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Abstract: The clustering of time series with geo-referenced data requires a suitable dissimilarity matrix
interpreting the comovements of the time series and taking into account the spatial constraints. In this
paper, we propose a new way to compute the dissimilarity matrix, merging both types of information,
which leverages on the Wasserstein distance. We then make a quasi-Gaussian assumption that yields
more convenient formulas in terms of the joint correlation matrix. The method is illustrated in a case
study involving climatological data.
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1. Introduction

Time-series cluster analysis collects various unsupervised learning techniques for
organizing data points collected over time into groups based on their similarity. The general
objective is to maximize data similarity within clusters and minimize it across clusters (see,
for instance, [1,2]).

Usually, such methods depend on the different ways of defining the similarity among
time series, which can be based on (a) the observed time series values or suitable transfor-
mations thereof; (b) specific features extracted from the time series, such as autocorrelation,
periodograms, etc.; or (c) the data-generating stochastic process (see [3]).

Copula-based clustering methods for time series tend to group time series according
to the degree of cross-sectional dependence among different patterns (see [4] and refer-
ences therein). Typical choices include rank-correlation measures [5], tail dependence
coefficients [6–8], and copula distances and/or divergences [9–13]. As their specific fea-
ture, the obtained cluster composition is invariant under a monotone transformation of
the original time series, hence it is usually more robust against the presence of outliers.
Copula-based algorithms, hence, focus on the joint comovements among time series and,
as such, are particularly used in risk analysis due to their ability to detect extreme scenarios
that occur when both time series tend to fall/rise at the same time) [6,7,14–16].

When time series are collected at different geographic locations, i.e., geo-referenced
data are considered where a variable is observed over time at a static spatial location,
copula-based algorithms may, hence, detect the impacts of extreme events across space [17].
In such cases, it may be of interest to obtain clusters that show geographical proximity in
order to enhance their interpretability. See, for instance, [18,19]. These situations occur
not only in environmental science, but also in the financial context. In this latter case,
the attributes may describe the economic distance between the markets and can provide
deeper insights into the dependence structure of stock returns (see, e.g., [20–22]).

The goal of this paper is to consider clustering of time series for geo-referenced data.
In particular, we focus on the construction of a novel pairwise dissimilarity among time
series that takes into account the spatial information.
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To fix ideas, consider n ≥ 2 real-valued time series xi = (xi1, . . . , xiT) of length T,
where xit represents the observed value of the i-th time series (i = 1, . . . , n) at the t-th
period (t = 1, . . . , T). Each time series is equipped with additional information on the
phenomenon under consideration, represented by a p-dimensional vector of attributes,
si = (si1, . . . , sip) ∈ Rp, where sik represents the value of the i-th unit (i = 1, . . . , n) at the k-
th attribute (k = 1, . . . , p). The additional attributes are typically geographic coordinates of
the location at which the i-th time series is observed (thus, p = 2 and latitude and longitude
are collected). For this reason, we will refer to these vectors as the spatial information.

The classical strategy in spatio-temporal clustering (see, e.g., [23]) is to start with a
(n × n) matrix of pairwise dissimilarities among x1, . . . , xn. This latter matrix is, hence,
modified by a nonlinear function of the separating distances among s1, . . . , sn. Finally,
the modified dissimilarity matrix is used as the input to obtain the clustering partition via
algorithms such as (agglomerative) hierarchical clustering, PAM, and fuzzy C-means (see,
e.g., [24–26]). In the copula-based framework, such an approach has been adopted, for in-
stance, in [27,28], which considers the temporal matrix induced by the (pairwise) copula
parameters. In [29], instead, the correlation-based dissimilarity matrix is transformed by
means of the spatial information, taking into account the intrinsic geometry of the space of
correlation matrices. According to [30], all these methods have the tendency to produce a
smooth dissimilarity matrix without, however, reinforcing the spatial contiguity between
the resulting clusters.

In [11] (see also [31]), a different strategy has been proposed. It consists of associating
with the spatial information (usually contained in the Euclidean space) a suitable copula
(the spatial copula). Such a latter object is, hence, combined with the temporal copula to
obtain an element of the copula space that merges temporal and spatial information, and is
used for the calculation of the associated dissimilarity.

