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1. Introduction

Throughout this article, R is always a commutative ring with an identity. For a subset
U of an R-module M, we denote by 〈U〉 the submodule of M generated by U. A subset
S of R is said to be multiplicative if 1 ∈ S and s1s2 ∈ S for any s1 ∈ S, s2 ∈ S. Let N be a
submodule of M, and denote by (N :R M) = {r ∈ R | rM ⊆ N}.

The notion of multiplication rings was introduced by Krull [1] early in 1925. A ring R
is called a multiplication ring if, for every pair of ideals J ⊆ K of R, there exists an ideal
I of R such that J = IK. Note that an integral domain is a multiplication ring if and only
if it is a Dedekind domain (see [2]). Some characterizations of multiplication rings were
given by Mott [3]. In 1974, Mehdi [4] first introduced the notion of multiplication modules.
An R-module M is said to be a multiplication module if, for every pair of submodules
L ⊆ N of M, there exists an ideal I of R such that L = IN. Latter in 1988, Barnard [5]
alternatively called an R-module M a multiplication if each submodule N of M is of the
form N = IM for some ideal I of R, or equivalently, N = (N :R M)M. Some more studies
on multiplication modules can be found in [5–7].

At the beginning of this century, Anderson et al. [8] introduced the notion of S-
Noetherian rings, which are a generalization of classical Noetherian rings in terms of a
multiplicative set S. Since then, some well-known notions of rings and modules have been
investigated. In 2020, Anderson, Arabaci, Tekir, and Koç [9] introduced and studied the
notion of S-multiplication modules. An R-module M is called an S-multiplication module
if, for each submodule N of M, there exist s ∈ S and an ideal I of R such that sN ⊆ IM ⊆
N. They generalized some known results on multiplication modules to S-multiplication
modules and studied S-multiplication modules in terms of S-prime submodules. Recently,
Chhiti and Moindze [10] studied the notion of S-multiplication rings. A ring R is called an
S-multiplication ring if each ideal of R is of the S-multiplication type. They generalized
some properties of multiplication rings to S-multiplication rings and then studied the
transfer of S-multiplication rings to trivial ring extensions and amalgamated algebras.

In 2021, the second author of this paper first introduced and studied the uniformly
S-torsion theory in [11]. Recently, the first author et al. [12] considered the notions of
uniformly S-Noetherian rings and modules, which can be seen as “uniform” versions
of S-Noetherian rings and modules. The motivation of this article is to introduce and
study the notions of uniformly S-multiplication modules and rings, which are “uniform”
versions of the S-multiplication modules and rings given in [9,10]. This paper is arranged
as follows. In Section 2, we introduce and study the notion of uniformly S-multiplication
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modules. We transfer the uniformly S-multiplication modules to finite direct products,
localizations, u-S-isomorphisms, and idealizations. In Section 3, we investigate uniformly
S-multiplication rings. We also study uniformly S-multiplication rings under finite direct
products, localizations, and idealizations. Furthermore, we connect and distinguish the
notions of multiplication modules and rings, uniformly S-multiplication modules and rings,
and S-multiplication modules and rings.

2. Uniformly S-Multiplication Modules

Recall from [5] that an R-module M is said to be a multiplication module if each
submodule N of M is of the form N = IM for some ideal I of R, or equivalently, N = (N :R
M)M. Let S be a multiplicative subset of R. Recently, Anderson et al. [9] introduced the
concept of S-multiplication modules; an R-module M is called an S-multiplication module
if, for each submodule N of M, there exist s ∈ S and an ideal I of R such that sN ⊆ IM ⊆ N.
Note that the “s” in this definition is not uniform, i.e., it is decided by the submodule N.
To keep it in “uniformity”, we introduce the following notion.

Definition 1. Let M be an R-module and let S be a multiplicative subset of R. Then, M is called a
u-S-multiplication (uniformly S-multiplication) module (with respect to s) if there exists an element
s ∈ S such that, for each submodule N of M, there is an ideal I of R satisfying sN ⊆ IM ⊆ N.

