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Abstract: The Internet of Things (IoT) is developing as a novel phenomenon that is applied in
the growth of several crucial applications. However, these applications continue to function on a
centralized storage structure, which leads to several major problems, such as security, privacy, and
a single point of failure. In recent years, blockchain (BC) technology has become a pillar for the
progression of IoT-based applications. The BC technique is utilized to resolve the security, privacy,
and single point of failure (third-part dependency) issues encountered in IoT applications. Conversely,
the distributed denial of service (DDoS) attacks on mining pools revealed the existence of vital fault
lines amongst the BC-assisted IoT networks. Therefore, the current study designs a hybrid Harris
Hawks with sine cosine and a deep learning-based intrusion detection system (H3SC-DLIDS) for a
BC-supported IoT environment. The aim of the presented H3SC-DLIDS approach is to recognize
the presence of DDoS attacks in the BC-assisted IoT environment. To enable secure communication
in the IoT networks, BC technology is used. The proposed H3SC-DLIDS technique designs a H3SC
technique by integrating the concepts of Harris Hawks optimization (HHO) and sine cosine algorithm
(SCA) for feature selection. For the intrusion detection process, a long short-term memory auto-
encoder (LSTM-AE) model is utilized in this study. Finally, the arithmetic optimization algorithm
(AOA) is implemented for hyperparameter tuning of the LSTM-AE technique. The proposed H3SC-
DLIDS method was experimentally validated using the BoT-IoT database, and the results indicate the
superior performance of the proposed H3SC-DLIDS technique over other existing methods, with a
maximum accuracy of 99.05%.

Keywords: intrusion detection system; DDoS attacks; internet of things; metaheuristics; blockchain

MSC: 68-11

1. Introduction

With the evolution of the internet, the Internet of Things (IoT) has developed as an
innovative technology and has penetrated the day-to-day life activities of human beings [1].
The IoT-based applications, namely RFID-based identity management systems, supply
chain management and healthcare, empowering society and individuals directly. This
technology has become auspicious for modeling, as well as data analysis, through a com-
bination of machine learning (ML) and cloud computing (CC) [2] techniques. IoT-based
development brings about tremendous growth in several domains. An application is typi-
cally built and run in an IoT environment based on computing architecture and centralized
storage [3]. The centralized storage methods are prone to several privacy and security
breaches. The basic working model will have some limitations in assisting the growth of
IoT-assisted systems in the near future. Therefore, there is a need to develop a distributed
storage or decentralized model to overcome such issues [4]. Blockchain (BC) technology is
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one of the emerging decentralization-related architectures. To deal with billions of transac-
tions generated by IoT systems, the distributed computing process uses a point-to-point
computing mechanism. This reduces the cost of storage and computing with the help
of storage and computing abilities of numerous idle devices that are installed in unused
places [5].

Additional protection systems should be applied to increase security to achieve safe
storage and secure transmission and ensure the privacy of several individuals [6]. The BC
technique is a suitable, secure, and dependable technique that can be leveraged for this
purpose. Since the cost of constructing data storage and data center is high, it is not feasible
to improve the existing disaster recovery system [7]. Thus, when it comes to enhancing
disaster recovery capabilities, the main issue to be addressed is to reduce storage costs. BC,
which links centralized and distributed services, can halt an attack successfully on vital
network structures [8]. Intrusion detection systems (IDSs) have a primary task to perform,
i.e., to observe the anomalous performance in a network or a host. Today, the current IDSs
are not very effective in identifying the extensive range of threats. Collaborative IDs have
certain abilities to at least identify a few threats and transfer it for further processing. IDSs
can be categorized into two types based on where the IDSs are deployed, i.e., network-based
ID systems (NIDSs) and host-based ID systems (HIDSs) [9]. By placing packet sniffers
in the network, the NIDS monitors the network at different points. Such packet sniffers
choose the data and transfer it to the analysis units, where a comparison is conducted
between the current system and the anomaly [10]. The application of various DL methods
to identify the attacks with binary classification and classify different kinds of attacks with
multi-class classification, has become an active research domain.