The present work exploits tools from optimal transport and the Wasserstein metric (see,
e.g., [32,33]) to modify the framework of [11] by introducing the following main novelties:
(a) the dissimilarity measure is constructed by equipping the space of bivariate copulas
C with the Wasserstein metric dW2 ; (b) the temporal and spatial information is merged
(at the level of pairwise association) via geodetic curves [34] (also known as weighted
barycenters [35]) in (C, dW2). Such an approach has the following advantages:

• The Wasserstein distance allows for a meaningful comparison between distributions
also without density. This property is not shared by the most common distances
and divergences, such as the total variation distance, the Hellinger distance, or the
Kullback–Leibler divergence (see, e.g., [36]).

• The Wasserstein metric seems to be more appropriate to measure distance between
copulas since it does not lead to counter-intuitive clusters (see, e.g., [37]).

As possible limitations, however, the calculations cannot always be explicitly made. For this
reason, we rely on a quasi-Gaussian approach of the presented framework, as in [38].

The paper is organized as follows. In Section 2, we consider some tools from optimal
transport theory that will be used in the manuscript. In Section 3, we present the method-
ology underlying the computation of a dissimilarity matrix. In Section 4, we present a
quasi-Gaussian approximation of the dissimilarity matrix extraction. Section 5 illustrates
the effect of the spatial dependence to the whole procedure. Finally, Section 6 presents an
empirical application. Section 7 concludes the paper.

2. Background on Optimal Transport, Wasserstein Distance, and Copulas

In order to extract the spatial information and to merge the temporal and spatial
dependencies, we will leverage on the 2-Wasserstein distance between probability mea-
sures [39,40] and on optimal transport theory [32,33]. To this end, we recall some basic facts
that will be used in this paper (see, e.g., [32,33,39]).
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Given a domain Ω ⊆ Rd (that we take to be compact and convex for simplicity), we
define the space W2(Ω) as the space of probability measures on Ω with finite moments of
order 2 endowed with the distance dW2 , defined through

dW2(µX , µY) =

(
inf

γ∈Γ(µX ,µY)

∫
Ω×Ω

|x − y|2dγ(x, y)
)1/2

, (1)

where Γ(µX , µY) denotes the collection of all joint measures on Ω × Ω whose marginals are
µX and µY, respectively.

It is possible to prove that the above minimization problem has a solution, which is
unique (and it is concentrated on the graph of a map f OT : Ω → Ω, called the optimal trans-
port map) if µX is absolutely continuous with respect to the Lebesgue measure (actually, it
is enough that µX vanishes on small sets [32]). Moreover, dW2 is a distance in W2(Ω).

The space W2(Ω) is a geodesic space where, for two measures µX and µY, the unique
geodesic curve connecting them is obtained through

µ(α) = ((1 − α)id + α f OT)#µX , (2)

where f OT is the optimal transport map from µX to µY, id is the identity mapping on
Rd, and α ∈ [0, 1]. Here, T#µ denotes the push-forward of the measure µ under the
mapping T. Such a curve is also known as the displacement interpolation [34]. This provides
a useful interpolation between µX and µY which is, in general, different from the convex
combination of the two measures. As a matter of fact, µ(α) coincides with the weighted
barycenter [35] of (µX , 1 − α) and (µY, α), i.e., it solves the minimization problem

µ(α) = arg min
µ

(
(1 − α)d2

W2
(µX , µ) + αd2

W2
(µY, µ)

)
(3)

over all possible probability measures µ (see also [41,42]). Wasserstein barycenters have
found various applications in machine learning, especially in dealing with image recogni-
tion (see, for instance, [39]).

