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Abstract: Dynamic vibration absorbers (DVAs) are widely used in engineering practice because
of their good vibration control performance. Structural design or parameter optimization could
improve its control efficiency. In this paper, the viscoelastic Maxwell-type DVA model with an
inerter and multiple stiffness springs is investigated with the combination of the traditional theory
and an intelligent algorithm. Firstly, the expressions and approximate optimal values of the system
parameters are obtained using the fixed-point theory to deal with the H∞ optimization problem, which
can provide help with the range of parameters in the algorithm. Secondly, we innovatively introduce
the particle swarm optimization (PSO) algorithm to prove that the algorithm could adjust the value
of the approximate solution to minimize the maximum amplitude by analyzing and optimizing the
single variable and four variables. Furthermore, the validity of the parameters is further verified
by simulation between the numerical solution and the analytical solution using the fourth-order
Runge–Kutta method. Finally, the DVA demonstrated in this paper is compared with typical DVAs
under random excitation. The timing sequence and variances, as well as the decreased ratios of the
displacements, show that the presented DVA has a more satisfactory control performance. The inerter
and negative stiffness spring can indeed bring beneficial effects to the vibration absorber. Remarkably,
the intelligent algorithm can make the resonance peaks equal in the parameter optimization of the
vibration absorber, which is quite difficult to achieve with theoretical methods at present. The results
may provide a theoretical and computational basis for the optimization design of DVA.

Keywords: particle swarm optimization algorithm; dynamic vibration absorber; Maxwell-type;
inerter; negative stiffness

MSC: 37N99; 68W99

1. Introduction

Dynamic vibration absorbers (DVAs), known as tuned mass dampers (TMDs), are
widely utilized in mechanical equipment and building structures owing to their favorable
vibration control performance. The fundamental principle is to reduce the vibration state
when an exciting force response occurs in the frequency domain by choosing the forms
and parameters of the DVA as well as the coupling relationship with the primary system.
In 1909, Frahm first proposed the concept of DVA as a passive vibration control device.
In 1928, Ormondroyd and Den Hartog [1] introduced the damping effect to obtain the
classical Voigt-type DVA and set minimizing the maximum amplitude response as the
optimization goal. Hahnkamm [2] and Brock [3] successively derived the optimum tuning
ratio and optimum damping ratio of this model, the method of which is now called the
fixed-point theory through the textbook written by Den Hartog [4]. Subsequently, the
design of three-element type DVA was further improved by Asami and Nishihara [5] based
on the superb properties of viscoelastic devices. In 2001, Ren [6] developed a grounded
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damped DVA that significantly enhances the vibration control. Under identical parameter
conditions, the optimized Asami model and Ren model perform with superior control
performance to the Voigt-type DVA. These three traditional models provide an irreplaceable
reference value for future scholars to improve and optimize DVA structures.

Before introducing Maxwell model, we first trace the air damper that has a history
of more than 80-year. This kind of damper is proposed due to its benefits such as tem-
perature independent, less maintenance, low cost, and no long-term change. Asami and
Sekiguchi [7,8] further put forward the piston-cylinder type air damper that could be rep-
resented by the Voigt model. This means that the elements of spring and damping were
set in parallel. However, this equivalent structure made both the spring and damping
parameters change with the frequency and affect each other. Taking into account the
connection between the damping and restoring force in the actual damper, Asami and
Nishihara [5] optimized the prior model and designed Maxwell structure, in which the
spring and damping were connected in series. Moreover, the addition of a second spring
element positioned parallel to the air damper could drive the piston to recover, and together
they constitute the three-element type DVA. For viscoelastic materials with both damping
and stiffness properties, the mechanical model with the Maxwell structure exhibits better
results under the same mass ratio, one that has the value of further research in this paper.

Numerous experts also consider how to select and adapt parameters to achieve the
best reduction in structural vibration in DVA while designing the ideal structure. The
H∞ optimization, the H2 optimization, and the stability maximization criterion [9,10]
are three common optimization criteria. The H∞ optimization used in this study is more
intuitive and convenient in practical application. The principle is to minimize the maximum
amplitude when harmonic excitation acts on the primary system. Once we determined the
optimization objective, the fixed-point theory can be applied as an approximate way to solve
the parameter problem of the system. In addition, a new method was also developed by
Asami et al. [11,12] to address the precise solution of H∞ optimization. Both approaches aid
in further improving the vibration reduction capacity of DVA. The conclusion shows that
the approximate optimal solution is quite close to the precise solution, which verifies the
usefulness of the fixed-point theory in an engineering context. Considering the simple and
convenient reasons, this paper chooses the fixed-point theory to deal with H∞ optimization
and adjusts the value of the approximate solution with an intelligent algorithm to achieve
minimizing the maximum amplitude more efficiently.

In the structural design of the vibration absorber, we can achieve the effect of vibration
reduction by adding components. Negative stiffness usually means that the displacement
of the object is opposite to the direction of the external force. It is a characteristic that is
different from the negative Poisson ratio. Springs with negative stiffness are less stable.
However, the study discovered that better vibration control performance will play out, and
the natural frequency will decrease if the system has both positive and negative stiffness
springs. This combination not only plays a role in high flexibility and high deformability
but also maintains optimal stability under certain parameter conditions [13–15]. A negative
stiffness characteristic has been applied to the design of composite materials and seismic
retrofitting [16]. To lower the amplitude of the primary system, Shen and Wang et al. [17,18]
inserted negative stiffness into the vibration absorbers (Ren model, three-element model)
and confirmed the effective control performance. In addition to the negative stiffness
elements discussed above, there is another element that is receiving increasing attention.
Smith [19] proposed the idea of an inerter and solved the problem of synthesis on mechani-
cal networks in 2002. As a new type of structural control device with two independent and
free endpoints, the inerter has been found to achieve good results in vibration reduction or
isolation and applied to suspension support design and simulation quality [20,21]. Based on
the classical theory, Barredo et al. [22,23] and Wang et al. [24,25] optimized the DVA with an
inerter, proving that it could maximize the applicable frequency range in vibration control.
Furthermore, adding an amplifying mechanism [26] or distributed arrangement [27,28]
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also makes the structure of the vibration absorber able to be further optimized, which is
worth discussing in future work.

The optimization of DVA/TMD parameters has been investigated in depth in different
various research backgrounds. Zhang and Xu [29] developed the optimization approach
of TMD parameters, blending nonlinear aeroelastic effects for speeding control. Wang
et al. [30] proposed a quasi-zero-stiffness energy harvesting DVA and optimized the pa-
rameters with the perturbation method to suppress vibration. In this paper, a swarm
intelligence algorithm is innovatively introduced to find the global optimal value by fol-
lowing the currently searched optimal value and then determining the actual optimal value
of each parameter [31,32]. In 1995, Kennedy and Eberhart proposed particle swarm opti-
mization (PSO) when studying the predation behavior of birds. The algorithm transforms
the entire group from disorder to order in the solution space by utilizing the sharing of
information among group individuals. Moreover, the two extreme values of individual
optimal value and group optimal value are tracked and updated by calculating the fitness
of each particle. The particle swarm can identify the best position in accordance with
the iteration termination condition and output the optimal parameter values when the
maximum number of iterations is set. The theoretical optimal value obtained by the fixed-
point theory to deal with the H∞ optimization problem directly determines the range of
parameters. With the support of the particle swarm optimization algorithm, the effect of
the equal resonance peak is further realized, and the maximum amplitude of the primary
system is minimized. This cannot be directly achieved by only using the theoretical method
for parameter optimization. Using the algorithm to further optimize on the basis of the
fixed-point theory can fully demonstrate its advantages in data processing. In the existing
research on a Maxwell-type DVA/TMD with an inerter and negative stiffness spring, the
combination of intelligent algorithm and theoretical analysis to automatically adjust the
parameter strategy is our motivation and novelty.