From the definition, one can easily verify that an R-module M is a u-S-multiplication
if and only if there exists s ∈ S such that, for each submodule N of M, we have sN ⊆ (N :R
M)M ⊆ N.

If S is composed of units, then an R-module is a u-S-multiplication if and only if it is
an S-multiplication; if 0 ∈ S, then every R-module is a u-S-multiplication. In general, we
have the following implications.

multiplication module =⇒ u-S-multiplication module =⇒ S-multiplication module

Proposition 1. Let Mi be an Ri-module and let Si ⊆ Ri be a multiplicative subset (i = 1, 2). Set
R = R1 × R2, S = S1 × S2, and M = M1 ×M2. Then, M is a u-S-multiplication module if and
only if M1 is a u-S1-multiplication module and M2 is a u-S2-multiplication module.

Proof. For the “only if” part, suppose M is a u-S-multiplication module with respect to
some s = (s1, s2) ∈ S1 × S2 . Then, (s1, s2)(N1 × {0}) ⊆ [(N1 × {0}) : M]M for any
R1-submodule N1 of M1. Therefore, s1N1 ⊆ (N1 : M)M. It follows that M1 is a u-S-
multiplication module with respect to some s1 ∈ S1. Similarly, M2 is a u-S-multiplication
module with respect to some s2 ∈ S2.

For the “if” part, suppose M1 is a u-S-multiplication module with respect to some s1 ∈
S1 and M2 is a u-S-multiplication module with respect to some s2 ∈ S2. Set s = (s1, s2) ∈ S.
Let N be an R-module. Then, N = N(R1 × R2) ∼= N1 × N2, where Ni = NRi (i = 1, 2).
Therefore, si Ni ⊆ (Ni : Mi)Mi for each i = 1, 2. Consequently, (s1, s2)(N1 × N2) ⊆
[(N1 × N2) : (M1 ×M2)](M1 ×M2). It follows that M = M1 ×M2 is a u-S-multiplication
module with respect to s.

Note that u-S-multiplication modules need not be a multiplication module. Indeed,
let R1 and R2 be two commutative rings and let M1 be a multiplication R1-module;
however, M2 is not a multiplication R2-module. Set R = R1 × R2, S = {1} × {0} and
M = M1 ×M2. Then. M is not a multiplication R-module, but it is a u-S-multiplication
R-module by Proposition 1.

The following example shows that an S-multiplication module need not be a u-S-
multiplication module.
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Example 1 ([9], Example 3). Consider the Z-module E(p) = {γ := r
pm +Q ∈ Q/Z | r ∈

Z, m ≥ 0}, where p is a prime number. Take the multiplicative closed subset S = {pn : n ∈
N∪ {0}} of Z. Then, the Z-module E(p) is an S-multiplication module (see ([9], Example 3)).

We claim that E(p) is not a u-S-multiplication. Indeed, assume that E(p) is a u-S-multiplication
with respect to pn ∈ S for some n ≥ 0. All proper submodules of E(p) are of the form
Gt = {γ := r

pt + Z ∈ Q/Z | γ ∈ Z} for every t ∈ N ∪ {0}. Assume that t ≥ n + 1.
Then, (Gt :Z E(p)) = 0. Therefore, 0 6= pnGt 6= (Gt :Z E(p))E(p) = 0E(p). Hence, E(p) is not
a u-S-multiplication module.

Let S be a multiplicative subset of R. The saturation S∗ of S is defined as S∗ = {s ∈ R |
s1 = ss2 for some s1, s2 ∈ S}. A multiplicative subset S of R is called saturated if S = S∗.
Note that S∗ is always a saturated multiplicative subset containing S.

Proposition 2. Let M be an R-module. Then, the following statements hold.

(1) If S ⊆ T are multiplicative subsets of R and M is a u-S-multiplication module, then M is a
u-T-multiplication module.

(2) M is a u-S-multiplication module if and only if M is a u-S∗-multiplication module, where S∗

is the saturation of S.