The actual computation related to the Wasserstein distances is largely simplified when
we deal with Gaussian measures. In fact, the Wasserstein distance between centered
Gaussian distributions is well known and it is given by the so-called Bures–Wasserstein
distance between their covariance matrices. Specifically, let X ∼ N(0, Σ1) and Y ∼ N(0, Σ2)
be two Gaussian random vectors with positive semi-definite covariance matrices Σ1 and
Σ2, respectively. Then, the following holds (see, e.g., Theorem 2.2 in [43]):

d2
W2

(X, Y) = d2
W2

(Σ1, Σ2) = tr(Σ1) + tr(Σ2)− 2tr
((

Σ1/2
1 Σ2Σ1/2

1

)1/2
)

. (4)

Such a formula also extends to the case when Σ1 and Σ2 are singular (see [44], p. 239).
In the particular case that X and Y are also two-dimensional, the Wasserstein distance has
the following expression (see [44], p. 239):

d2
W2

(X, Y) = tr(Σ1) + tr(Σ2)− 2
(

tr(Σ1Σ2) + 2
√

det(Σ1Σ2)

)1/2
. (5)

The (weighted) barycenter among the Gaussian vectors X and Y is a Gaussian vector whose
covariance matrix is of the form (see, e.g., Lemma 2.3 in [43])

Σ(α) = Σ1#αΣ2 = Σ−1/2
1

(
(1 − α)Σ1 + α

(
Σ1/2

1 Σ2Σ1/2
1

)1/2
)

Σ−1/2
1 . (6)

Standard references for the study of the Wasserstein distance for Gaussian measures
include [44–47].
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Beyond the Gaussian cases, explicit expressions for the Wasserstein distance and/or
the optimal couplings for multivariate measures are rare. However, the involved proba-
bility measures can be approximated by taking consistent empirical versions of the input
measures. See, for instance, [39,40].

In the following, we will mainly consider doubly stochastic measures [48], i.e., prob-
ability measures on [0, 1]2 whose margins coincide with the Lebesgue measure on [0, 1].
These measures are better known as copulas. The space C of a bivariate copula can be or-
dered with respect to pointwise order among functions. It contains the Fréchet–Hoeffding
upper-bound copula M(u, v) = min(u, v), which interprets the maximal degree of simi-
larity (comonotonicity) between two random variables. Moreover, the Fréchet–Hoeffding
lower bound is given by the copula W(u, v) = max(u + v − 1, 0), which interprets the
counter-monotonic behavior of two variables. Another notable copula is Π(u, v) = uv,
which represents the independence of random variables.

The set C, considered as a compact subset of W2([0, 1]2) with respect to weak conver-
gence, will be equipped with the metric dW2 . In general, the use of the Wasserstein metric
for capturing dependence aspects has been recently employed in [38,49,50], among others.
Typically, copula-based dependence measurements are expressed as a discrepancy of the
estimated copula from the independent case. Here, instead, we will consider the Wasser-
stein distance between a copula and the comonotonicity copula M. This perspective has
been also recently considered in [36] in a Bayesian setting.

Copulas have been recently adopted in the construction of various dissimilarity mea-
sures that are used as input to clustering algorithms (see, for instance, [51] and references
therein). The use of a dissimilarity based on the Wasserstein distance between copulas
appeared, for instance, in [37] in order to measure the distances among different Gaussian
copulas for clustering purposes (see also [52]). Here, we extend the range of applications to
the case of time series with geo-referenced information.

3. The Methodology

Our aim is to cluster n ≥ 2 time series, each of them equipped with a (static)
p-dimensional vector of attributes associated with each unit, which are typically geographic
coordinates of the location at which the time series are observed.

Given the input time series and the (static) attributes, and a fixed weighting parameter
α ∈ [0, 1], we aim at finding an (n× n) dissimilarity matrix ∆∆∆(α) that merges all the previous
information. The (i, j)-entry ∆(α)

ij of ∆∆∆(α) interprets the temporal dependence between units
i and j by taking into account the similarity between si and sj. The relative importance of
each of the two criteria is summarized by the parameter α, i.e., α = 0 corresponds to no
influence of the spatial component.

For every pair (i, j) with i ̸= j, ∆(α)
ij is constructed in the following way:

1. Determine the copula Cts
ij that describes the temporal dependence between the i-th

and j-th time series.
2. Determine the copula Csp

ij that interprets the spatial proximity between the attribute
vectors si and sj associated with the i-th and j-th time series.

3. Merge Cts
ij and Csp

ij into one single copula C(α)
ij that represents their weighted barycen-

ter. This copula depends on the tuning parameter α. Then, define

∆(α)
ij = dW2(M, C(α)

ij ),

i.e., the distance of C(α)
ij from the comonotonicity copula M, which represents maximal

concordance.