The organization of this paper is as follows. The basic DVA model is given and the
expressions of the system parameters are obtained in Section 2. The PSO algorithm is
introduced in detail, and the numerical simulation is carried out according to different
situations in Section 3. The DVA studied in this paper is compared with typical DVAs in
Section 4. Finally, conclusion and prospect are drawn in Section 5.

2. Dynamic Vibration Absorber Model and Basic Parameter Optimization
2.1. The Basic Model and the Amplitude Response

This paper investigates the viscoelastic Maxwell-type DVA with an inerter and multi-
ple stiffness springs, as displayed in Figure 1. The DVA is connected to a primary system
with a single degree of freedom. m1, m2, k1, and k2 are the masses and linear stiffness
coefficients of the primary system and DVA severally. k3 and c describe the stiffness and
damping coefficient of Maxwell structure. b is the inerter. k4 is the stiffness coefficient of
the grounded negative stiffness spring. F0 and ω denote the amplitude and frequency of
the exciting force. x1, x2, and x3 express the displacement of the primary system, DVA, and
the division point about spring and damping in Maxwell structure.

Figure 1. The viscoelastic Maxwell-type DVA with an inerter and multiple stiffness springs.
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The dynamic equation of the system is established and obtained in accordance with
Newton’s second law

m1 ẍ1 + k1x1 + k2(x1 − x2) + k3(x1 − x3) = F0 sin(ωt)
m2 ẍ2 + bẍ2 + c(ẋ2 − ẋ3) + k2(x2 − x1) + k4x2 = 0
c(ẋ3 − ẋ2) + k3(x3 − x1) = 0

(1)

By using the following parametric transformations

ω1 =

√
k1

m1
, ω2 =

√
k2

m2
, ξ =

c
2m2ω2

, µ =
m2

m1
, α1 =

k3

k1
, α2 =

k4

k1
, β =

b
m1

, f =
F0

m1

Equation (1) can be expressed as
ẍ1 + ω2

1x1 + µω2
2(x1 − x2) + α1ω2

1(x1 − x3) = f sin(ωt)

ẍ2 +
β
µ ẍ2 + 2ω2ξ(ẋ2 − ẋ3) + ω2

2(x2 − x1) +
α2ω2

1
µ x2 = 0

2µω2ξ(ẋ3 − ẋ2) + α1ω2
1(x3 − x1) = 0

(2)

It should be noted that the representations of parameters α1, α2, β are different from
the existing literature [25]. Using this expressive method makes the process of theo-
retical derivation easier to implement in software. On the basis of Laplace transform,
Equation (2) becomes

(
s2 + ω2

1 + µω2
2 + α1ω2

1
)
X1(s)− µω2

2X2(s)− α1ω2
1X3(s) = f ejωt

−ω2
2X1(s) +

(
s2 + β

µ s2 + 2ω2ξs + ω2
2 +

α2ω2
1

µ

)
X2(s)− 2ω2ξsX3(s) = 0

−α1ω2
1X1(s)− 2µω2ξsX2(s) +

(
2µω2ξs + α1ω2

1
)
X3(s) = 0

(3)

Supposing X1(s) = H1(jω)ejωt, X2(s) = H2(jω)ejωt, X3(s) = H3(jω)ejωt and letting
s = jω, j =

√
−1, one could obtain by substituting them into Equation (3)

H1(jω) =
f (A1 + B1 j)

C1 + D1 j

The other parameters are presented as

A1 =α1ω2
1

[
α2ω2

1 + µω2
2 − (µ + β)ω2

]
B1 =2µωω2ξ

[
(α1 + α2)ω

2
1 + µω2

2 − (µ + β)ω2
]

C1 =α1ω2
1{(µ + β)ω4 −

[
(α2 + µ + β)ω2

1 + µ(1 + µ + β)ω2
2

]
ω2

+ µ(1 + α2)ω
2
1ω2

2 + α2ω4
1}

D1 =2µωω2ξ{(µ + β)ω4 + µ(1 + α2)ω
2
1ω2

2 + (α1 + α2 + α1α2)ω
4
1

− {[α1 + α2 + (µ + β)(1 + α1)]ω
2
1 + µ(1 + µ + β)ω2

2}ω2}

Introducing the parameters

ν =
ω2

ω1
, λ =

ω

ω1
, Xst =

F0

k1

where Xst is the static deformation of the primary system under sinusoidal excitation. The
amplitude amplification factor should be

A2 =

∣∣∣∣ H1

Xst

∣∣∣∣2 =
A2

2 + ξ2B2
2

C2
2 + ξ2D2

2
(4)
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where
A2 =α1

[
α2 + µν2 − (µ + β)λ2

]
B2 =2µλν

[
α1 + α2 + µν2 − (µ + β)λ2

]
C2 =α1{(µ + β)λ4 −

[
α2 + µ + β + µ(1 + µ + β)ν2

]
λ2

+ µ(1 + α2)ν
2 + α2}

D2 =2µλν{(µ + β)λ4 + µ(1 + α2)ν
2 + α1 + α2 + α1α2

−
[
α1 + α2 + (µ + β)(1 + α1) + µ(1 + µ + β)ν2

]
λ2}

2.2. The Optimum Frequency Ratio νopt and the Optimum Stiffness Ratio α1opt

It can be demonstrated after simple derivation of Equation (4) that the normalized
amplitude–frequency curves pass through three fixed points of DVA, which are indepen-
dent of the damping ratio ξ. Figure 2a provides the curves under different damping ratios
of 0.3, 0.5, and 0.9. Three fixed points are represented here as P, Q, and R. Other parameters
are fixed as µ = 0.1, β = 0.3, ν = 1.4, α1 = 0.3, and α2 = − 0.1. Since the fixed points are
independent of the damping ratio, it is necessary to make the response values of ξ → 0 and
ξ → ∞ equal to solve its analytical expression, which satisfies the following equation∣∣∣∣A2

C2

∣∣∣∣
ξ→0

=

∣∣∣∣ B2

D2

∣∣∣∣
ξ→∞

(5)

One can obtain from simplification

g(λ) = a1λ6 + a2λ4 + a3λ2 + a4 = 0 (6)

where

a1 =− 2(µ + β)2

a2 =2ν2µ3 +
[
2 + α1 + 4(1 + β)ν2

]
µ2 + [2(α1 + 2α2) + β(2 + α1)]β

+ 2
[
α1(1 + β) + 2(α2 + β) + β(2 + β)ν2

]
µ

a3 =− {2µ3ν4 + 2
[
2 + α1 + 2α2 + (1 + β)ν2

]
µ2ν2

+ 2{[α1(1 + β) + 2α2 + 2β(1 + α2)]ν
2 + α1(1 + α2) + 2α2}µ

+ 2β[α1(1 + α2) + 2α2] + 2α2(α1 + α2)}
a4 =2(1 + α2)µ

2ν4 + 2µ[α1(1 + α2) + α2(2 + α2)]ν
2 + α1α2(2 + α2) + 2α2

2

When ξ → 0, one has

|A| =
∣∣∣∣ H1

Xst

∣∣∣∣ = ∣∣∣∣A3

C3

∣∣∣∣ (7)

