehensive Failure Rate

According to the parameter settings in Table 3, the iterative process of the artificial
fish school algorithm is as follows.

The graph is dynamic in the process of program operation. With the increase in the
number of iterations, artificial fish constantly move to the optimal value and local extreme
value. In the late algorithm, most artificial fish gather near the optimal value, and a few
artificial fish gather near the individual extreme value. With the increase in the number
of iterations, the optimization result can be approximated to the optimal extreme point
(Figure 7).

Figure 7. (a) Early iteration stage of the artificial fish school algorithm; (b) late iteration stage of the
artificial fish school algorithm; (c) final result of the artificial fish school algorithm.

The root mean square value of the vibration signal can be utilized as a characteristic
quantity to reduce the amount of noise in the collected vibration signal. Meanwhile, the
traditional grey prediction model and the improved grey prediction model of the artificial
fish school algorithm are utilized to make predictions. The optimized array is shown in
Table 7.

Table 7. Forecast sequence.

Prediction Model Forecast Sequence

Traditional grey prediction model 0.2432 0.3491 0.3793 0.3213 0.2721 0.2957 0.2699
0.3122 0.2998 0.3162

Improved grey prediction based on
The artificial fish school algorithm

0.2432 0.3497 0.3802 0.3220 0.2726 0.2963 0.2708
0.3141 0.3011 0.3166

To make the grey prediction model optimized by the artificial fish school algorithm
available for practical analysis, the robustness and accuracy of the algorithm must be
evaluated to determine whether the optimization algorithm is appropriate. Q-test, C-test,
and P-test are used to test the accuracy of the model. If the model passes the test, then the
model can be further used for prediction.

The robustness and accuracy of the algorithm must be analyzed to determine whether
the optimization algorithm is reasonable. Q-test, C-test, and P-test are used to test the
accuracy of the model. If the model passes the test, then the model can be further used for
prediction.

The test values of the traditional grey prediction model and the improved grey predic-
tion model based on fish school are shown in Table 8.
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Table 8. Model inspection.

Q Mean Square
Deviation Ratio C P

Traditional grey prediction model 0.0222 0.1829 1
Improved grey prediction based on
the artificial fish school algorithm 0.0216 0.1829 1

The smaller the relative error value Q is, the higher the precision of the model will be.
Table 8 illustrates how the prediction effect of the improved grey prediction model based
on the artificial fish school algorithm is better. Accordingly, the covariate data obtained
from the improved grey prediction of the artificial fish school algorithm in Table 8 is taken
as the covariate value of the first tool failure time. The NHPP-WPHM parameters to be
estimated are obtained by combining Formula (10) with the predicted covariate data and
the corresponding failure time, and the NHPP-WPHM considering covariates is established
as follows:

h(t, Z) =
(

3
6977.9

)(
t

6977.9

)2
exp(0.9992Z(t)). (19)

3.3. NC Lathe Tool Remaining Useful Life Prediction

According to Formula (14), the NHPP-WPHM after different repair times is as follows.

F(ti, Z) =



1− exp
(
−
(

ti
6977.9

)3
)

exp
N
∑

j=1

(
0.9992Z

(
tj
))

, i = 1

1− exp



(

1
6977.9

i−1
∑

j=1
tj

)3

−

 ti+
i−1
∑

j=1
tj

6977.9


3exp

(
N
∑

j=1

(
0.9992Z

(
tj
))), i = 2, 3, . . .

(20)

Availability A(t) is defined as the ratio of available time to available time plus unavail-
able time. The availability of the NC lathe tools is an important parameter to measure their
function during their operation. In this work, availability is used to measure the status of
the NC lathe tools.

A(t) =

∫ t
0 Ri(t, Z)dt∫ t

0 Ri(t, Z)dt + Ri(t, Z)Tp + [1− Ri(t, Z)]Tc
, (21)

where Tp and Tc represent the time required for the average preventive and corrective
maintenance of the tool, respectively.

A(t) = 1 +
Ta

Td
= 1 +

1
ψ

(22)

According to the processing conditions, the average tool change time Tp of the CNC
lathe tools is 5 min, and the tool grinding time Tc is 30 min. The variation relationship
between variable ψ and time is shown in Figure 8.

When the time variable t = 6145 s, the tool availability of the CNC lathe is the highest.
Considering the actual processing requirements, the time cut-off point is t = 6145 s when
the availability is highest. The RUL of the tool is predicted before the first repair shown in
Figure 9a.
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Figure 8. Variation relationship between variable ψ and time.

Figure 9. (a) RUL prediction before the first repair; (b) RUL prediction before the second repair.

Figure 9 demonstrates that the error between the remaining useful life predicted by
the NHPP-WPHM and the actual remaining useful life is relatively small.

The remaining useful life of the tool before the second repair is analyzed and predicted.
The results are shown in Figure 9b.

According to the test results, WPHM can better predict its RUL in the initial stage of
tool operation. When a tool is used for a period of time, its performance degradation will
exacerbate its vibration during the cutting process. Vibration can accelerate tool failure, but
this factor is not considered in WPHM. Accordingly, a certain deviation can be observed
between the life prediction based on WPHM and the actual RUL. Therefore, the changes in
the vibration signals and performance during the cutting process in the prediction model
must be considered to attain a more realistic prediction.

