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Abstract: The focus of this paper is on solving the state estimation problem for general continuous-
time linear systems through the use of distributed networked observers. To better reflect the com-
munication environment, stochastic noises are considered when observers exchange information.
In the networked observers, each local observer measures only part of the system output, and the
state estimation can not be accomplished within a single observer. Then, all observers communicate
through a pre-specified graph to make up information in the remaining system output. By solving a
parametric algebraic Riccati equation (ARE), a simple method to calculate parameters in the observers
is proposed. Furthermore, using the stability theory of stochastic differential equations, state omni-
science is discussed in almost sure sense and in the mean square sense for the cases of state-dependent
noises and non-state-dependent noises, respectively. It is shown that, for observable linear systems,
the resulting observers work in a coordinated mode to reach state omniscience under the connected
graph. Illustrative examples are provided to show the effectiveness of the distributed observers.

Keywords: state estimation; distributed observer; communication noises; algebraic Riccati equation
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1. Introduction

Many traditional control methods are designed based on full state variables, which
may not be measured directly due to the economic or technological reasons of existing
sensor equipment. In modern control theory, one of the most critical challenges is in-
corporating state estimation or reconstruction techniques to effectively utilize traditional
control methods [1,2]. Apart from estimating the states of a system centrally, the mass
production of sensors provides a cooperative way for networked sensors to deal with the
problem of real-time state estimation of large-scale systems. The cooperative control of
networked systems enjoys many advantages, such as robustness, scalability, and reliability.
Thus, estimating states via a cooperative network, which is called cooperative distributed
estimation, is an interesting topic with great potential for application [3,4].

In cooperative distributed estimation, a notable characteristic is that individual local
observers can only obtain partial measurement outputs and communicate with neighboring
observers to collaboratively estimate the full state of the system [5,6]. The basis for dis-
tributed estimation was established by Saber in 2005 with the introduction of a distributed
Kalman-filtering algorithm [7]. Inspired by [7], a kind of Kalman-consensus filtering was
developed in [8], which consists of a state update stage that utilizes a Kalman filter and a
data fusion stage that employs a consensus strategy. In 2018, Liu et al. further the classical
Kalman-consensus filtering algorithm by considering the link failure [9]. Another kind
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of distributed estimation is studied under the assumption of joint observability for linear
time-invariant (LTI) systems. In [10,11], states of a discrete LTI system were estimated by
a network of observers with an augmented state. In [12], a kind of distributed observer
was designed for continuous-time LTI systems, which could estimate singular with a pre-
assigned convergence rate. While [12] sought to construct distributed observers with the
least dimension, a kind of networked Luenberger observers with a dimension equal to
the state of the system was proposed for LTI systems in [13-15]. Particularly, under the
joint observability assumption, the distributed observers achieve asymptotic omniscience if
the connectivity of the communication network is satisfied and the parameters are chosen
properly. In [16], the authors borrowed the idea of observability decomposition from [17],
where the observable part was estimated locally, and the unobservable part was obtained
by reaching a consensus with its neighboring observers. The idea of observability decom-
position was employed by [18] for finite time distributed observer and was extended
to agent-wise detectability decomposition for a kind of completely decentralized design
method for the distributed observer. Recently, Yang et al. designed a kind of distributed
observer with the consideration of unknown input in [19] and switching communica-
tion topology in [20], respectively. In [21,22], the idea of the distributed observer was
applied to solve the output regulation problem. In [23], the scheme of the distributed
observer was employed in the formation trajectory tracking problem of a leader-following
multi-AUV system.