When ξ → ∞, one has

|A| =
∣∣∣∣ H1

Xst

∣∣∣∣ = ∣∣∣∣ B3

D3

∣∣∣∣ (8)

where
A3 =

A2

α1
, B3 =

B2

2µλν
, C3 =

C2

α1
, D3 =

D2

2µλν

Equations (7) and (8) are combined to determine the coordinates of three points:

|A| =
∣∣∣∣ H1

Xst

∣∣∣∣ = ∣∣∣∣α1 + 2α2 + 2µν2 − 2(µ + β)λ2

α1[1 + α2 − (1 + µ + β)λ2]

∣∣∣∣ (9)
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Let λ2
P, λ2

Q, and λ2
R be the three roots of Equation (9). As long as the values of λP, λQ,

and λR are determined, the coordinates of the three points can be written. The optimum
frequency ratio, the optimum stiffness ratio, and the optimum damping ratio can be
obtained when the vertical ordinates are adjusted to the same height, thereby solving the
problem of minimizing the maximum amplitude. By drawing the normalized amplitude–
frequency curves of ξ → 0 and ξ → ∞ as shown in Figure 2b, it is found that there is a
fixed phase difference between two points P, R, and point Q. Therefore, there is a positive
and negative sign difference when the absolute value is removed in Equation (9).

(a) (b)

Figure 2. The normalized amplitude–frequency curves under different damping ratios: (a) ξ = 0.3,
ξ = 0.5, and ξ = 0.9; (b) ξ → 0 and ξ → ∞.

The first step is adjusting the ordinates of point P and point R to the equal height∣∣∣∣ H1

Xst

∣∣∣∣
P
=

∣∣∣∣∣A4 + B4λ2
P

C4 + D4λ2
P

∣∣∣∣∣,
∣∣∣∣ H1

Xst

∣∣∣∣
R
=

∣∣∣∣∣A4 + B4λ2
R

C4 + D4λ2
R

∣∣∣∣∣ (10)

where
A4 = α1 + 2α2 + 2µν2, B4 = −2(µ + β)

C4 = α1(1 + α2), D4 = −α1(1 + µ + β)

When the parameter α1 satisfies A4D4 = B4C4, the ordinates of two fixed points P and
R are independent of λ2. One could gain

α1 =
2
[
µ + β− α2 − µ(1 + µ + β)ν2]

1 + µ + β
(11)

Substituting α1 into Equation (6), we can obtain

2
1 + µ + β

[
(1 + µ + β)λ2 − (1 + α2)

]
{(µ + β)2λ4 − 2(µ + β)2λ2

− (1 + µ + β)µ2ν4 + 2(µ + β− α2)µν2 + α2[2(µ + β)− α2]} = 0
(12)

The values of λ2
P, λ2

Q and λ2
R are obtained from Equation (12)

λ2
P =

µ + β−
√
(1 + µ + β)µ2ν4 − 2(µ + β− α2)µν2 + (µ + β− α2)

2

µ + β
(13a)

λ2
Q =

1 + α2
1 + µ + β

(13b)
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λ2
R =

µ + β +
√
(1 + µ + β)µ2ν4 − 2(µ + β− α2)µν2 + (µ + β− α2)

2

µ + β
(13c)

Then, Equation (9) becomes∣∣∣∣ H1

Xst

∣∣∣∣
P,R

=
µ + β

µ + β− α2 − µ(1 + µ + β)ν2 (14a)

∣∣∣∣ H1

Xst

∣∣∣∣
Q
=

(1 + µ + β)
[
µ + β− α2 − µ(1 + µ + β)ν2]
(µ + β− α2)

2 (14b)

The second step is adjusting the ordinates of point P (or R) and point Q to the same
height. The optimum frequency ratio could be

νopt =

√√√√ (1 + µ + β)(µ + β− α2)−
√
(µ + β)(µ + β− α2)

2(1 + µ + β)

µ(1 + µ + β)2 (15)

Then, we can substitute Equation (15) into Equation (11) to obtain

α1opt =
2
√
(µ + β)(µ + β− α2)

2(1 + µ + β)

(1 + µ + β)2 (16)

and ∣∣∣∣ H1

Xst

∣∣∣∣
P,Q,R

=

√
(µ + β)(1 + µ + β)

(µ + β− α2)
2 (17)

2.3. The Optimum Stiffness Ratio α2opt and the Optimum Damping Ratio ξopt

Because the inappropriate stiffness value will make the system unstable, it is discov-
ered that the system will be in a stable state when the displacement caused by the pre-load
is equivalent to the response value at the fixed point.∣∣∣∣ H1

Xst

∣∣∣∣
λ=0

=

∣∣∣∣ H1

Xst

∣∣∣∣
P,Q,R

(18)

that is, ∣∣∣∣ H1

Xst

∣∣∣∣
λ=0

=
(1 + µ + β)(µ + β)(1 + α2)−M1

α2(1 + µ + β)2 + (1 + α2){(1 + µ + β)(µ + β− α2)−M1}
(19)

where
M1 =

√
(µ + β)(µ + β− α2)

2(1 + µ + β)

Based on Equations (17) and (19), the stiffness ratio α2 of system is shown as the
following five possible forms

α2a,2b =
µ + β + 2(1 + µ + β)

[
µ + β±

√
(µ + β)(1 + µ + β)

]
3(1 + µ + β) + 1

(20a)

α2c,2d =
µ + β + (1 + µ + β)

[
µ + β±

√
(µ + β)(2 + µ + β)

]
2 + µ + β

(20b)

α2e = −1 (20c)
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The frequency of force excitation is obtained according to Equation (4)

ω2
(1,2) =

(µ + β + α2)ω
2
1 + µ(1 + µ + β)ω2

2 ±
√

∆
2(µ + β)

(21)

where

∆ =
[
(µ + β + α2)ω

2
1 + µ(1 + µ + β)ω2

2

]2
− 4(µ + β)

[
µ(1 + α2)ω

2
1ω2

2 + α2ω4
1

]
When

α2 > −
µω2

2
ω2

1 + µω2
2
= α2 > − 1

1 + 1
µν2

> −1

the frequency of force excitation is nonnegative. From this condition, it can be determined
that the value of α2 should first exclude α2e = −1, and the other value relationship is
shown in Figure 3. Furthermore, we substitute α2a–α2d into ν and find that α2a or α2c
makes ν purely imaginary. This loses the significance of variables optimizing the system,
so α2b and α2d are the best values for now. In other words, the inerter-to-mass ratio can
keep the system stable and reduce the vibration within the corresponding range when
αopt = α2b and αopt = α2d. We discuss the selection of the optimal parameters in the
following two situations. The relationship between (µ, β, ν(α2)) and (µ, β, α1(α2)) can be
seen from Figures 4 and 5.

(a) (b)

(c) (d)

Figure 3. The relationship of (µ, β, α2): (a) (µ, β, α2a) space; (b) (µ, β, α2b) space; (c) (µ, β, α2c) space;
(d) (µ, β, α2d) space.
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(a) (b)

Figure 4. The relationship of (µ, β, ν(α2)): (a) (µ, β, ν(α2b)) space; (b) (µ, β, ν(α2d)) space.

(a) (b)

Figure 5. The relationship of (µ, β, α1(α2)): (a) (µ, β, α1(α2b)) space; (b) (µ, β, α1(α2d)) space.

According to the fixed-point theory, any damping ratio change will go through three
fixed points. When the three fixed points are adjusted to the same height, the two resonance
peaks can be also maintained to be equal as possible by changing the damping ratio ξ.
In order to obtain the optimum damping ratio, it is necessary to know the horizontal
coordinates of two resonance peaks, namely λ1 and λ2. It can be observed that when
the two resonance peaks are almost at the same height, the vicinity of point Q is in the
region where the slope of the amplitude-frequency curve is zero. According to the previous
calculation results, the abscissa of point Q has been solved. The explicit expression can
obtain the approximate optimum damping ratio based on the abscissa of point Q.