4. Model Validation

The following four indicators are used in this work to assess the accuracy of the
remaining useful life prediction model: RMSE, mean absolute percentage error (MAP),
determination coefficient (R2), mean absolute error (MAE) [30].

MAPE =
1
n

∣∣∣∣∣
∧
yi − yi

yi

∣∣∣∣∣ ∗ 100%, (23)
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R2 =
∑n

i=1

(∧
yi − yi

)2

∑n
i=1(yi − yi)

2 , (24)

MAE =
1
n ∑n

i=1|ŷi − yi|, (25)

where
∧
yi is the predicted remaining useful life, yi is the actual remaining useful life, yi is

the average of the actual remaining useful life, and n is the total sample of the remaining
useful life.

The WPHM of tool reliability without covariate is compared with the RUL prediction
based on the NHPP-WPHM, as shown in Figure 10.

Figure 10. (a) RUL prediction results of two models; (b) MAPE of two models.

Figure 10a demonstrates that when the forecast accuracy of the two models is less than
3000 s, the forecast accuracy of the WPHM significantly decreases from more than 3000 s.
By comparison, the predicted results of NHPP-WPHM are closer to the actual remaining
useful life.

Figure 10b depicts the average absolute percentage error of the remaining useful life
prediction model based on the WPHM and the NHPP-WPHM. The MAPE value of the RUL
prediction model based on the NHPP-WPHM is less than and equal to that of the WPHM,
indicating that the remaining useful life prediction results based on the NHPP-WPHM are
more accurate.

The root mean square error and determination coefficient of the RUL prediction model
based on the WPHM and the NHPP-WPHM are shown in Table 9.

Table 9. RMSE, R2, and MAE before the first repair.

Model RMSE R2 MAE

WPHM 432.2339 0.7344 237.5514
NHPP-WPHM 27,023.2214 0.8355 99.7622

The RMSE index and the determinant coefficient index of the RUL prediction model
based on the NHPP-WPHM are better than those based on the WPHM. All three indicators
indicate that the accuracy of the RUL prediction model based on the NHPP-WPHM is
better.

In this work, the WPHM does not consider the covariate. When a tool undergoes
severe wear, NHPP-WPHM can combine the monitored vibration signals to make a more
accurate prediction of its remaining useful life. Figure 11 shows the predicted results of
tool remaining useful life before the second repair based on the NHPP-WPHM. The RUL
prediction results based on the NHPP-WPHM are more accurate than those based on the
WPHM.
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Figure 11. RUL prediction results of two models.

When the tool operates for about 4000 s, severe vibration exacerbates its degradation
and failure. However, WPHM did not consider this situation, so its prediction results have
a significant deviation.

The root mean square error and determination coefficient of the remaining useful life
prediction model based on the WPHM and the NHPP-WPHM before the second tool repair
are shown in Table 10.

Table 10. RMSE, R2, and MAE before the second repair.

Model RMSE R2 MAE

WPHM 453.1108 0.7109 231.7928
NHPP-WPHM 256.7752 0.8223 99.068

The root mean square error index and the determinant coefficient index of the NHPP-
WPHM are better than those of the RUL prediction model based on the WPHM. In combi-
nation with the average absolute percentage error index of Figure 10b, all three indicators
demonstrate that the RUL prediction model based on the NHPP-WPHM taking covariate
into account has a better accuracy.

We know that vibration signals can reflect the working state of the tool. The model
can continuously update its parameters while using the tool by adding vibration signals as
covariates to the prediction model, which will make the prediction results more realistic.

5. Conclusions

The main contents and conclusions of this work are as follows:

(1) Research on the basic failure law of the cutting tool. The least square method, weighted
least square method, and cumulative error smoothing square method are introduced
based on the results of the cutter constant truncation test to estimate the model
parameters and optimize the model. The research shows that the basic failure rate of
the cutter follows the two-parameter Weibull distribution with a shape parameter of
2.3766 and scale parameter of 6977.9.

(2) Research on the comprehensive failure law of the cutting tool. The grey prediction
model is improved using the artificial fish swarm algorithm, and the covariate pre-
diction value is obtained. The updated Weibull model is constructed to describe the
change rule of the tool failure rate. The research shows that the comprehensive relia-
bility function of the cutting tool follows the NHPP-WPHM with a shape parameter
of 3, scale parameter of 6977.9, and covariant regression coefficient of 0.9992.

(3) The prediction model of the tool remaining life is established. The number of tool
failures conforms to the non-homogeneous Poisson process. On this basis, the NHPP-
WPHM model with covariates considered under different repair times is established.
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The collected covariate information is used to predict the remaining useful life of the
tool.

The precision of the root mean square index of the NHPP-WPHM model is 40% higher
than that of the WPHM, the precision of the determination coefficient index is 13% higher,
the precision of the mean absolute error index is 51% lower, and the average absolute
percentage error is lower than that of the prediction method based on the WPHM, verifying
the validity of the model.

In this work, a prediction method for tool life remaining based on the NHPP-WPHM
model is proposed, which considers not only the intrinsic reliability level of the tool but
also the influence of external factors during the tool operation and the performance of the
tool after different repair times. This method can correct the errors caused by the reliability
model established based only on the tool degradation life data, can better reflect the wear
level of the tool, and accurately assess the remaining useful life of the tool.
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