Although distributed estimation provides us with unprecedented opportunities, chal-
lenges along with the introduction of communication network call for our further studies.
While communication network is often imperfect in distributed systems, issues, such as
limited bandwidth, time delay, and noises, are inevitable to degrade the performance
of the networked systems. The primary focus of this paper is to examine the impact of
communication noise on distributed observers, a topic that has not yet been thoroughly
investigated in the existing literature. In networked systems, we can categorize noises
into two classes, namely non-state-dependent (additive) noises and state-dependent (mul-
tiplicative) noises [24,25]. The description of state-dependent noises captures the fact
that communication noises’ intensities are time-varying and dependent on the relative
states of the communicating nodes. The state-dependent noises are particularly suitable
for representing communication via analog-fading channels, where the uncertainties in
the measured states were affected by the states of the system [26]. Considering these two
kinds of noises appears to be important in network systems, for example, the networked
observers in this paper, to ensure their performance. However, little work has been devoted
to distributed estimation with either kind of noise.

In this paper, the state estimation problem for general continuous-time linear systems
by distributed networked observers is studied. The stability of observer error systems is
analyzed by a low-gain feedback method. The gain matrix of the observer is determined by
solving a parametric ARE. Moreover, based on the stability theory of stochastic systems,
the distributed observers for state omniscience subjecting to non-state-dependent noises
and state-dependent are analyzed in almost sure sense and mean square sense, respectively.
The contributions of this paper are summarized as follows:

1. Distributed observers for state omniscience are considered with the existence of
communication noises, i.e., state-dependent noises and non-state-dependent noises.

2. A framework of distributed observers is proposed, and sufficient conditions to con-
front noises are derived based on parametric ARE.

The structure of this paper is outlined as follows: Section 2 will provide an overview
of essential background information and the problem formulation. Section 3 will delve into
the intricate design of the distributed observers for linear systems with two different types
of noises. Following that, Section 4 will report the outcomes of the simulations conducted.
Finally, Section 5 will provide concluding remarks.
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2. Preliminaries and Problem Formulation
2.1. Graph Theory

Let G = (V, &) be an undirected graph with the node set V = {1,...,N} and the
edge set £ C V x V. An edge in £ is denoted by an unordered pair of distinct nodes
(i,j), and (i,j) € £ if and only if (j,i) € £. The neighbor set of node i is denoted by
Ni={jeV:(ij) € £}. G = [g;] € RN*N represents the adjacency matrix associated
with G, where g;; = gj; > 0if (i,j) € £ and g;; = gj; = 0 otherwise. Correspondingly, the

Laplacian matrix L = [I;;] € RN*N is defined as [; = ¥ gjx and [jj = —g;; for j # i.
keN;

Lemma 1 ([27]). For an undirected graph G with N nodes, its eigenvalues of the Laplacian matrix
L are real and are arranged in an ascending order as 0 = Ay < Ay < ... < An. Moreover, if G is
connected, A1 = 0 is a simple eigenvalue of L with corresponding eigenvector 1y.

2.2. Stability of Stochastic Differential Equations
Consider the following stochastic differential equation of Itd form

dx = f(t,x)dt + g(t,x)dB, x(0) = x 1)

where x € () C R™ is the state of the system, f : RTU{0} x Q@ — R™, ¢: Q x RT U{0} —
R™*P are nonlinear functions and B is a Brownian motion. Assume that Q) is an invariant
set for system (1), for example, for xo € Q, x(t) of (1) exists and x(t) € Q. In addition,
£(0,t) = g(0,t) = 0 and x = 0 is the trivial solution of (1).

Let V(t,x) € C?*! : Q x Rt U{0} — R* be a nonnegative function. Then, the
stochastic differential of Itd process V (¢, x) is given by

dv(t,x) = LV (t,x)dt + Vy(t,x)g(t,x)dB )
where LV (t,x) = Vi(t,x) + Vie(t, x) f(t, x) + 2tr(gT(t, x) Vix (£, X)g (1, x)).

Lemma 2. For a nonnegative function V(t,x) € C>*! and constants p > 0, ¢; > 0, 3 € R,
c3 > 0, such that Vx # O and t € RT: (a) c1]x|P < V(t,x)P; (b) LV(t,x) < caV(t,x);
|Ve(t, x)g(t, x) > > c3V(t, x)2. Then: limy—,0 sup + log(|x(t)[) < —%, a.s. In particular, if
c3 > 2cy, the trivial solution of (1) is almost surely exponentially stable.