The current study designs a hybrid Harris Hawks with sine cosine and a deep-learning-
based intrusion detection system (H3SC-DLIDS) for a BC-supported IoT environment.
The proposed model allows the BC technology to communicate in the IoT environment
securely. In addition, the H3SC-DLIDS technique designs a H3SC technique for feature
selection with the LSTM_AE model for classification. Moreover, the arithmetic optimization
algorithm (AOA) is applied as a hyperparameter optimizer of the LSTM-AE method. The
performance of the proposed H3SC-DLIDS technique was validated in the study using the
BoT-IoT dataset. In short, some of the key contributions of the study are listed herewith.

• A novel H3SC-DLIDS technique comprising H3SC-based feature selection, LSTM-
AE-based classification and AOA-based hyperparameter tuning is presented in this
study for DDoS attack detection in the IoT network. To the best of the researcher’s
knowledge, no authors proposed this H3SC-DLIDS technique so far in the literature.

• A new H3SC technique has been developed by integrating the characteristics of the
HHO algorithm and SCA for an optimal selection of the features.

• An AOA has been presented in this study with an LSTM-AE model for attack detection.
• Hyperparameter optimization of the LSTM-AE model using the AOA algorithm and

cross-validation, helps in boosting the predictive outcome of the proposed model for
unseen data.

The rest of the paper is organized as follows: Section 2 provides the related works,
and Section 3 offers the proposed model. Then, Section 4 details the analytical results and
Section 5 concludes the paper.

2. Related Works

Heidari et al. [11] suggested a BC-based radial basis function neural networks (RBFNNs)
prototype. The suggested technique can enhance the veracity of the information, as well as
its repository for smart policy-making across the diverse IoDs. In this study, the authors
further deliberated the enforcement of BC to generate the distributed forecasting analysis
and a prototype for efficient practice and distribution of the DL techniques in a distributed
manner. In the literature [12], a new peculiar IDS structure was proposed for IoT networks
by employing the DL method. In particular, a screening-based aspect selection, deep neural
network (DNN), prototype was the introduction, in which the tremendously associated
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factors were dropped. Additionally, the prototype was adjusted with several constraints
and hyper-constraints.

Mansour [13] established a new poor and rich optimizing with a DL prototype for
BC-enabled intrusion detection in the CPS atmosphere, abbreviated as the PRO-DLBIDCPS
method. The suggested PRO-DLBIDCPS method primarily presented the Adaptive Har-
mony Search Algorithm (AHSA) method for the selection of the factor subsets appropriately.
For invasion identification and categorization, an attention-founded bi-directional gated
recurrent neural network (Bi-GRNN) prototype was enforced. In the study conducted ear-
lier [14], the FIDChain IDS was suggested by employing the weightless ANN in a federated
learning (FL) manner. This was done so to confirm the confidentiality of information in
the healthcare industry and to parallelly improve the BC technology. Such a model gives
a dispersed register for combining the local weights, and later distributing the enhanced
worldwide weights after standardizing and averting the lethal outbreaks. This process
provided complete clarity and stability over the dispersed structure, with insignificant
overhead. When the recognition prototype is enforced at the edge, it safeguards the cloud
in case of any outbreaks. This occurs because it stops the information from its gateway at a
minimal recognition period and low processing by calculating the volume as FL pacts with
lesser sets of information.

Sarhan et al. [15] suggested an ordered BC-based FL outline to develop a safe and
confidentiality-conserved co-operative IoT invasion identification method. The authors
also accentuated and exhibited the significance of distributing the cyber hazard intelligence
amongst inter-organizational IoT networks to enhance the recognition competency of the
prototype. The suggested ML-based invasion identification outline follows an ordered FL
construction method to confirm the confidentiality of the education process, as well as the
organizational info. The authors [16] suggested a deep blockchain framework (DBF) to
accomplish security-oriented dispersed invasion identification and confidentiality-based
BC with clever contracts in IoT networks. The invasion identification technique was also
implemented by the BiLSTM DL protocol to pact with the chronological network info,
and was evaluated by employing the info sets of BoT-IoT, as well as UNSW-NB15. In the
study conducted earlier [17], an empirical intelligent agent (EIA) was developed with an
exclusive Swarm-NN technique to identify the invaders in an edge-centric IoMT outline.
The most significant result of the suggested policy was the identification of the outbreaks
when data transfer occurred over a network and an effective analysis of the health info at
the network edge with great precision.