Proof. (1): Obvious. (2): Let M be a u-S-multiplication module. Since S ⊆ S∗, by (i), M
is a u-S∗-multiplication module. For the converse, assume that M is an S∗-multiplication
module with some s ∈ S∗. Then, sN ⊆ (N :R M)M for any submodule N of M. Suppose
s1 = ss2 with some s1, s2 ∈ S. Then, s1N = ss2N ⊆ s2(N :R M)M ⊆ (N :R M)M.
Therefore, M is a u-S-multiplication module with respect to s1 ∈ S.

Let p be a prime ideal of R. We say an R-module E is a u-p-multiplication shortly
provided that E is a u-(R \ p)-multiplication.

Theorem 1. Let M be an R-module. Then, the following statements are equivalent.

(1) M is a multiplication module.
(2) M is a u-p-multiplication module for each p ∈ Spec(R).
(3) M is a u-m-multiplication module for each m ∈ Max(R).
(4) M is a u-m-multiplication module for each m ∈ Max(R) with Mm 6= 0m.

Proof. (1)⇒ (2) : Follows by their definitions.
(2)⇒ (3) : This follows the assumption that every maximal ideal is a prime ideal.
(3)⇒ (4) : This is trivial.
(4)⇒ (1) : Suppose M is a u-m-multiplication module with respect to some sm 6∈ m

for each m ∈ Max(R) with Mm 6= 0m. Take a maximal ideal m of R with Mm 6= 0m. Since
M is a u-m-multiplication module with respect to sm, we have smN ⊆ (N :R M)M for every
submodule N of M. Then, Nm = (smN)m ⊆ ((N :R M)M)m ⊆ Nm. If Mm = 0m, certainly
Nm = ((N :R M)M)m. Thus, we conclude that Nm = ((N :R M)M)m for each maximal
ideal m of R, and this yields N = (N :R M)M. Therefore, M is a multiplication module.

Recall from [11] that an R-sequence M
f−→ N

g−→ L is called u-S-exact provided that there
is an element s ∈ S such that sKer(g) ⊆ Im( f ) and sIm( f ) ⊆ Ker(g). An R-homomorphism
f : M → N is a u-S-monomorphism (respectively, a u-S-epimorphism or an S-isomorphism)

provided 0→ M
f−→ N (respectively, M

f−→ N → 0 or 0→ M
f−→ N → 0 ) is u-S-exact. It is

easy to verify that an R-homomorphism f : M→ N is a u-S-monomorphism (respectively,
u-S-epimorphism) if and only if Ker( f ) (respectively, Coker( f )) is a u-S-torsion module.

Proposition 3. Let M and M′ be R-modules. Suppose M is u-S-isomorphic to M′. Then, M is a
u-S-multiplication module if and only if M′ is a u-S-multiplication module.
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Proof. Let f : M → M′ be a u-S-isomorphism. Then, there exists s ∈ S such that
sKer( f ) = sCoker( f ) = 0 and M is a u-S-multiplication module with respect to s. Let N
be a submodule of M′. Then, there is an ideal I of R such that s f−1(N) ⊆ IM ⊆ f−1(N).
Therefore, f (s f−1(N)) ⊆ f (IM) ⊆ f ( f−1(N)), i.e., sN ⊆ IIm( f ) ⊆ N. Since sCoker( f ) =
sM′/Im( f ) = 0, we have sM′ ⊆ Im( f ). Note that s2N ⊆ sIIm( f ) ⊆ sIM′. Consequently,
s2N ⊆ (sI)M′ ⊆ N. It follows that M′ is a u-S-multiplication module with respect to s2.
The converse follows by ([13], Proposition 1.1).

Proposition 4. Let M and M′ be R-modules. Suppose that S is a multiplicative subset of R
and f : M � M′ is a u-S-epimorphism. If M is a u-S-multiplication module, then M′ is a u-S-
multiplication module. Conversely, suppose that M′ is an S-multiplication module and tKer( f ) = 0
for some t ∈ S; then, M is a u-S-multiplication module.