2.3. Problem Formulation

The estimation problem is introduced as follows. For a linear time-invariant system

x = Ax
G a1
G 2 3
Cn YN

where x = [xq,..., xn]T € R" is the state to be estimated, y € R7 denotes the measurement
output, and A € R"*", C € R7*" are system matrix and output matrix of the system,
respectively. Denote y asy = [yI,...,yL]T by letting C = [C],...,CL]T, where C; € R7:*"
and y; € RYi.

This paper will design N networked observers so that each one of them estimates the
state of (3) by communicating with its neighboring observers. The primary difficulty in
tackling this distributed estimation problem arises from the constraints outlined below:
(i) The ith local observer only measures part of the output y;, which is insufficient to
estimate full state x individually and (ii) the exchange of information between observers is
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susceptible to noise, potentially rendering the exchanged information invalid. To achieve
the aim of the paper, a framework of distributed observers is proposed as follows:

%= A%+ Hi(yi — Ci%i) +k ) &ii(%(£) — £i(1)) )
JEN;

where £; = [£;1,..., J?in]T € R" is the state of the ith observer aiming to estimate x in (3).
H; € R™"*1i is the gain matrix and k > 0 is the coupling strength to be designed. Note that
Xj is the perturbed version of £;, j € N;, which takes the following two forms.

Xij(t) = 2;(t) + adyj(t, £:(t) — £;(t))wi;(t) (5a)

where & # 0; w;; and w; € R" are independent m-dimensional white noise processes.
d;j € R™ ™ depends on the state of the network and features how noises diffuse in the
network. We assume that §;; = 0 for j € N;.

In (5a), the magnitudes of noises are linked to the relative states between the com-
municating nodes, and these are referred to as state-dependent noises. In (5b), the noises
are induced by nodes and uncorrelated with the states of the nodes, which are called
non-state-dependent noises. Both cases will be analyzed in the following sections.

Definition 1. The distributed observers (4) are said to fulfill state omniscience for system (3) in the
almost sure sense if

. 1 .
tgrfoosup¥log(|ei(t)|) <0as Vi=1,...,N.

where e; = X; — x is the observation error.

Definition 2. The distributed observers (4) are said to fulfill state omniscience for system (3) in the
mean square sense if there are ¢y > 0, c; > 0 and c3 > 0 so that

N N
;E{Hei(t)\lz} < e ;E{Ilei(O)IIZ} + ¢

Assumption 1. There is a constant K such that ||6;;(t, x)|| < Ks|x| for all x € R™.
Assumption 2. The pair (A, C) is observable.

Remark 1. Assumption 1 imposes limitations on the diffusion function 6;;, as it is reasonable
to expect that noise would spread in the communication network with limited intensity. In this
paper, none of the observers is required to fulfill the estimation task individually, i.e., (A, C;) is
not necessarily observable. Under Assumption 2, each observer estimates part of the states of the
system (3) locally and communicates with other observers through the connected graph for the
remaining part of the states. Therefore, observers need to work in a coordinated mode to achieve state
omniscience.

Before presenting the method for designing distributed observers, we introduce an
important technical lemma for the parameterized ARE:

PAT + AP — PCTCP = —¢P (6)

where ¢ > 0 is a positive constant.
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Lemma 3 ([28]). Under Assumption 2, there is a unique positive definite matrix P(e) = W~1(e)
solving ARE (6), and W (e) > 0 is the unique solution to

W(A + %In> T (A i %IH>TW —cTc. @)

Moreover, the solution matrix P(e) has the following properties:
o tr(CP(e)CT) = 2tr(A) + ng;
e P(e)CTCP(e) < (2tr(A) + ne)P(e).

To simplify the derivation of this paper, we only consider the case that tr(A) = 0in
the following analysis. The case of tr(A) # 0 can be derived by extending the results in
this paper.