3. The Proposed Model

In the current study, the authors have developed a new H3SC-DLIDS algorithm for
the identification of DDoS attacks in the BC-assisted IoT environment. To enable secure
communication in the IoT networks, BC technology is used. It comprises three stages,
such as feature subset selection using the H3SC approach, LSTM-AE-based DDoS attack
detection, and AOA-based parameter tuning. Figure 1 illustrates the overall procedure of
the proposed H3SC-DLIDS approach.

3.1. BC Technology

To enable secure communication in the IoT networks, BC technology is used. BC
technology is a decentralized P2P network, in which a registered node validates every
transaction and records it in a dispersed and immutable ledger [18]. The consensus method
assures the integrity of the network. Particularly, no centralized authority exists in this
mechanism to validate the produced event: every single transaction must be authenticated
by the BC node with the help of a mutual agreement (consensus). Some conventional types
of consensuses are briefed herewith.
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• Proof-of-importance (PoI): the node that can construct a block has the maximal amount
of transactions.

• Proof-of-stake (PoS): the node with high wealth has a higher opportunity to contribute
from the consensus, and constructs the block.

• Proof-of-work (PoW): a transaction can be approved once the node accepts its P2P network.
• Proof-of-authority (PoA): certain nodes are allowed to produce novel blocks and protect

the BC. It is to be noted that the aforementioned process features potential benefits and
probable disadvantages, too, primarily based on the basic P2P network architecture.

PoS and PoW refer to the conventional methods that are used to accomplish the con-
sensus among the P2P nodes. Nevertheless, it becomes apparent that the PoS method is
demonstrated for attacking, since the mining cost is approximately zero. On the other
hand, the PoW method requires higher computational resources. Both PoI and PoA are
effective alternatives, since both are energy-friendly and achieved improved performance.
Furthermore, the BC technique presents two methods to create a network of permissioned
and permission-less BCs. Particularly, the permissioned BC (private BC) limits the imple-
mentation of the tasks and access to the nodes that belong to the network. Successively,
permission-less BC (public BC) enables a possible candidate to be a node and belongs
to the network. The node on this BC might implement the rest of the errands, once it
provides the physical capability (for instance, mine blocks, authenticate transactions, etc.).
The BC technique has a proper characteristic, i.e., it is capable of selecting the levels of
decentralization in a network, partially decentralized or else the completely centralized
ones. To be specific, the closed permissioned BC gets completely centralized. Finally, the
data stored is noticeable to the participant node, whereas the open permissioned BC is
partially decentralized, since every entity can read the stored data.
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3.2. Design of H3SC-Based Feature Selection

At the initial stage, the H3SC-DLIDS technique designs a new H3SC technique for
feature subset selection [19]. Likewise, it is predicted to improve the solution’s quality, as
well as the convergence behavior. Furthermore, the performance of a hybrid mechanism
might result in generating a highly efficient search, because it greatly jumps at regular
intervals in the searching area to escape from the local optimum issues. Hence, it produces
several diverse solutions. In the hierarchical form of the presented H3SC technique, the
bottommost layer of the SCA upgrades an individual that is generated by the HHO at the
topmost layer. There exists an M HHO search agent at the topmost layer that corresponds to
the bottommost layer’s M group count. All the groups in the bottommost layer comprise the
N population. The implementation of the SCA, at the bottommost layer, is the early stage
during the updating procedure of the novel location. Then, based on the attained optimum
solution, the position of the individual is upgraded in the topmost layer. Consequently,
novel equations that represent the exploitation, as well as exploration phases, are generated.
The exploration stage of the H3SC technique is implemented using the mathematical
expression given below.

Yi
t+1

=


yrand − r2

∣∣yrand − 2r2
[
yt + r8 sin (r9)×

∣∣r10pi
t − yt

∣∣]∣∣, c ≥ 0.5&r11 < 0.5
yrand − r2

∣∣yrand − 2r2
[
yt + r8 cos(r9)×

∣∣r10pi
t − yt

∣∣]∣∣, c ≥ 0.5&r11 ≥ 0.5
yprey − ym − r3[lbt + r4[ubt − lbt]], c < 0.5

(1)

In Equation (1), Yi
t+1 represents the position of the tth individual from the topmost

layer that is equivalent to the ith searching component in the bottommost layer. yt defines
the position of the tth topmost layer searching agent. t denotes the existing number of
iterations. yprey = pt

i characterizes the better location attained up to the existing iteration. c
and r2, r3, r4, r11 indicate the random parameters. ym, lb, and ub denote the average mean,
upper, and lower boundaries correspondingly.

r8 = 2− t
( 2

T
)

r9 = 2π · rand()
r10 = 2 · rand()

(2)

The exploitation stage is implemented by the abovementioned besieging strategy.
Tough besiege: hawks follow this strategy to capture the prey with the lowest energy

when escaping the hunt. This is represented as r ≥ 0.5 and E < 0.5. The presented hybrid
technique implements these strategies as given below.