(1) α2opt = α2b ⇒



∂A2

∂λ2
Q
= 0

α1opt =
2
√
(µ+β)(µ+β−α2b)

2(1+µ+β)

(1+µ+β)2

νopt =

√
(1+µ+β)(µ+β−α2b)−

√
(µ+β)(µ+β−α2b)

2(1+µ+β)

µ(1+µ+β)2

α2b =
µ+β+2(1+µ+β)

[
µ+β−

√
(µ+β)(1+µ+β)

]
3(1+µ+β)+1

λ2
Q = 1+α2b

1+µ+β
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(2) α2opt = α2d ⇒



∂A2

∂λ2
Q
= 0

α1opt =
2
√
(µ+β)(µ+β−α2d)

2(1+µ+β)

(1+µ+β)2

νopt =

√
(1+µ+β)(µ+β−α2d)−

√
(µ+β)(µ+β−α2d)

2(1+µ+β)

µ(1+µ+β)2

α2d =
µ+β+(1+µ+β)

[
µ+β−

√
(µ+β)(2+µ+β)

]
2+µ+β

λ2
Q = 1+α2d

1+µ+β

p1 = (A2
2)
′ =2α2

1(µ + β)
[
(µ + β)λ2 − α2 − µν2

]
p2 = (B2

2)
′ =4µ2ν2

[
3(µ + β)2λ4 − 4(µ + β)M2λ2 + M2

2

]
q1 = (C2

2)
′ =2α2

1{2(µ + β)2λ6 − 3(µ + β)M3λ4 +
[

M2
3 + 2(µ + β)M4

]
λ2 −M3M4}

q2 = (D2
2)
′ =4µ2ν2{5(µ + β)2λ8 − 8(µ + β)M5λ6 + 3

[
M2

5 + 2(µ + β)M6

]
λ4

− 4M5M6λ2 + M2
6}

where
M2 =α1 + α2 + µν2

M3 =α2 + µ + β + µ(1 + µ + β)ν2

M4 =α2 + µ(1 + α2)ν
2

M5 =α1 + α2 + (µ + β)(1 + α1) + µ(1 + µ + β)ν2

M6 =α1 + α2 + α1α2 + µ(1 + α2)ν
2

Let p = A2
2 + ξ2B2

2 and q = C2
2 + ξ2D2

2

∂A2

∂λ2
Q

=

(
p
q

)′
=

p′q− pq′

q2 = 0⇔
(

p1 + ξ2 p2

)′
q− (q1 + ξ2q2)

′p = 0⇔ solve ξ

In the previous analysis and calculation, we obtained the optimal-value expressions
of some parameters related to µ and β. For the mass ratio µ related to the primary system
and DVA, the final control results are ideal when µ is limited between 0.05 and 0.5. This
is because the range of m2 is not arbitrarily determined in the actual design of DVA, and
it is usually necessary to consider the installation space, manufacturing cost, installation
difficulty, and other factors. If m2 is very small, the natural frequency will be too close to
reduce the vibration control. If m2 is too large, the practicability of the whole device will be
greatly affected. Therefore, it is found in the literature that experts and scholars usually
take the range of µ to optimize the design, so as to determine the optimal value.

We take α2opt = α2b as an example to compare the numerical and analytical solutions
for different mass ratios µ and different inerter-to-mass ratios β in order to confirm the
accuracy of the solution procedure. According to the optimization results derived from the
previous formulas, the basic optimal parameter values are provided in Table 1. The numer-
ical solution of the harmonic excitation with excitation amplitude F=1000N is obtained by
using the fourth-order Runge–Kutta method when the calculation time is 2000 s. After the
transient response is ignored, the greatest value of the steady-state solution is chosen as
the excitation response amplitude and normalized. The normalized amplitude–frequency
curves of the numerical and analytical solutions to the system are shown in Figure 6. The
circle represents the numerical solution and the solid line represents the analytical solution.
Various colors signify the selection of certain parameters. It can be seen intuitively from the
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figures that two kinds of solutions are completely consistent under the same case, which
proves the correctness of each parameter expression solved in this paper.
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Figure 6. Comparison between the numerical solution and analytical solution in initial optimization
(α2opt = α2b): (a) µ = 0.1; (b) µ = 0.2; (c) µ = 0.3; (d) µ = 0.4.

From the macroscopic perspective, the normalized amplitude amplification factor A
of the primary system can be reduced by increasing the value of the inerter-to-mass ratio β
under the same parameter µ. Meanwhile, the distance between the transverse coordinates
corresponding to the peaks becomes larger. In a word, the larger the inerter-to-mass ratio is,
the smaller the amplitude of the system is and the wider the frequency band is. By simply
drawing the amplitude–frequency curves and obtaining the parameters, two different
situations of parameter α2 have different effects. It can be found that the distance between
the vertical coordinates of the two formants in case α2opt = α2d is closer than that in case
α2opt = α2b. However, for the details, the fitting effect of the graph in α2opt = α2b is better
than α2opt = α2d. The main reason is that only when α2d > − 0.1150, the ordinate of
the initial position will gradually become lower than two resonance peaks, and the other
results are not particularly ideal. Therefore, we consider the case of α2opt = α2b in further
optimization analysis. However, it is worth noting that there are some deviations in the
solution process of this parameter. In the following part of the paper, we will introduce the
PSO algorithm to further optimize the parameters, so as to make the two formants reach
the horizontal height under certain parameter conditions.
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Table 1. The specific parameters of the system with different inerter-to-mass ratios in initial optimiza-
tion (α2opt = α2b).

Case 1: µ = 0.1, α2opt = α2b

β = 0.1 α1 = 0.2094 , α2 = −0.1078 , ν =1.2320 , ξ =0.6389
β = 0.5 α1 =0.5405 , α2 = −0.1061 , ν =1.3079 , ξ =1.3554
β = 1.0 α1 =0.8209 , α2 = −0.0909 , ν =1.2516 , ξ =1.9951
β = 1.5 α1 =1.0125 , α2 = −0.0780 , ν =1.1794 , ξ =2.5051
β = 2.0 α1 =1.1511 , α2 = −0.0679 , ν =1.1124 , ξ =2.9397

Case 2: µ = 0.2, α2opt = α2b

β = 0.1 α1 =0.3037 , α2 = −0.1110 , ν =0.9063 , ξ =0.6002
β = 0.5 α1 =0.6063 , α2 = −0.1031 , ν =0.9200 , ξ =1.0597
β = 1.0 α1 =0.8648 , α2 = −0.0880 , ν =0.8749 , ξ =1.4885
β = 1.5 α1 =1.0437 , α2 = −0.0757 , ν =0.8241 , ξ =1.8364
β = 2.0 α1 =1.1744 , α2 = −0.0661 , ν =0.7778 , ξ =2.1355

Case 3: µ = 0.3, α2opt = α2b

β = 0.1 α1 =0.3899 , α2 = −0.1106 , ν =0.7523 , ξ =0.5969
β = 0.5 α1 =0.6667 , α2 = −0.1000 , ν =0.7454 , ξ =0.9428
β = 1.0 α1 =0.9057 , α2 = −0.0853 , ν =0.7059 , ξ =1.2763
β = 1.5 α1 =1.0730 , α2 = −0.0736 , ν =0.6649 , ξ =1.5509
β = 2.0 α1 =1.1964 , α2 = −0.0645 , ν =0.6281 , ξ =1.7889