. . . . _ M1 My .
Lemma 4. (Schur Complement): For a given symmetric matrix M = T with
Mj, M
My = MT} and My, = MY, M < 0is equivalent to My; < 0, My, — ML, M ! My, < 0.

3. Distributed Observer Design under State-Dependent Noises
In this section, a distributed observer with state-dependent noises will be analyzed,

and sufficient conditions for stochastic state omniscience in an almost sure sense are given.
Combining (4) and (5a) yields the closed-loop system of Ito type

dz; = |A%; + Hi(]/i — Cﬁ?,’) +k Z g,»j(ﬁj — 3?1') dt + ka Z ‘5ij(t/ X — fj)dbij (8)
JEN; JEN;

where b;; represents the Brownian motion that is associated with the white noise process w;;.

Let X = [#],...,2L]T, X = 1yx1 ® x, C = Diag{Cy,Cy,...,Cn}, H = Diag{H;, Hy,
...,Hn}, B= [blT, e, b%]T is a mN2-dimensional vector, b; = [biTl, e, biTN]T, and A(t,X) =
Diag(A;(t, X)), with A; = [6;1(t, £ — £1),...,6in(t, £ — £n)]. Therefore, we can get the
compact form of the systems:

dX = |(Iy® A)X + HC(X — X) — k(L ® I,)X | dt + kaA(t, X)dB )

Denote the whole observation error by e = [elT, el e{,] T then we have

de = F(e, t)dt + A(t,X)dB (10)
where F(e) = [(Iy ® A) — HC — k(L ® I,)]e and A(t, X) = kaA(t, X).

Theorem 1. Under an undirected connected graph and Assumptions 1 and 2, consider the dis-
tributed observers (4) where state-dependent noises (5a) exist. Then, the state omniscience for system
(3) can be achieved in almost sure sense if H; and k are chosen as

H; = %NP(S)CiT, k > gi) (11)

wherep(e) =n+ (n—1)e+ ﬁ[(er—i— 1)? +n? —2n+2Nn?)e? and %/\N(kod(g)z <n<e
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Proof. According to Lemma 2, to prove the distributed observers for state omniscience
in an almost sure sense, we need to prove the almost sure exponential stability of the
observation error e. To this aim, construct the Lyapunov candidate function as

V(t) = %ET(IN ® P e (12)

where P is the unique solution to ARE (6) and the ARE is solvable under Assumption2. O

In light of Lemma 2, we need to calculate LV (e) and show LV (e) < —cV (e) for some
¢ > 0. By the definition of infinitesimal operator LV (-), we have

LV(e) = Vi(e) + V(e) F(e) + %tr(ﬁ(t,e)TVeeA(t, ) (13)

Note that V;(e) = 0, then for the second term, we have

Vo(e)F(e) =eT(Iy@ P H[(Iy® A) — AC —k(L® I,)]e
1 (14)

ZEeTH(k)e

where .
11(k) =Iy @ (ATP~' + P~1A) = NCTC — 2kL @ P!

=Y -2kL® P!
with Y = Diag{Y1,Ys,...,Yn}and Y; = ATP~1 + P~1A — NCIC,.
The forthcoming explanation will demonstrate the existence of a positive value k

such that
T1(k) < —y(Iy ® P71) (15)

For an undirected connected graph, we have Uy = ﬁl N being the left eigenvector of

the Laplacian matrix L that is associated with the zero eigenvalues. Denote the orthogonal
matrix U = [Uy Uy], then
UTLU = Diag{0, L.}

with [ = Diag{A,,...,An}. Therefore, (15) can be written as
UTR LK) UR L) < —(Iy@ P (16)
By using Lemma 1 and Assumption 2, we have
T v 1Y
(Uy @ L)Y (Up @ Iy) = N Y'Y,
i=1 (17)
1

:N(N(ATP_l +P1A) - NCTC) = —¢P!