Once the dissimilarity matrix is obtained, it can be used as an input of various algo-
rithms like hierarchical agglomerative methods, medoids-based procedures, etc.

The previously described procedure is illustrated in detail below.
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3.1. Extract the Temporal Dependence

In order to capture the dependence among the time series, it is usual in the context
of copula-based clustering (see, for instance, [4]) to proceed in two steps. First, we filter
serial dependence using univariate time-series models, like the ARMA-GARCH family,
and hence, we model the cross-sectional dependence using a copula for the residuals (see,
for instance, [53–56]).

To fix ideas, we assume that the multivariate time series follows the model
Xt = (X1t, . . . , Xnt), where

Xt = µµµt(θ) + σσσt(θ)εεεt, (t = 1, . . . , T) (7)

where the innovations εεεt = (ε1t, . . . , εnt) are independent and identically distributed,
with E(εit) = 0 and V(εit) = 1 for i = 1, . . . , n, with the continuous joint distribution
function H. Moreover, µµµt and σσσt are the (time-varying) conditional mean and standard
deviation, respectively, and they are both Ft−1-measurable and independent of εεεt. Here,
Ft−1 contains information from the past and possibly information from exogenous variables
as well (see, e.g., [55]). Since the distribution function H is continuous, there exists a unique
copula C so that for all x ∈ Rn,

H(x) = C(F1(x1), . . . , Fn(xn)),

where Fi is the distribution function of εit for every t. Defining Ut = (F1(ε1t), . . . , Fn(εnt)),
one obtains that U1, . . . , UT are independent and identically distributed with distribution
function C. Since the marginal distributions are unknown, Ut is not observable. However,
given an estimator θ̂ of θ, we can compute the residuals

et =
xt −µµµt(θ̂)

σσσ(θ̂)
(8)

for t = 1, . . . , n. The ranks associated with the residuals contain the information about
the copula among the time series for any fixed t and, as such, they can be used to capture
the cross-sectional dependence (see, e.g., [56]). Specifically, for any t = 1, . . . , T, let rit
be the rank of eit among the residuals ei1, . . . , eiT of the i-th time series. The multivariate
scaled ranks

ut =

(
r1t

T + 1
, . . . ,

rnt

T + 1

)
(9)

are the so-called pseudo-observations.
Now, for every pair (i, j), i ̸= j, the copula Cts

ij that describes the cross-sectional
dependence between the i-th and j-th time series can be obtained from the associated
pseudo-observations (uit, ujt)t=1,...,T . Here, one can adopt:

• a parametric approach, i.e., one assumes that Cts
ij belongs to the same specific family

of copulas, whose parameter can be fitted via, e.g, maximum likelihood techniques.
See, e.g., [57].

• a non-parametric approach, which assumes that Cts
ij coincides with one smoothed

version of the empirical copula associated with the pseudo-observations, such as the
empirical checkerboard copula [58,59] or the empirical beta copula [60].

In the following, if not otherwise stated, we assume that every Cts
ij is absolutely

continuous (with respect to the Lebesgue measure).

3.2. Extract the Spatial Dependence

In order to describe the geographical proximity, we preliminarily select a specific family
of copulas that can be parameterized as (Cθ)Θ, with Θ = [θmin, θmax] ⊂ R. In particular,
we assume that M ∈ {Cθmin , Cθmax}, i.e., the family includes the Fréchet–Hoeffding upper
bound as a limiting case. Moreover, the following technical condition is assumed
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θ 7→ dW2(M, Cθ) is continuous and strictly monotone in θ. (10)

The continuity should be interpreted in the sense of topology of uniform convergence,
which is equivalent to pointwise convergence (see, e.g., [48]). Roughly speaking, con-
dition (10) implies a one-to-one correspondence between the copula parameter and the
Wasserstein distance between M and any member of the given parametric family.