Case 4: µ = 0.4, α2opt = α2b

β = 0.1 α1 =0.4686 , α2 = −0.1087 , ν =0.6548 , ξ =0.6007
β = 0.5 α1 =0.7222 , α2 = −0.0969 , ν =0.6395 , ξ =0.8799
β = 1.0 α1 =0.9437 , α2 = −0.0827 , ν =0.6040 , ξ =1.1561
β = 1.5 α1 =1.1006 , α2 = −0.0716 , ν =0.5691 , ξ =1.3865
β = 2.0 α1 =1.2172 , α2 = −0.0629 , ν =0.5380 , ξ =1.5876

3. Further Optimization Analysis of Particle Swarm Optimization Algorithm

This section studies the further parameter optimization problem of Maxwell-type
DVA involving inerters and negative stiffness elements when the external excitation is
harmonic excitation. In the previous part, we followed the H∞ optimization criterion
and obtained the approximate optimal solution of the model parameters using the fixed-
point theory. Considering the practical engineering applications, the slight difference in
parameter values may cause different effects. The numerical simulation using the Runge–
Kutta method shows that the approximate optimal solution does not make the resonance
peak at the same level, which indicates that the parameters of the model are worth further
optimizing. It should be emphasized that the approximate optimal solution obtained by
theoretical analysis plays a crucial part in introducing the PSO algorithm in this section,
because only when a range is roughly determined can the process of algorithm iteration be
infinitely close to the optimal value.

3.1. Optimizing the Single Variable

There are many parameters that can be adjusted in the model. We first check to see
if adjusting the single variable can minimize the maximum amplitude of the primary
system. Here, the amplitude of the primary system is selected as the objective function,
and the PSO algorithm is employed to optimize it. The condition of the algorithm is that
the dimension of the selected particle is 1; that is, the parameter ξ to be determined. The
values of parameters other than ξ are the same as those in Table 1 according to the settings
of µ and β. In order to obtain more accurate vibration absorption parameters, we set the
following: (1) there are 40 particles in total; (2) the maximum number of iterations is 1000;
(3) the learning factors c1 and c2 are both 2; (4) the maximum and minimum values of
inertia weight are 0.6 and 0.4; (5) the random number sequence in the population is added;
(6) the position and velocity of particles have a definite proportional connection.
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The initial state of the algorithm is a group of random particles with two attributes,
velocity and position. The particles update their velocity vector and position vector by
continuously tracking the individual optimal value and global optimal value. Specifically,
the particle will store the magnitude and direction of the preceding velocity in memory and
self-recognize the current point with its own best point while completing group cognition
with the best point in the population. In this way, each particle achieves collaboration
and optimal solution information sharing between populations. When the maximum
number of iterations is set, the particle swarm can seek the best position according to the
termination condition of iterations and output the ideal parameter values. By analyzing
the rule of the amplitude curves, the system will produce two wave peaks depending on
the parameter values, and the two peaks will reach equal height when the parameters
are optimal. When designing the PSO algorithm, the maximum values of the amplitude
curve of the i-th iteration are obtained first, and then the damping ratio that minimizes the
maximum amplitude in all iterations is the optimal damping ratio under the single variable
optimization we are looking for.

As shown in Table 2, we obtained more comprehensive values than in Table 1 accord-
ing to the PSO algorithm after optimizing the single parameter ξ, including the maximum
amplitude under the optimal parameter values, the abscissas λ (λpeak1, λpeak2) correspond-
ing to the two peaks and the difference between them. From this information, we can see
the following: (1) Under the same mass ratio µ, the value of the optimal damping ratio
is larger than the approximate damping ratio obtained in the previous section with the
increase in the inerter-to-mass ratio β, and the amplitude becomes smaller. The λpeak1
corresponding to the left peak gradually moves to the left. The λpeak2 corresponding to the
right peak gradually moves to the right. The larger difference means that the resonance
frequency band is getting wider, and the resonance effect is becoming better and more
stable. (2) Under the same coefficient β, the system amplitude decreases slowly with the
increase in µ and the abscissas λ (λpeak1, λpeak2) become wider. This is consistent with the
results of other scholars, who found that mass ratio can effectively suppress the amplitude
of the system when studying vibration absorbers.

It can be clearly observed in Figures 6 and 7 that the amplitude of the system after
optimization is significantly reduced, showing better stability. Moreover, the number of
iterations largely determines the accuracy of the optimal value. The amplitude of the
primary system finally tends to a straight line after 1000 iterations using PSO from Figure 8.
At the initial iteration, a specific downward trend in the amplitude change can be seen from
the enlarged color section. It should be noted here that the minimum number of iterations
at which the amplitude flattens out is not the optimal number of iterations. Different
iterations make the amplitude have different forms of decline. According to the final
stationary state in the figure, the mass ratio can suppress the amplitude under the same
inerter parameters. The range of parameter given during the iteration is critical, which
determines whether the identified optimal value is reliable. We also calculate the mean
square response of the primary system before and after optimizing the single parameter
ξ. Taking µ = 0.1 as an example, the optimized mean square response outperforms the
value before optimization with the same parameter β. With the increase in β, the response
before and after optimization is gradually reduced. The mean square response reflects the
dispersion degree of individuals in the data set and can be used as a result to measure the
degree of system distribution. For example, two data with the same mean may not have
the same mean square response. If the overall mean square response value is low, it can be
judged that its stability is also good.
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Table 2. The specific parameters of the system in different cases of the inerter-to-mass ratio when
optimizing the single variable ξ (α2opt = α2b).

Case 1: µ = 0.1

β ξori σ2
ori(

πS0
ω3

1
) ξopt σ2

opt(
πS0
ω3

1
) Amax λpeak1 λpeak2 |λpeak1− λpeak2|

0.1 0.6389 2.7821 0.7063 2.7370 1.8288 0.625 1.234 0.609
0.5 1.3554 2.2072 1.5275 2.1358 1.5391 0.517 1.243 0.726
1.0 1.9951 1.9117 2.2771 1.8269 1.3865 0.437 1.249 0.812
1.5 2.5051 1.7570 2.8845 1.6649 1.3046 0.383 1.253 0.870
2.0 2.9397 1.6612 3.4085 1.5641 1.2529 0.344 1.257 0.913

Case 2: µ = 0.2

β ξori σ2
ori(

πS0
ω3

1
) ξopt σ2

opt(
πS0
ω3

1
) Amax λpeak1 λpeak2 |λpeak1− λpeak2|

0.1 0.6002 2.5747 0.6679 2.5200 1.7248 0.591 1.237 0.646
0.5 1.0597 2.1280 1.1979 2.0531 1.4986 0.498 1.244 0.746
1.0 1.4885 1.8735 1.7022 1.7870 1.3664 0.425 1.250 0.825
1.5 1.8364 1.7344 2.1177 1.6411 1.2925 0.375 1.254 0.879
2.0 2.1355 1.6463 2.4791 1.5483 1.2447 0.337 1.258 0.921

Case 3: µ = 0.3

β ξori σ2
ori(

πS0
ω3

1
) ξopt σ2

opt(
πS0
ω3

1
) Amax λpeak1 λpeak2 |λpeak1− λpeak2|

0.1 0.5969 2.4220 0.6677 2.3602 1.6480 0.563 1.239 0.676
0.5 0.9428 2.0613 1.0687 1.9834 1.4642 0.481 1.245 0.764
1.0 1.2763 1.8396 1.4623 1.7515 1.3485 0.413 1.251 0.838
1.5 1.5509 1.7138 1.7910 1.6195 1.2814 0.366 1.255 0.889
2.0 1.7889 1.6324 2.0792 1.5336 1.2371 0.331 1.259 0.928