Note that U = [Uy U;], we can rewrite (16) in block matrices as follows

—¢)P! +@aLeL)YWh el
(n—e) . ﬁ( N @ L)Y ® n)A ] <o (18)
* (Ui @ L)Y(Uy ® I) + (nIn—1 — kL) @ P
According to Lemma 4 , with 77 < ¢, the inequality can be analyzed by
Y =U{ @ L,)Y(U1 ® Iy) + (nIy-1 — kL) @ P!
1 (19)

T V. T V.
=N W)N(ul ® L)Y(n1L ® P)Y (U, ® 1) < 0.
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According to Lemma 3, we have
Y;=—eP 1+ CTC - NCIC; < —eP P+ CTC < (n—1)eP7H,

and, therefore, Y; < (n — 1)e(Iy ® P71).
Since UlT U; = Iy_1, we have

(Ul @ L)Y (Ur @ 1) < (ne—¢)(Iy-1 @ P")

By Lemma 3, we have tr(C;PC!') < tr(CPCT) = neand CI'C; < CTC < neP~!, and
then CI'C;PC] C; < CI'tr(C;PC]')C; < (ne)CIC; < (ne)?>P~ 1.
Hence, we have
Y;PY;
=e2P~! —2¢CTC +2eNCTIC; + CcTepcTc
— NcTcpclc; — Ncl'c;pcTc + N2l ¢;pcf ¢
<e?P~1 4+2¢(N—1)CTCc+ (N +1)cTcpctc
+ (N2 4+ N)cfc;pclc
<((nN +1)? +n* — 2n +2Nn?)e?P~1,

(20)

Thus, it comes to
(Ul @ 1,) Y15 @ P)Y(U; @ L)
<N(U1 ®I,)Y(Iy ® P)Y(U; ® I,)
N((nN +1)% + 12 — 21 + 2Nn?)e? (IN,l ® P*1>
In sum, we have
¥ < — (2K — p(e)) (I © P

and, therefore,
Ve(e)E(e) < —2qV(e). e1)

Therefore, by (11), we have V,F(e) < —ne’ (I, ® P~ 1)e.
For the third term in £V (¢), we have V,, = Iy ® P~!, then

(At o) TVeeS(1,€))

tr(A(t,e)" (Iy® P~1)A(te))

I\)M—* I\)\)—‘NM—‘
Dz

N
2 Z tr(&ij(t,ei — ej')Tpiléi]‘(t, e — e]))

iji=1

IN

Recalling Assumption 1 and ;; = 0 for j ¢ N;, we have

%tr(ﬁ(fre)TV%A(t’ ¢))
(

(22)
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Upon combining Equations (21) and (22), we arrive at
-
cvie) < 2y - B o) < —evie @)

where ¢ > 0. In accordance with Lemma 2, if c3 = 0, the state omniscience for system (3)
can be achieved in an almost sure sense.

Remark 2. The sufficient conditions in Theorem 1 imply %AN(WK‘;)Z < ¢, where € is a
parameter in ARE (6). In other words, the low bound of € is jointly determined by the strength of
noises «, the topology structure L, and the coupling strength k.

Remark 3. To implement the distributed observers in Theorem 1, the following steps can be followed.

Decide the number of observers according to the output matrix in (3).
By the knowledge of noises in (5a), « and K are obtained.

Decide € by the condition in Theorem 1, and solve the ARE (6) for P.
Calculate H; and k by (11).

Construct the distributed observer in the form of (4).

G L=

4. Distributed Observer Design under Non-State-Dependent Noises
In this section, distributed observers with node-induced noises will be analyzed, and

sufficient conditions for stochastic state omniscience in a mean square sense are given.
Combining (4) and (5b) yields the closed-loop system of It6 type

d??i = A)?l' + Hi(yi — Cifi) +k Z gzj(f] — 921') dt + ka Z gz]db] (24)
JEN; JEN;

where b; represents the Brownian motion that is linked to the white noise process w;.
The dynamics of the observation error could be written, with F(t, e) given in (10), as
follows
de = F(e, t)dt + ak(G® I,)dB (25)

where B = [b],...,bL] is a mN-dimensional vector.
Now we can present another of our main results.