Yi
t+1 =

{
yprey − E

∣∣yprey − 2r2
[
yt + r8 sin(r9)×

∣∣r10 pt
i − yt

∣∣]∣∣, r11 < 0.5
yprey − E

∣∣yprey − 2r2
[
yt + r8 cos(r9)×

∣∣r10 pt
i − yt

∣∣]∣∣, r11 ≥ 0.5
(3)

E = 2E0

(
1− t

T

)
, t = {1, 2, 3, . . . , T} (4)

Tough besiege with progressive quick dives: if the prey’s energy gets depleted, this
besiege is determined viz., r < 0.5 and E < 0.5

Yi
t+1 =



Z i f F(Z) < F(yt)&

yt =

{
yt + r8 sin(r9)×

∣∣r10 pt
i − yt

∣∣, r11 < 0.5
yt + r8 cos(r9)×

∣∣r10 pt
i − yt

∣∣, r11 ≥ 0.5

X i f F(X) < F(yt)&

yt =

{
yt + r8 sin(r9)×

∣∣r10 pt
i − yt

∣∣, r11 < 0.5
yt + r8 cos(r9)×

∣∣r10 pt
i − yt

∣∣, r11 ≥ 0.5

(5)
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where Z = X + S× LF(D), X = yprey − E
∣∣Jyprey − ym

∣∣,
S = Random vector o f 1× D, r7 = Random parameter, and D = Dimension.

J = 2(1− r7) (6)

LF(D) =
β× u

|v|
1
σ

× 0.01 (7)

β =

 sin
(

πσ
2
)
× Γ(1 + σ)

Γ
(

1+σ
2

)
× σ× 2(

σ−1
2 )

 (8)

Mild besiege: this is implemented by the hawks if r ≥ 0.5 and E ≥ 0.5

Yi
t+1 =


yprey −

[
yt + r8 sin(r9)×

∣∣r10 pt
i − yt

∣∣]− E
∣∣yprey−

2r2
[
yt + r8 sin(r9)×

∣∣r10 pt
i − yt

∣∣]∣∣, r11 < 0.5
yprey −

[
yt + r8 cos(r9)×

∣∣r10 pt
i − yt

∣∣]− E
∣∣yprey−

2r2
[
yt + r8 cos(r9)×

∣∣r10 pt
i − yt

∣∣]∣∣, r11 ≥ 0.5

(9)

Mild besiege with progressive quick dives: here, the prey has sufficient energy E ≥ 0.5
to flee the hunt. However, the hawk generates a mild besiege r < 0.5.

Yi
t+1 =



Z if F(Z) < F(yt)&yt ={
yt + r8 sin (r9)×

∣∣r10 pt
i − yt

∣∣, r11 < 0.5
yt + r8 cos (r9)×

∣∣r10 pt
i − yt

∣∣, r11 ≥ 0.5
X i f F(X) < F(yt)&yt ={

yt + r8sin (r9) ×
∣∣r10 pt

i − yt
∣∣, r11 < 0.5

yt + r8 cos (r9)×
∣∣r10 pt

i − yt
∣∣, r11 ≥ 0.5

, (10)

where
Z = X + S× LF(D)

X = yprey − E
∣∣Jyprey − yt

∣∣
In the presented method, the objective is incorporated into a single-objective equation

so that the present weight recognizes every important objective [20]. A fitness function is
adopted here that integrates both the objectives of FS as follows.

Fitness(X) = α · E(X) + β×
(

1− |R||N|

)
(11)

In Equation (11), Fitness(X) characterizes the fitness value of the subset X, E(X)
symbolizes the classifier rate of the errors based on the features chosen in X subset, |R| and
|N| represents the number of the selected and original features correspondingly, α ∈ [0, 1]
and β = (1− α), where α and β indicate the weight of the classifier error and reduction
ratio correspondingly.