Case 4: µ = 0.4

β ξori σ2
ori(

πS0
ω3

1
) ξopt σ2

opt(
πS0
ω3

1
) Amax λpeak1 λpeak2 |λpeak1− λpeak2|

0.1 0.6007 2.3031 0.6746 2.2359 1.5878 0.539 1.241 0.702
0.5 0.8799 2.0043 0.9999 1.9237 1.4347 0.465 1.247 0.782
1.0 1.1561 1.8092 1.3269 1.7196 1.3324 0.403 1.252 0.849
1.5 1.3865 1.6948 1.6034 1.5995 1.2711 0.359 1.256 0.897
2.0 1.5876 1.6194 1.8474 1.5199 1.2300 0.325 1.260 0.935

In addition to optimizing the single variable ξ, the parameters ν, α1, and α2 can also be
considered as the case of optimizing the single variable. The following Table 3 shows the
system’s optimal target, the abscissa λ (λpeak, λpeak1, λpeak2) corresponding to the amplitude
and the mean square response after optimizing the single variables ν, α1, and α2 respectively.
From the perspective of system amplitude, the maximum amplitudes optimized by these
three single variables are all higher than the optimization results of ξ under the same µ
and β. The optimization of ξ can better minimize the maximum amplitude of the primary
system under the single-parameter optimization. However, the mean square response
of optimized ν is the best, and the difference between the abscissas corresponding to the
two peaks is larger (as manifested in Appendix Table A1). It can be seen from Figure 9
that the amplitude curves of the analytical solution and numerical solution decrease at
the initial position under the optimization of ν, which is why the mean square response
is lower. Through the detailed analysis of the four single parameters in this chapter, the
conclusions we drqaw can be multifaceted. For the purpose of suppressing the amplitude
of the primary system, the optimization parameter ξ is a better choice. If we want to
make the mean square response value of the system lower, we can choose the optimization
parameter ν. Therefore, it is concluded that the influence of different parameters on the
system must exist. The algorithm is further optimized based on the fixed-point theory to
make the discussion of the vibration absorber more accurate.
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Figure 7. Comparison between the numerical solution and analytical solution when optimizing the
single variable ξ (α2opt = α2b): (a) µ = 0.1; (b) µ = 0.2; (c) µ = 0.3; (d) µ = 0.4.

Table 3. The specific parameters of the system in different inerter-to-mass ratios when optimizing the
other variables (α2opt = α2b, µ = 0.1).

β 0.1 0.5 1.0 1.5 2.0

α1opt 0.2428 0.6467 1.0072 1.2658 1.4591
Amax 1.9098 1.6181 1.4601 1.3744 1.3202

σ2
opt(πS0/ω3

1) 2.7754 2.1711 1.8560 1.6893 1.5853
λpeak 1.142 1.099 1.061 1.034 1.013

β 0.1 0.5 1.0 1.5 2.0

α2opt −0.0981 −0.0733 −0.0302 0.0084 0.0424
Amax 1.8970 1.6372 1.4954 1.4175 1.3677

σ2
opt(πS0/ω3

1) 2.8039 2.2305 1.9323 1.7746 1.6764
λpeak1 0.617 0.517 0.447 0.402 0.370
λpeak2 1.209 1.195 1.182 1.174 1.168

|λpeak1 − λpeak2| 0.592 0.678 0.735 0.772 0.798

β 0.1 0.5 1.0 1.5 2.0

νopt 1.2617 1.3753 1.3464 1.2903 1.2333
Amax 1.8373 1.5504 1.3971 1.3138 1.2607

σ2
opt(πS0/ω3

1) 2.7349 2.1274 1.8151 1.6516 1.5503
λpeak1 0.588 0.459 0.368 0.309 0.268
λpeak2 1.230 1.240 1.247 1.253 1.258

|λpeak1 − λpeak2| 0.642 0.781 0.879 0.944 0.990
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(a) (b)

(c) (d)

Figure 8. Iterations when optimizing the single variable ξ (α2opt = α2b, β = 0.1): (a) µ = 0.1;
(b) µ = 0.2; (c) µ = 0.3; (d) µ = 0.4.
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Figure 9. Comparison between the numerical solution and analytical solution when optimizing the
single variable ν (α2opt = α2b): (a) µ = 0.1; (b) µ = 0.2; (c) µ = 0.3; (d) µ = 0.4.
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3.2. Optimizing Four Variables: α1, α2, ν, and ξ

This section will simultaneously optimize four variables to observe the variation in
the system amplitude curve and the degree of mean square response. The difficulty lies
in the need to consider the value range of four parameter values at the same time. The
optimized parameter value cannot be located at the endpoint value of the range, nor can
the parameter value only meet part of the value range. The setting of the value range about
the four parameter values is based on the range considered in the previous optimization of
the single variable, which ensures that the optimal value obtained after the comprehensive
optimization is comparable to the optimal value of the optimized single variable and further
judges the iterative optimization efficiency of the PSO algorithm. The values of α1 and α2
(as shown in Table 4) are higher than those before optimization in Table 1. The values of
ν and ξ are between the approximate optimal value before optimization and the optimal
value after single optimization.

Table 4. The specific parameters of the system in different cases of inerter-to-mass ratio when
optimizing four variables, α1, α2, ν, and ξ (α2opt = α2b).

Case 1: µ = 0.1

β α1opt α2opt νopt ξopt Amax Amax(all−ξ) Amax(all−ν) σ2
opt(

πS0
ω3

1
)

0.1 0.2346 −0.1045 1.2346 0.6612 1.8151 −0.0137 −0.0222 2.7579
0.5 0.5898 −0.1010 1.3242 1.4165 1.5269 −0.0122 −0.0235 2.1360
1.0 0.9062 −0.0792 1.2712 2.0833 1.3821 −0.0044 −0.0150 1.8276
1.5 1.1576 −0.0664 1.2005 2.6207 1.2930 −0.0116 −0.0208 1.6546
2.0 1.3392 −0.0576 1.1368 3.0753 1.2375 −0.0154 −0.0232 1.5467

Case 2: µ = 0.2

β α1opt α2opt νopt ξopt Amax Amax(all−ξ) Amax(all−ν) σ2
opt(

πS0
ω3

1
)

0.1 0.3249 −0.1047 0.9086 0.6224 1.7311 0.0063 −0.0037 2.5447
0.5 0.6497 −0.0968 0.9300 1.1182 1.4921 −0.0065 −0.0178 2.0559
1.0 0.9437 −0.0825 0.8868 1.5852 1.3520 −0.0144 −0.0248 1.7799
1.5 1.1789 −0.0666 0.8424 1.9237 1.2782 −0.0143 −0.0232 1.6288
2.0 1.3677 −0.0560 0.7942 2.2385 1.2290 −0.0157 −0.0233 1.5306

Case 3: µ = 0.3

β α1opt α2opt νopt ξopt Amax Amax(all−ξ) Amax(all−ν) σ2
opt(

πS0
ω3

1
)

0.1 0.4079 −0.1030 0.7544 0.6267 1.6603 0.0123 0.0016 2.3830
0.5 0.7113 −0.0950 0.7547 1.0015 1.4545 −0.0097 −0.0210 1.9817
1.0 1.0262 −0.0754 0.7199 1.3287 1.3365 −0.0120 −0.0221 1.7424
1.5 1.2059 −0.0648 0.6802 1.6278 1.2671 −0.0143 −0.0229 1.6073
2.0 1.4099 −0.0507 0.6371 1.8823 1.2249 −0.0122 −0.0196 1.5177