Proof. By Proposition 3, we can assume that f is an epimorphism. Suppose M is a u-S-
multiplication module with respect to some s ∈ S. Then, sN ⊆ (N :R M)M ⊆ N for any
submodule N of M. Therefore, f (sN) ⊆ f ((N : M)M) ⊆ f (N). Let N′ be a submodule
of M′. Then, N := f−1(N′) is a submodule of M. It follows that sN′ = s f (N) ⊆ (N :
M) f (M) = (N : M)M′ ⊆ N′. Thus, sN′ ⊆ (N : M)M′ ⊆ N′ for any submodule N′ of M′.
Hence, M′ is a u-S-multiplication module with respect to s.

On the other hand, suppose that M′ = f (M) is a u-S-multiplication module with
respect to s. Then, for any submodule N of M, there is an ideal I of R with s f (N) ⊆
I f (M) ⊆ f (N). Hence, sN + Ker( f ) ⊆ N + Ker( f ). Since tKer( f ) = 0, we have (st)N ⊆
(tI)M ⊆ tN ⊆ N. Consequently, M is a u-S-multiplication module with respect to st.

Proposition 5. Let R be a commutative ring and let S and T be multiplicative subsets of R. Set
S̃ = { s

1 ∈ T−1R|s ∈ S}, a multiplicative subset of T−1R. Suppose M is a u-S-multiplication
R-module. Then, T−1M is a u-S̃-multiplication T−1R-module.

Proof. Suppose M is a u-S-multiplication R-module with respect to some s ∈ S. Then,
for any submodule N of M, there is an ideal I of R such that sN ⊆ IM ⊆ N. Let L be
an submodule of T−1M. Then, L = T−1N′ for some submodule N′ of M. It follows that
s
1 L = T−1(sN′) ⊆ (T−1 I)(T−1M) ⊆ T−1N′ = L. Therefore, T−1M is a u-S̃-multiplication
T−1R-module with respect to s

1 ∈ S̃.

A multiplicative subset S of R is said to satisfy the maximal multiple condition if
there exists an s ∈ S such that t|s for each t ∈ S. Both finite multiplicative subsets and the
multiplicative subsets that consist of units satisfy the maximal multiple condition.

Proposition 6. Let M be an R-module and let S be a multiplicative subset of R satisfying the
maximal multiple condition. Then, the following statements hold:

(1) M is a u-S-multiplication module.
(2) M is an S-multiplication module.
(3) S−1M is a multiplication S−1R-module.

Proof. (1)⇒ (2): Trivial.
(2)⇒ (3): It follows by ([9], Corollary 2).
(3) ⇒ (1): Assume that S−1M is a multiplication S−1R-module. Take a submodule

N of M. We have S−1N = (S−1 I)(S−1M) = S−1(IM) for any submodule N of M. Choose
s ∈ S such that t|s for every t ∈ S. Note that for each n ∈ N, we have n

1 ∈ S−1N = S−1(IM),
and so there exists t ∈ S such that tn ∈ IM and, hence, sn ∈ IM. Thus, sN ⊆ IM.
Similarly, we have sIM ⊆ N. Therefore, we obtain s2N ⊆ (sI)M ⊆ N. Hence, M is a
u-S-multiplication module with respect to s2.

Recall from [12] the conception of u-S-Noetherian modules. Let {Mj}j∈Γ be a family
of R-modules and let Nj be a submodule of Mj generated by {mi,j}i∈Λj ⊆ Mj for each j ∈ Γ.
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A family of R-modules {Mj}j∈Γ is u-S-generated (with respective to s) by {{mi,j}i∈Λj}j∈Γ
provided that there exists an element s ∈ S such that sMj ⊆ Nj for each j ∈ Γ, where
Nj = 〈{mi,j}i∈Λj〉. We say a family of R-modules {Mj}j∈Γ is u-S-finite (with respective to s)
if the set {mi,j}i∈Λj can be chosen as a finite set for each j ∈ Γ.

Definition 2 ([12]). Let R be a ring and let S be a multiplicative subset of R. An R-module M is
called a u-S-Noetherian R-module provided the set of all submodules of M is u-S-finite. A ring R is
called a u-S-Noetherian if R itself is a u-S-Noetherian R-module .