Theorem 2. Under an undirected connected graph and Assumptions 1 and 2, consider the dis-
tributed observers (4) where non-state-dependent noises (5b) exist. Then, the state omniscience for
system (3) can be achieved in mean square sense if H; and k satisfy

H; = NP(e)Cl, k > P)(j (26)

where p(¢) =+ (n —1)e — ﬁ[(nN +1)2 +n? —2n+2Nn?le? and 7 < e.

Proof. By selecting the same Lyapunov function as Theorem 1, we can obtain that

212

LV (e) < =27V (e) + “2ktr<(G®In)T%e(G®In)> (27)

Recall that V,, = Iy ® P~1, we have
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w?k?
LV(e) <—=2yV(e)+ Ttr(GTG @P1

a2k? _1\r _1
S—ZnV(e)—i—Ttr((G@P ) (G® P 2))

a2k 1
—2V(e)+ - I(Ge P}

<—2yV(e) + @

(28)

IN

where @ = "‘22—kz|\ (G® P_%) |2 is bounded.
Applying the It6 differential formula, the stochastic differential of V() is

dV(e) = LV(t)dt + akeT (G® P~ 1)dB (29)
Taking expectation of (29), we have

E{dV(t)}

T E{LV(t)} < —2gE{V(t)} + @ (30)

According to the Comparison principle [29], we have

—2t 1—e?
E{V(t)} <eTE{V(0)} + ———w
21

© (31)

< e 2R —

<e {V(0)} + 2
In light of Definition 2, the distributed observers fulfill state omniscience in the mean

square sense. [J

Remark 4. Theorems 1 and 2 examine two types of noise in the communication network of
distributed observers. While state omniscience is in an almost sure sense for the case of state-
dependent noises, it can only achieve state omniscience in a mean square sense for the case of
non-state-dependent noises. This is consistent with our understanding of non-state-dependent noise,
as it will not disappear due to changes in the states of observers. Based on the findings of these
theorems, it is possible to design distributed observers using equation (4) irrespective of the type
of noise involved. Specifically, we can choose H; according to (11) and select a large k to meet
conditions in both theorems.

In both Theorems 1 and 2, we assume that noises only occur when the two nodes are
connected. However, since noises appear randomly in the networked systems, it could be
interesting to explore the situation that the noisy topology differs from the communication
topology. We can build a two-layer graph to describe the heterogeneous topologies, where
the second layer regarding to the noisy topology is described as follows.

Let ag» be the elements of the adjacency matrix A" = [a?j] € RN*N representing the
noisy coupling topology G" = (V, ™). In such a noisy topology G" = (V, "), N}' = {v; €
V: (vj,v;) € E"} is the neighbor set of node 7, and L" is the Laplacian matrix associated
with the noisy topology.

Corollary 1. Under an undirected connected graph and Assumption 1, consider the distributed
observers (4) where state-dependent noises (5a) exist. Then, the distributed observers achieve

stochastic state omniscience if H; and k are designed as (11) and o« < | W%, where

AN (L™) is the largest eigenvalue of L".

In this case, the assumption that 6;; = 0 for j € N; does not hold. The proof for Corollary
1 follows that of Theorem 1, but replacing L in (22) with L" defined in the corollary statement.
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5. Numerical Example

In this section, we consider the model of spacecraft formation flying in the low Earth
orbit [30]. The simulation will be conducted using the Euler-Maruyama method. The
sample period is 3 x 10713 s. The system matrix is given as