Case 4: µ = 0.4

β α1opt α2opt νopt ξopt Amax Amax(all−ξ) Amax(all−ν) σ2
opt(

πS0
ω3

1
)

0.1 0.4877 −0.1009 0.6595 0.6312 1.5985 0.0107 −0.0005 2.2532
0.5 0.7599 −0.0912 0.6441 0.9496 1.4289 −0.0058 −0.0169 1.9254
1.0 1.0724 −0.0694 0.6149 1.2030 1.3251 −0.0073 −0.0171 1.7141
1.5 1.2400 −0.0613 0.5801 1.4608 1.2584 −0.0127 −0.0211 1.5889
2.0 1.4140 −0.0528 0.5505 1.6637 1.2143 −0.0157 −0.0228 1.5020

From the perspective of amplitude, the amplitude amplification factor obtained by
optimizing four variables at the same time is better than that obtained by optimizing single
variables ν and ξ except for a few cases. From the perspective of the mean square response,
it is better than optimizing the single variable ξ but inferior to the single variable ν. This
conclusion holds in most cases and cannot be applied to all cases of µ and β. As can be
seen from Figure 10 of the analytical and numerical solutions, the amplitude–frequency
curves of the four variables optimized at the same time have a lower amplitude than ξ at
the starting position, just like the single variable ν. At the trough between the two peaks,
its steepness is less than that of the optimized single variable ν or ξ, and the stationarity
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looks smoother. In sum, whether optimizing a single variable or four variables, there are
advantages and disadvantages. If four variables are selected to be optimized at the same
time, the value range of each variable needs to be determined by optimizing the single
variable, which increases the time cost of numerical simulation. In practical engineering
applications, we need to combine the actual conditions and technical methods to select
the appropriate optimization method. It is advisable to select a single variable or optimize
several variables.
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Figure 10. Comparison between numerical solution and analytical solution when optimizing four
variables, α1, α2, ν, and ξ, at the same time: (a) µ = 0.1; (b) µ = 0.2; (c) µ = 0.3; (d) µ = 0.4.

3.3. Validity of Parameter Selection

Figure 11 shows the effectiveness of parameters after optimizing variable ξ accord-
ing to the changes in different parameters in the system. When the value of µ and β are
respectively increased, the corresponding amplitude curves not only show low resonance
response peaks but also have a large impact on the vibration reduction bandwidth (as
displayed in Figure 11a,b. On the premise of taking the optimal value as a reference, the nu-
merical simulation is carried out by selecting its adjacent values to obtain the Figure 11c–f).
The most obvious thing is that the orange line represents the curve at the optimal value
and is consistent with the results obtained. Other curves have the following properties: (1)
the left peak and the right peak are not at the same level; (2) the influence of the parameter
value on the vibration reduction bandwidth exists; (3) different parameters affect the posi-
tion of the initial point of the curve, which may be smaller or infinite; (4) the system will be
over-damped, thus affecting the robustness under excitation.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. The optimal parameters verification when optimizing the single variable ξ: (a) change µ;
(b) change β; (c) change α1; (d) change α2; (e) change ν; (f) change ξ.

4. The Mean Square Responses of the Primary System for Different DVAs

In nature and engineering, there is a class of vibration sources that cannot be described
in a certain time and space, such as earthquakes, turbulence, noise, etc., which are called
random vibration sources. Usually, the random vibration in structural dynamics is analyzed
for stationary random processes. The difference between it and non-stationary random
processes is whether the statistics such as mean and variance change with time. Due to
the limitation of some necessary conditions, it is almost impossible for us to study the
influence of the whole random process on the system, so we adopt the form of partial
random vibration samples in the analysis process. This section explores the DVA under
random excitation in more detail and uses comparisons to show how effective the design
is. We determine the power spectral density functions S(ω) attached to various DVAs by
considering the primary system under random excitation. The subscripts D, R, A, W, AN,
WN, and M stand for the Voigt-type DVA, Ren model, Asami model, Wang model, Asami
model with negative stiffness, Wang model with negative stiffness, and the DVA in this
study. These models can be found in Figure 12. Based on the equations of each model, the
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mean square responses of the primary system under different DVAs can be calculated as
follows.
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(a) (b) (c)

(d) (e) (f)

Figure 12. The DVA models: (a) Den; (b) Ren; (c) Asami; (d) Wang; (e) Asami with negative stiffness;
(f) Wang with negative stiffness.

According to the optimal parameters in the literature [1,5,6,17,33,34], the mean square
responses of the primary systems when µ = 0.1 can be obtained as

σ2
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6.401πS0

ω3
1

, σ2
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ω3
1
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ω3
1

, σ2
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3.095πS0
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1

, σ2
WN =

3.090πS0

ω3
1

In the previous section, we calculated the mean square responses by optimizing the
single variable and four variables. It was found that the three cases studied in this paper
are better than the above comparison models. This demonstrates that the model achieves
better results than other DVAs under random excitation, and the inerter is crucial to the
model. In addition, the model still outperforms the other DVAs when different mass ratios
are selected. When random excitation is selected, 5000 normalized random numbers with
zero mean value and unit variance are created as a 50 s random excitation (as shown in
Figure 13). Firstly, we investigate three cases based on particle swarm optimization (ξ, ν,
all) in this paper to select one for comparison with other models. As in Figure 14, three cases
have roughly the same trend in the curve direction, and each section does not have the rule
of periodic vibration. By locating the coordinates of the three curve peaks, the maximum
peak appears the most times when the single variable ξ is optimized, and optimizing
the single variable ν appears the fewest times. In the preliminary conclusion obtained in
the previous section, the amplitude amplification factor obtained by optimizing the four
variables simultaneously is better than that obtained by optimizing the single variables
ν and ξ in most cases. From the perspective of mean square response, it is superior to
the optimization of single variable ξ but inferior to the single variable ν. Therefore, the
optimization of the single variable ξ is weaker than the other two cases according to the
judgment. If it is selected to compare with the other models, it indicates that the three cases
of optimization about this model are applicable.

It can be clearly observed from Figure 15a that the influence of the vibration absorber
on the primary system is very great. The displacement can be considerably decreased with
its help. In the meantime, raising the inerter coefficient can lessen the primary system’s
response for the model as shown in Figure 15b. According to the calculation of the model
parameters in the existing literature, the fourth-order Runge–Kutta method is used to
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determine the amplitude responses under different DVAs conditions. These time history
diagrams can be seen in Figure 16. Because the displacement variance of the primary
system is frequently related to the vibration energy, the variances and decreasing ratios of
the displacements for different systems are compiled in Table 5. Under random excitation,
the DVA discussed in this work performs with better control performance than other DVAs.
These results demonstrate that the proposed DVA can lower the mean square response of
the system as well as the response peak.

Figure 13. The time history of the random excitation.

(a)

(b)

(c)

Figure 14. The time history of three cases based on particle swarm optimization (ξ, ν, all):
(a) t ⊂ [0, 10]; (b) t ⊂ [10, 20]; (c) t ⊂ [20, 30].
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Table 5. The variances and decreasing ratios of the displacements in the primary system.