Let R be a ring, let S be a multiplicative subset of R, and let M be an R-module. Denote
by M• an ascending chain M1 ⊆ M2 ⊆ · · · of submodules of M. An ascending chain M• is
called stationary with respective to s if there exists k ≥ 1 such that sMn ⊆ Mk for any n ≥ k.
Following ([12], Theorem 2.7), M is u-S-Noetherian if and only if there exists an element
s ∈ S such that any ascending chain of submodules of M is stationary with respective to s.

Proposition 7. Let R be a u-S-Noetherian ring and let M be a u-S-multiplication R-module. Then,
M is a u-S-Noetherian R-module.

Proof. We may assume R is a u-S-Noetherian ring and M is a u-S-multiplication R-module
with respect to s ∈ S. Let M1 ⊆ M2 ⊆ · · · be an ascending chain of submodules of M.
Set Ai = (Mi : M). Then, A1 ⊆ A2 ⊆ · · · is an ascending chain of ideals of R. Then
there exists n such that sAk ⊆ An ⊆ Ak for any k ≥ n. Since M is a u-S-multiplication,
sMi ⊆ (Mi : M)M = Ai M for all i. Hence, s2Mk ⊆ sAk M ⊆ An M ⊆ Mn. It follows that M
is a u-S-Noetherian R-module with respect to s2.

Let M be an R-module. The idealization construction R(+)M = R ⊕ M of M is
a commutative ring with componentwise additions and multiplications (a, m)(b, m′) =
(ab, am′ + bm) for each a, b ∈ R; m, m′ ∈ M (see [14]). If S is a multiplicative subset of R
and N is a submodule of M, then S(+)N is a multiplicative subset of R(+)M. Now, we
transfer the uniformly S-multiplication properties to idealization constructions.

Theorem 2. Let M be an R-module, let N be a submodule of M, and let S be a multiplicative
subset of R. Then, the following statements are equivalent.

(1) N is a u-S-multiplication R-module.
(2) 0(+)N is a u-S(+)0-multiplication ideal of R(+)M.
(3) 0(+)N is a u-S(+)M-multiplication ideal of R(+)M.

Proof. (1)⇒ (2) : Suppose N is a u-S-multiplication R-module with respect to some s ∈ S.
Let J be an ideal of R(+)M contained in 0(+)N. Then, J = 0(+)N′ for some submodule
N′ of N. Since N is a u-S-multiplication R-module with respect to s, there exists an ideal I
of R such that sN′ ⊆ IN ⊆ N′. Hence,

(s, 0)J = (s, 0)0(+)N = 0(+)sN′ ⊆ 0(+)IN = I(+)M · 0(+)N ⊆ 0(+)N′ = J.

It follows that 0(+)N is a u-S(+)0-multiplication ideal of R(+)M.
(2)⇒ (3) : Since S(+)0 ⊆ S(+)M, (3) follows by Proposition 2.
(3) ⇒ (1) : Suppose that 0(+)N is a u-S(+)M-multiplication ideal of R(+)M with

respective to some (s, m) ∈ S(+)M. Let N′ be a submodule of N. Then, 0(+)N′ is an
ideal of R(+)M with 0(+)N′ ⊆ 0(+)N. Since 0(+)N is a u-S(+)M-multiplication ideal
of R(+)M with respect to (s, m), then there exists J′ of R(+)M such that (s, m)0(+)N′ ⊆
J′ · 0(+)N ⊆ 0(+)N′. Set J = J′ + 0(+)M. Then, J = I(+)M for some ideal I of R.
Note that

J′ · 0(+)N = J′ · 0(+)N + 0(+)M · 0(+)N = (J′ + 0(+)M) · 0(+)N = J · 0(+)N.
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So (s, m)0(+)N′ ⊆ J · 0(+)N ⊆ 0(+)N′. This implies that sN′ ⊆ IN ⊆ N′. So N is a
u-S-multiplication R-module with respect to s.

3. Uniformly S-Multiplication Rings

Let R be a ring and let S be a multiplicative subset of R. Recall from [10] that an ideal
I of R is an S-multiplication ideal if I is an S-multiplication R-module, and a ring R is an
S-multiplication ring if each ideal of R is an S-multiplication. Equivalently, for each pair
of ideals J ⊆ K of R, there exist s ∈ S and an ideal I of R satisfying sJ ⊆ IK ⊆ J. Now, we
introduce the notion of uniformly S-multiplication rings.