3.3. Optimal LSTM-AE-Based DDoS Attack Detection

The LSTM-AE model is used for an accurate identification of DDoS attacks. AE is a
class of NNs that is utilized for a competent reconstruction of unlabeled datasets [21]. The
AE learns a representation of the presented data by training the network to disregard the
irrelevant parts of data, for instance noise. It learns the design of the standard procedure
when detecting anomalies. All other items that do not follow these patterns are categorized
as anomalies. Initially, the encoder maps the input as h, i.e., hidden representation after
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which the decoder maps the data of the hidden space to the reconstruction of the input
value. In a simple case provided with a single hidden state, the encoded step of AE,
i.e., x ∈ Rd is mapped to h ∈ Rp. Employing this data is defined as latent space h, as
given below.

h = σ(Wx + b) (12)

Here, h refers to the frequently suggested hidden space or representation. σ implies
the activation function such as the ReLU activation function or sigmoid. W signifies the
weighted matrix and b denotes the bias vector that is commonly initialized arbitrarily
than the training progress; it can be upgraded gradually with BP. Afterwards, the de-
coding process obtains the hidden depiction h, which ultimately attempts to recreate the
encoded input. Specifically, the decoder put efforts for mapping the hidden illustration h to
recreate x′. In the preceding notation, this function is expressed.

x′ = σ′
(
W ′h + b′

)
(13)

Here, σ denotes an activation function while b and W refer to the bias vector and
weight matrix correspondingly. It is noted that x′, σ′, and b′ are different in their encoded
counterparts. Finally, the AEs are trained to minimize the loss function and also deal with
reconstruction errors. For instance, a case of reconstructing the loss can be the MSE.

L
(

x, x′
)
=

1
n

n

∑
i=1

(x− x′)2
=

1
n

n

∑
i=1

(x− σ′(W ′(σ(Wx + b)) + b′))2 (14)

LSTM-AE has been established on this univariate time series data to perform the
classification. Figure 2 represents the structure of LSTM-AE model. This model is used to
provide a lookback window that dictates the time series patch obtained by the network.
Based on the experience, the LSTM network obtains a 2D array, with a size of nx f as input
at every timestep. The dimensions of this array are related to n previous timestep, whereas
the network assumes that at every input, the f feature contains the database. The LSTM
layer contains several cells, as the count of time points whenever the network views back
at every time t. During the order of the LSTM layer, every cell of the previous layer creates
a resultant for constructing the 2D array and the subsequent layer needs.
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To generate the reconstructed input, the resultant of the final LSTM layer is multiplied
by the 2D array. In effect, this array is a vector of lengths that are equivalent to the unit
count from every cell of the final LSTM layer. This repeats for f times used several times as
a feature count from the input. Finally, the study aims at mitigating the divergence between
the input and reconstructed models, thus producing a minimum reconstruction error as
determined in (3). This stipulation makes sure the reliability of the reconstructs to ground
true data.

Finally, the AOA-based hyperparameter tuning process is executed to modify the
hyperparameter values of the LSTM-AE model. The AOA technique exploits the distri-
bution behaviors of the arithmetical operator at the time of calculation, namely, division
(D), multiplication (M), subtraction (S), and addition (A) [22]. The presented method ex-
ploits the math-optimizer-accelerated (MOA) function to choose from the exploration and
exploitation search stages, as expressed by Equation (15):

MOA(iter) = Min + iter×
(

Max − Min
Max−iter

)
(15)

Here, iter denotes the current iteration, Max−iter indicates the maximal amount of iter-
ations, and Max and Min indicate the maximal and minimal values of the accelerated
function, correspondingly. During the exploration stage, the AOA model exploits two
major approaches, such as the division (D) and multiplication (M) search processes, to
search for the best solution. The novel location updating the formula for the exploration
stage is presented below.

xi,j(iter + 1) =

{
best(xj)÷ (MOP+ ∈)×

((
ubj − lbj

)
× µ + lbj

)
, r2 < 0.5

best(xj)×MOP×
((

ubj − lbj
)
× µ + lbj

)
, otherwise

(16)

In Equation (9), xi,j(iter + 1) indicates the j-th location of the i-th solution during the
existing iteration, and best(χj) represents the j-th location in the optimum solution, and µ
represents the control parameter. Here, MOP represents the math optimizer probability
that is evaluated as follows:

MOP(iter) = 1− iter
1
α

Max−iter
1
α

. (17)