0 I 0 0 0 0 2w 0
A= { A3 A3 ],Al =10 3% 0 |A=]| 20 0 0 (32)
o2 0 0 —w? 0 0 0

where the angular rate of the virtual satellite w is set to 0.001, the state variable x1, xo, and
x3 are the position components and x4, x5, and x¢ are the corresponding velocities. Due to
the velocities are often unmeasurable, the measurement matrices are set to C; = [l, 0,0,0, 0],
C, =10,1,0,0,0,0],and C3 = [0,0,1,0,0,0]. Apparently, (A, C) is observable and none of
(A, C)) is observable. The Laplacian matrix is

The solution to the ARE (6) with ¢ = 0.05 is

1514 478 0 088 —-019 O

0478 48 0 091 0.11 0
0 0 10 0 0 0.25

08 091 0 017 0.02 0

-019 011 0 0.02 0.03 0
0 0 025 O 0 0.11

P(e) =102

For the case of state-dependent noises, we let the noise diffusing function J;;(t, x) = x
and a = 0.05. Then, we have p(¢) = 150.54 in (18) with # = 0.04, which gives the the bound
for the coupling strength k > 50.18. Let k = 50.28 and calculate H; by (18); the trajectories
of the distributed observers are depicted in Figure 1, and observer errors are shown in
Figure 2. According to these results, the distributed observers fulfill state omniscience in
almost sure sense as defined in Definition 2. For the case of non-state-dependent noises,
calculate k and H; by Theorem 2, the trajectories of the distributed observers are shown
in Figure 3 and the observer errors in the form of 2-norm are plotted in Figure 4, which
imply the distributed observers fulfill state omniscience in a mean square sense as defined
in Definition 2.

0 100 200 300 0 100 200 300
Time(s) Time(s)

Figure 1. Trajectories of the plant and the distributed observers with state-dependent noises.
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Figure 2. Observer errors with state-dependent noises.
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Figure 3. Trajectories of the plant and the distributed observers with non-state-dependent noises.
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Figure 4. Observer errors with non-state-dependent noises.
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6. Conclusions

This paper addresses the issue of distributed state estimation for linear time-invariant
plants with continuous-time dynamics, considering the presence of communication noise.
The distributed observers proposed in this paper are composed of networked local ob-
servers. Each local observer generates a local state estimation by utilizing its own output
measurement and the estimations of its neighbors, as determined by a connected com-
munication graph. Notably, we have considered two types of communication noises:
state-dependent noises and non-state-dependent noises. By solving a parametric ARE, the
coupling strength and the gain matrices are designed properly. It is demonstrated that,
assuming joint observability and connectivity of the communication graph, the resulting
observer operates in a coordinated manner to attain state omniscience even in the presence
of communication noises.

It is important to acknowledge that only white noise is considered, and the assumption
of the diffuse function is quite strong, which may limit the application of the obtained
results. Additionally, the simplified model used in the paper may not capture important
practical considerations such as nonlinear plant dynamics, transmission errors, commu-
nication delays, and directed communication graphs. We believe that addressing these
practical considerations would be valuable for advancing the field of distributed observer
design and improving the performance of distributed estimation in complex systems.
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Abbreviations

X State to be estimated.

X State of the ith observers.

Yi Partial measurement output of the ith observers.
n Dimensions of x.

N Number of observers.

A,C System matrix, output matrix.

G,V,€ Undirected graph, node set, edge set.

Sij Adjacency weight between node i and node j.
N; Neighbor set of node i.

L Laplacian matrix.

A The ith eigenvalue of L.

dV(-)  Stochastic differential.
LV(-) Infinitesimal operator.

Xij Noise perturbed state of the jth observer, j € N;.
H; Gain matrix of the ith observer.

k Coupling strength of observers.

wij, Wjj White noise processes.

bi, b Brownian motions associate with w;, w;; .

x Noise intensity.

3 () Noise diffuse function.
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e; Observation error of the ith observer.

E() Mathematical expectation.

tr(-) Trace of a matrix.

o(e) Function of ¢ for brief expression.

A(-),A(-) Maximum and minimum eigenvalue of a matrix.
7 An intermediate constant.
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