Definition 3. Let R be a ring and let S be a multiplicative subset of R. Then, R is called a u-S-
multiplication (uniformly S-multiplication) ring (with respect to s) if there exists s ∈ S such that
each ideal of R is a u-S-multiplication with respect to s, equivalently, if there exists s ∈ S such that,
for each pair of ideals J ⊆ K of R, there exists an ideal I of R satisfying sJ ⊆ IK ⊆ J.

If S is composed of units, then a ring R is a u-S-multiplication if and only if it is an
S-multiplication; if 0 ∈ S, then every ring R is a u-S-multiplication. In general, we have the
following implications.

multiplication ring =⇒ u-S-multiplication ring =⇒ S-multiplication ring

Proposition 8. Let S ⊆ T be two multiplicative subsets of R and S∗ the saturation of S. Then the
following statements hold.

(1) If R is a u-S-multiplication ring, then R is a u-T-multiplication ring.
(2) R is a u-S-multiplication ring if and only if R is a u-S∗-multiplication ring.

Proof. (1) It immediately follows from the definition of u-S-multiplication rings.
(2) Suppose R is an S∗-multiplication ring with some s ∈ S∗. Then for any pair of

ideals J ⊆ K, there exists ideal I of R such that sJ ⊆ IK ⊆ J. Suppose s1 = ss2 with some
s1, s2 ∈ S. Then s1 J ⊆ IK ⊆ J. So R is a u-S-multiplication ring with respect to s1 ∈ S.

Corollary 1. Every multiplication ring is a u-S-multiplication ring.

Proof. Remark that a multiplication ring is exactly a u-{1}-multiplication ring. Therefore,
the result follows by Proposition 8(1).

The proof of following result is similar to that of Proposition 1, and so we omit it.

Proposition 9. Let R = R1 × R2 and S = S1 × S2. Then, R is a u-S-multiplication ring if and
only if R1 is a u-S1-multiplication ring and R2 is a u-S2-multiplication ring.

The following example shows that u-S-multiplication rings are not necessary multipli-
cation rings.

Example 2. Let R1 be a multiplication ring and let R2 be a non-multiplication ring. Set R =
R1 × R2 and S = {1} × {0}. Then, R is not a multiplication ring but a u-S-multiplication ring
by Proposition 9.

Trivially, every u-S-multiplication ring is an S-multiplication. Moreover, we have the
following result.

Proposition 10. Let S be a multiplicative subset of R that satisfies the maximal multiple condition.
Then, R is a S-multiplication ring if and only if R is a u-S-multiplication ring.
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Proof. If R is a u-S-multiplication ring, R is trivially an S-multiplication. On the other
hand, suppose R is an S-multiplication ring. Then, each ideal I of R is an S-multiplication.
Therefore, for each pair of ideals J ⊆ K of R, there exist t ∈ S and an ideal I of R such
that tJ ⊆ IK ⊆ J. Since S satisfies the maximal multiple condition, there exists s ∈ S
such that t|s. Thus, sJ ⊆ tJ ⊆ IK ⊆ J. It follows that R is a u-S-multiplication ring with
respect to s.

Let R be a ring and let S be a multiplicative subset of R. For any s ∈ S, there is a
multiplicative subset Ss = {1, s, s2, . . . } of S. We denote by Ms the localization of M at Ss
for an R-module M.

Proposition 11. Suppose R is a u-S-multiplication ring. Then, there is an s ∈ S such that Rs is a
multiplication ring.

Proof. Suppose R is a u-S-multiplication ring with respect to some s ∈ S. Let J ⊆ K
be a pair of ideals of Rs. Then, there are two ideals J′ ⊆ K′ of R such that J = J′s and
K = K′s. There exists an ideal I′ of R satisfying sJ′ ⊆ I′K′ ⊆ J′. By localizing at s, we have
J ⊆ IK ⊆ J, where I = I′s. It follows that Rs is a multiplication ring.