In Equation (10), α indicates a sensitive parameter. During the exploration stage, the
AOA method exploits two major approaches, such as the addition (D) and the subtraction
(S) search strategies, to achieve a high-dense solution.

xi,j(iter + 1) =

{
best(xj)−MOP×

((
ubj − lbj

)
× µ + lbj

)
, r2 < 0.5

best(xj) + MOP×
((

ubj − lbj
)
× µ + lbj

)
, otherwise

(18)

Fitness choice is an essential aspect of the AOA manner. The encoder solution was
employed in this study to determine the aptitude (goodness) of the candidate results. A
positive integer is used to represent the better performance of the candidate solutions. In
this study, the minimum classification error rate is considered to be the fitness function, as
given in Equation (19).

f itness(xi) =
number o f misclassi f ied samples

Total number o f samples
∗ 100 (19)

4. Results and Discussion

The proposed model was simulated using the Python 3.6.5 tool (Netherlands) on a
PC configured with i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD.
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The parameter settings are given herewith: learning rate: 0.01, dropout: 0.5, batch size: 5,
epoch count: 50, and activation: ReLU.

In this section, the experimental outcomes achieved by the proposed H3SC-DLIDS
approach on the BoT-IoT dataset is discussed [23]. The results were examined under two
aspects, such as the binary dataset and the multiclass dataset. The binary dataset includes
a total of 2056 samples under two classes, as briefed in Table 1. Next, the multiclass dataset
has a total of 2056 samples under five classes, as shown in Table 2. The BoT-IoT dataset
consists of network traffic data, captured using a real-time IoT network infrastructure and a
variety of devices such as cameras, smart home devices, and wearable fitness trackers. The
dataset includes various attack scenarios, such as DDoS attacks, port scans, and malware
infections. The attacks were generated by simulating different botnet behaviors, such as
Mirai, Bashlite, and IoT Reaper. The dataset contains 10 features and the presented H3SC
technique selected six features.

Table 1. Details of the binary dataset.

BoT-IoT Binary Dataset

Class No. of Instances

Attack 1579
Normal 477

Total Number of Samples 2056

Table 2. Details of the multiclass dataset.

BoT-IoT Multiclass Dataset

Class No. of Instances

DDoS 500
DoS 500

Recon 500
Theft 79

Normal 477

Total Number of Instances 2056

The confusion matrix generated by the proposed H3SC-DLIDS technique under binary
class is demonstrated in Figure 3. The figure highlights the efficiency of the proposed H3SC-
DLIDS technique in terms of identifying 1555 attack samples and 457 normal samples.
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In Table 3 and Figure 4, the overall classification results of the H3SC-DLIDS technique
on the binary dataset are portrayed. The experimental values infer the productive results
attained by the proposed H3SC-DLIDS technique amongboth classes. In addition, it should
be noted that the H3SC-DLIDS technique reached an average accubal of 97.14%, precn of
96.87%, recal of 97.14%, Fscore of 97.01%, and an AUCscore of 97.14%.

Table 3. Classification results of the H3SC-DLIDS approach on a binary dataset.

Class Accubal Precn Recal Fscore AUCscore

Attack 98.48% 98.73% 98.48% 98.60% 97.14%
Normal 95.81% 95.01% 95.81% 95.41% 97.14%

Average 97.14% 96.87% 97.14% 97.01% 97.14%
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Figure 5 portrays the accuracy outcomes achieved by the proposed H3SC-DLIDS
method during the training and validation processes upon the binary dataset. The figure
infers that the proposed H3SC-DLIDS method accomplished high accuracy values with an
increase in the number of epochs. Further, the increase in the validation accuracy values
over training accuracy values reveals that the proposed H3SC-DLIDS approach learns the
binary dataset efficiently.

The loss analysis was conducted upon the proposed H3SC-DLIDS method at the time
of training and validation using the binary dataset and the results are shown in Figure 6. The
results infer that the H3SC-DLIDS approach reached closer values of training and validation
losses. The H3SC-DLIDS method can be inferred to learn the binary dataset efficiently.

The confusion matrix generated by the proposed H3SC-DLIDS method under the
multiclass dataset is shown in Figure 7. The figure illustrates the efficiency of the proposed
H3SC-DLIDS method in terms of the identification of 490 DDoS samples, 493 DoS samples,
490 Recon samples, 68 Theft samples, and 466 normal samples.