Models Variances Decrease Ratios (%)

Without DVA 2.57202 × 10−4 /
DVA by Den Hartog 3.73465 × 10−5 85.48
DVA by Ren 3.36063 × 10−5 86.93
DVA by Asami 3.37462 × 10−5 86.88
DVA by Wang 4.12604 × 10−5 83.96
DVA by Asami with negative stiffness 1.83878 × 10−5 92.85
DVA by Wang with negative stiffness 1.86308 × 10−5 92.76
The presented model (µ = 0.1, β = 0.1) 1.60176 × 10−5 93.77
The presented model (µ = 0.1, β = 0.5) 1.26826 × 10−5 95.07
The presented model (µ = 0.1, β = 1.0) 1.10374 × 10−5 95.71
The presented model (µ = 0.1, β = 1.5) 9.66774 × 10−6 96.24
The presented model (µ = 0.1, β = 2.0) 9.16522 × 10−6 96.44

(a)

(b)

Figure 15. The time history of the primary system with models when µ = 0.1: (a) comparison of
this paper and without DVA; (b) comparison between different inerter-to-mass ratios (β = 0.1 and
β = 0.5).



Mathematics 2023, 11, 1904 24 of 28

(a) (b)

(c) (d)

(e) (f)

Figure 16. The time history of the primary system with models when µ = 0.1: (a) Den; (b) Ren;
(c) Asami; (d) Wang; (e) Asami with negative stiffness; (f) Wang with negative stiffness.

5. Conclusions and Prospects

Vibration phenomena can be found everywhere around us. Vehicles on the ground,
aircraft in the air, and ships in the ocean are constantly generating vibration. Many aca-
demics concentrate on vibration reduction, vibration isolation, vibration absorption, and
other control measures to design and optimize the structure of the vibration source or
vibration transmission process because some vibrations may cause wear and consumption
of objects. The introduction of DVAs provides an effective path to suppress the vibration
of the primary system. The present paper discusses the viscoelastic Maxwell-type DVA
model with an inerter and negative stiffness spring under the combination of traditional
theory and the intelligent algorithm, which realizes the effect of equal resonance peaks and
effectively reduces the amplitude response of the primary system.
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On the basis of the H∞ optimization criterion, the approximate optimal values of
frequency ratio, stiffness ratio, and damping ratio are obtained by the fixed-point theory.
Using the fourth-order Runge–Kutta method to simulate the analytical solution and the
numerical solution, it is found that two peaks of the normalized amplitude–frequency
curves are not equal and may be further optimized. Since there are many adjustable
parameters in the model, we use the PSO algorithm to observe whether the maximum
amplitude of the primary system can be minimized by optimizing the single variable
and four variables. After continuously tracking and iterating the individual and global
optimal values, the parameters of the final output make the optimized curves achieve equal
peaks. For the three cases in which the algorithm is used for optimization in this paper, we
obtained our conclusions. From the perspective of amplitude, the amplitude amplification
factor gained by optimizing four variable was better than that obtained by optimizing
single variables, except for a few cases. From the perspective of the mean square response,
it falls between the two cases of optimizing the single variable. In addition, the benefit
of all three cases is that the resonance frequency band is widened and the amplitude is
suppressed. The analysis of the amplitude–frequency curves, the mean square responses,
the variances, and the decreasing ratios of the displacements shows that the presented
model is better than other typical DVAs under the optimization of the algorithm. The
introduction of the algorithm can not only improve the efficiency of calculating the optimal
parameters but also save the calculation time and ensure correctness. The integration of
theoretical analysis and intelligent algorithms provides a solid reference for future research
of DVAs in parameter optimization and structural design.
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Appendix A

Table A1. The specific parameters of the system in different cases of inerter-to-mass ratio when
optimizing the single variable ν (α2opt = α2b).

Case 1: µ = 0.1

β νori σ2
ori(

πS0
ω3

1
) νopt σ2

opt(
πS0
ω3

1
) Amax λpeak1 λpeak2 |λpeak1− λpeak2|

0.1 1.2320 2.7821 1.2617 2.7349 1.8373 0.588 1.230 0.642
0.5 1.3079 2.2072 1.3753 2.1274 1.5504 0.459 1.240 0.781
1.0 1.2516 1.9117 1.3464 1.8151 1.3971 0.368 1.247 0.879
1.5 1.1794 1.7570 1.2903 1.6516 1.3138 0.309 1.253 0.944
2.0 1.1124 1.6612 1.2333 1.5503 1.2607 0.268 1.258 0.990
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Table A1. Cont.

Case 2: µ = 0.2

β νori σ2
ori(

πS0
ω3

1
) νopt σ2

opt(
πS0
ω3

1
) Amax λpeak1 λpeak2 |λpeak1− λpeak2|

0.1 0.9063 2.5747 0.9354 2.5158 1.7348 0.547 1.234 0.687
0.5 0.9200 2.1280 0.9724 2.0436 1.5099 0.436 1.242 0.806
1.0 0.8749 1.8735 0.9446 1.7748 1.3768 0.354 1.249 0.895
1.5 0.8241 1.7344 0.9041 1.6278 1.3014 0.300 1.254 0.954
2.0 0.7778 1.6463 0.8644 1.5344 1.2523 0.261 1.259 0.998

Case 3: µ = 0.3

β νori σ2
ori(

πS0
ω3

1
) νopt σ2

opt(
πS0
ω3

1
) Amax λpeak1 λpeak2 |λpeak1− λpeak2|

0.1 0.7523 2.4220 0.7818 2.3543 1.6587 0.513 1.236 0.723
0.5 0.7454 2.0613 0.7917 1.9732 1.4755 0.416 1.243 0.827
1.0 0.7059 1.8396 0.7649 1.7390 1.3586 0.341 1.250 0.909
1.5 0.6649 1.7138 0.7316 1.6059 1.2900 0.291 1.255 0.964
2.0 0.6281 1.6324 0.6996 1.5196 1.2445 0.255 1.259 1.004

Case 4: µ = 0.4

β νori σ2
ori(

πS0
ω3

1
) νopt σ2

opt(
πS0
ω3

1
) Amax λpeak1 λpeak2 |λpeak1− λpeak2|

0.1 0.6548 2.3031 0.6847 2.2286 1.5990 0.484 1.238 0.754
0.5 0.6395 2.0043 0.6823 1.9129 1.4458 0.399 1.245 0.846
1.0 0.6040 1.8092 0.6567 1.7068 1.3422 0.330 1.251 0.921
1.5 0.5691 1.6948 0.6279 1.5858 1.2795 0.283 1.256 0.973
2.0 0.5380 1.6194 0.6006 1.5059 1.2371 0.248 1.260 1.012

Table A2. Symbols and nomenclature.

m1 mass of the primary system m2 mass of the absorber system

k1 stiffness of the primary system k2 stiffness of the absorber system

k3 stiffness of the Maxwell structure k4 negative stiffness of the grounded spring

c damping of the Maxwell structure b inerter

F0 amplitude of the force excitation ω frequency of the force excitation

ξ damping ratio (ξ = c
2m2ω2

) µ mass ratio (µ = m2
m1

)

α1 ratio of spring constants (α1 = k3
k1

) α2 ratio of spring constants (α2 = k4
k1

)

β inerter-to-mass ratio (β = b
m1

) f amplitude-to-mass ratio ( f = F0
m1

)

ν natural frequency ratio (ν = ω2
ω1

) λ forced frequency ratio (λ = ω
ω1

)

x1 displacement of the primary system x2 displacement of the absorber system

x3 displacement of the division point about spring and damping in Maxwell structure

ω1 natural frequency of the primary system (ω1 =
√

k1
m1

)

ω2 natural frequency of the absorber system (ω2 =
√

k2
m2

)

Xst static deformation of the primary system (Xst =
F0
k1

)

A amplitude amplification factor of the primary system

σ2 mean square response of the primary system
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