It follows from Proposition 9.13 in [2] that an integral domain is a multiplication
ring if and only if it is a Dedekind domain. The following example shows that rings
with each ideal u-S-multiplication are not necessary u-S-multiplication rings, and thus
S-multiplication rings are u-S-multiplication rings in general.

Example 3. Let D be an integral domain such that Ds is not a Dedekind domain for any 0 6= s ∈ D
(e.g., D = k[x1, x2, . . . ], the polynomial ring with infinite variables over a field k). Set S = D−{0}.
Then D is not a u-S-multiplication ring by Proposition 11. However, every ideal of D is a u-S-
multiplication, and thus, D is an S-multiplication ring. Indeed, let K be an ideal of R and let J be a
sub-ideal of K. Suppose K = 0. Then, J = 0, and thus, sJ ⊆ IK ⊆ J always holds. Otherwise, let
0 6= s ∈ K and I = J. Then, we also have sJ ⊆ IK ⊆ J. It follows that K is a u-S-multiplication
ideal of R.

Remark 1. Note that the converse of Proposition 11 is not true in general. Indeed, let D be a
valuation domain with valuation group Z× Z. It follows by ([15], Chapter II, Exercise 3.4) that
the maximal ideal m of R is principally generated, say generated as s 6= 0. Let S = D − {0}.
Then, D is not a u-S-multiplication ring by Example 3. However Ds is a discrete valuation domain,
and hence, it is a multiplication ring.

Let p be a prime ideal of R. We say a ring R is a u-p-multiplication provided that R is a
u-(R \ p)-multiplication.

Theorem 3. Let R be a ring. Then, the following statements are equivalent:

(1) R is a multiplication ring.
(2) R is a u-p-multiplication ring for each p ∈ Spec(R).
(3) R is a u-m-multiplication ring for each m ∈ Max(R).

Proof. (1)⇒ (2)⇒ (3) : Trivial.
(3) ⇒ (1) : Suppose R is a u-m-multiplication ring with respect to some sm 6∈ m for

each m ∈ Max(R). Let J ⊆ K be a pair of ideals of R. Then, there exists an ideal Im of
R such that sm J ⊆ ImK ⊆ J. Since {sm | m ∈ Max(R)} generates R, there exist finite

elements sm1 , ..., smn such that J = 〈sm1 , ..., smn〉J ⊆ (
n
∑

i=1
Im)K ⊆ J. Setting I =

n
∑

i=1
Im, we

have IK = J. Consequently, R is a multiplication ring.

Proposition 12. Let R be a ring, let M be an R-module, and let S be a multiplicative subset of R.
Suppose R(+)M is a u-S(+)M-multiplication ring with respect to some (s, m) ∈ S(+)M. Then,
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R is a u-S-multiplication ring with respect to s, and each submodule of M is a u-S-multiplication
R-module with respect to s.

Proof. Let M′ be a submodule of M and let N be a submodule of M′. Then, 0(+)N is a
sub-ideal of 0(+)M′. Hence, there exists an ideal I′ of R(+)M such that (s, m)0(+)N ⊆
I′0(+)M′ ⊆ 0(+)N. Set I = {r ∈ R | there exists (r, m) ∈ I′}. Then, sN ⊆ IM′ ⊆ N,
and hence, M′ is a u-S-multiplication R-module with respect to s.

Let J ⊆ K be a pair of ideals of R. Then, J(+)M ⊆ K(+)M is a pair of ideals of R(+)M.
Hence, there exists an ideal L′ of R(+)M such that (s, m)J(+)M ⊆ L′K(+)M ⊆ J(+)M. Set
L = {r ∈ R | there exists (r, m) ∈ L′}. Then, sJ ⊆ LK ⊆ J. Hence, R is a u-S-multiplication
ring with respect to s.

Remark 2. We do not know whether the converse of Proposition 12 is true. That is, suppose R
is a u-S-multiplication ring with respect to s and each submodule of M is a u-S-multiplication
R-module with respect to s. Do we have R(+)M is a u-S(+)M-multiplication ring with respect to
some (s, m) ∈ S(+)M?
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