In Table 4 and Figure 8, the overall classification outcomes of the proposed H3SC-
DLIDS algorithm on the multiclass dataset are displayed. The experimental values infer the
effectual outcomes of the presented H3SC-DLIDS approach among both classes. Further,
the H3SC-DLIDS technique yielded an average accubal of 99.05%, precn of 96.65%, recal of
95.67%, Fscore of 96.14%, and an AUCscore of 97.53%.
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Table 4. Classification results of the proposed H3SC-DLIDS approach on the multiclass dataset.

Class Accubal Precn Recal Fscore AUCscore

DDoS 98.98% 97.80% 98.00% 97.90% 98.65%
DoS 99.12% 97.82% 98.60% 98.21% 98.95%

Recon 98.88% 97.42% 98.00% 97.71% 98.58%
Theft 99.17% 91.89% 86.08% 88.89% 92.89%

Normal 99.08% 98.31% 97.69% 98.00% 98.59%

Average 99.05% 96.65% 95.67% 96.14% 97.53%
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Figure 9 exhibits the accuracy outcomes of the H3SC-DLIDS method during the
training and validation processes using the multiclass dataset. The results represent the
H3SC-DLIDS approach reaching high accuracy values with an increase in the number of
epochs. Further, the increase in the validation accuracy values over training accuracy values
demonstrates that the H3SC-DLIDS methodology learns the multiclass dataset effectively.
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The loss analysis was conducted for the H3SC-DLIDS approach during the training
and validation phases using the multiclass dataset and the results are shown in Figure 10.
The figure emphasizes that the H3SC-DLIDS algorithm reaches closer values of train-
ing and validation losses. The H3SC-DLIDS method was proven to learn the multiclass
dataset efficiently.
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Figure 11 reveals the classification results of the H3SC-DLIDS method under binary
and multiclass datasets. Figure 11a–c shows the PR analysis outcomes of the H3SC-DLIDS
method under binary and multiclass datasets. The figures infer that the proposed H3SC-
DLIDS approach gained a maximum PR performance under all the classes. Eventually,
Figure 11b–d exemplifies the ROC examination results achieved by the proposed H3SC-
DLIDS method under binary and multiclass datasets. The figure depicts that the H3SC-DLIDS
methodology has potential outcomes with higher ROC values under distinct class labels.
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A comparative analysis was conducted between the proposed H3SC-DLIDS
method and other methods, and the results are shown in Table 5 and Figure 12 [24,25].
The experimental values infer that the DT model accomplished a poor performance
over other approaches. Next, the IDS-IoT, XGBoost and RF methods reached closer
classification results.

Table 5. Comparative analysis results of the proposed H3SC-DLIDS technique and other systems.

Methods Accubal Precn Recal Fscore

H3SC-DLIDS 99.05% 96.65% 95.67% 96.14%
AE-MLP Model 98.19% 95.91% 93.31% 95.13%
IDS-IoT Model 97.40% 95.80% 94.90% 95.53%
XGBoost Model 97.09% 94.28% 92.13% 95.05%

RF Model 97.00% 94.98% 93.69% 94.57%
DT Model 95.21% 92.43% 92.51% 93.26%

Contrastingly, the AE-MLP model produced a reasonable outcome. Nevertheless,
the H3SC-DLIDS technique outperformed all other models with a maximum accuy of
99.05%, precn of 96.65%, recal of 95.67%, and a Fscore of 96.14%. The results infer that the
H3SC-DLIDS technique can achieve effectual results compared to other techniques.
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5. Conclusions

In this study, the authors have established a novel H3SC-DLIDS methodology for
the identification of DDoS attacks in the BC-assisted IoT environment. To enable secure
communication within IoT networks, BC technology is used. In this study, the H3SC-DLIDS
technique designs a new H3SC technique for the feature selection process, by combining
the concepts of HHO and SCA techniques. For the intrusion detection process, the LSTM-
AE model is used. At the final stage, the AOA is used for the hyperparameter tuning of
the LSTM-AE system. The experimental performance of the H3SC-DLIDS system was
validated using two datasets, such as the BoT-IoT dataset and the multiclass dataset. The
outcomes indicate the superior performance of the proposed H3SC-DLIDS algorithm over
other existing algorithms. In the future, the performance of the H3SC-DLIDS method can
be improved by implementing ensemble fusion-based DL methods.
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