Now, for every pair (i, j), i ̸= j, we assume that the copula Csp
ij that describes the

proximity among the attributes si and sj belongs to (Cθ)Θ, i.e., Csp
ij = Cθij . Moreover, we

assume that θij only depend on the (normalized) distance dij between si and sj.
Furthermore, we want to ensure that Cθij approaches M, i.e., it is close to the comono-

tonic case, when the normalized geographic distance is close to zero. To this end, we
propose to select, for every pair (i, j), θij as the unique value satisfying the equality:

dW2(M, Cθ)

maxθ′∈Θ dW2(M, Cθ′)
=

dist(si, sj)

maxi′ ,j′ dist(si′ , sj′)
(= dij). (11)

The existence and uniqueness of such a parameter is guaranteed by (10).
Various copula families satisfy the conditions stated above.

Example 1. Consider the parametric family of copulas of type

CFre
θ (u, v) = (1 − θ)M(u, v) + θW(u, v) (12)

where θ ∈ [0, 1], M and W are the Fréchet–Hoeffding upper- and lower-bound copulas, respectively.
Copulas of type (12) belong to the so-called Fréchet class, which was suggested as a possible model
for spatial dependence in [11]. For such copulas, we have (see Appendix A)

dW2(M, CFre
θ ) =

√
θ

3
.

Moreover, the family is continuous in θ with respect to uniform convergence.
Now, according to Equation (11), if such a family is used to model spatial dependence, then the

parameter is chosen so that √
θij/3

√
1/3

=
dist(si, sj)

maxi′ ,j′ dist(si′ , sj′)
= dij,

which gives θij = d2
ij.

3.3. Create the Dissimilarity Measure

In order to merge the temporal and spatial information, for a fixed α ∈ [0, 1], we
associate to each pair of units (i, j), i ̸= j, the copula C(α)

ij associated with the displacement

interpolation of (2). Namely, C(α)
ij is the copula associated with the probability measures

µ(α) that solves the minimization problem

µ(α) = arg min
µ∈W2([0,1]2)

(
(1 − α)d2

W2
(µCts

ij
, µ) + αd2

W2
(µCsp

ij
, µ)

)
, (13)

where µCts
ij

and µCsp
ij

are the measures associated with the copulas Cts and Csp, respectively.

The existence of such a copula is guaranteed under the assumption that Cts
ij is absolutely

continuous. Moreover, in such a case, µ(α) is also absolutely continuous and it admits a
unique copula in view of Sklar’s theorem [48].
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Remark 1. Generally, given two copulas C1 and C2, the copula of their weighted barycenter, given
by (2), does not coincide with the convex combination of the two copulas. This fact follows from,
e.g., [34], and it is illustrated in Figure 1.

Finally, according to a general way of calculating dissimilarity as a distance from the
comonotonic case [51], we define the dissimilarity between the time series i and j as

∆(α)
ij = dW2(M, C(α)

ij ). (14)
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Figure 1. Random sample from a Gaussian copula C1 with parameter 0.9 (upper left), a Gaussian
copula C2 with parameter −0.9 (upper right), (C1 + C2)/2 (lower left), and the (equally weighted)
copula associated with the barycenter of C1 and C2 (lower right).

4. The Quasi-Gaussian Approach

Although theoretically appealing, the actual computation related to the dissimilarity
in (14) is involved. In fact, generally, µ(α) (and, hence, C(α)) cannot be calculated in a closed
form. Therefore, following seminal ideas in [38], we use a a quasi-Gaussian approach
based on correlation matrices in order to define a modified dissimilarity. The main idea
is to replace the copula space with the space of all bivariate Gaussian distributions with
standard marginals. Such distributions are called G-copulas in [38] and their space will be
denoted by G. In fact, in this latter case, the calculations can be obtained only in terms of
the corresponding correlation matrices, as recalled in Section 2.

We recall that each G-copula is characterized by a Gaussian vector with mean (0, 0)
and correlation matrix

Σ(θ) =
(

1 θ
θ 1

)
.

Then, for every pair (i, j), i ̸= j, we proceed as follows.
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1. The copula Cts
ij from Section 3.1 is replaced with the G-copula with correlation matrix

Σ(θ̂ts
ij ), where θ̂ts

ij equals the estimation of the normal score correlation among the
involved observations (as suggested in [38]).

2. The copula Csp
ij from Section 3.2 is replaced with the G-copula with correlation matrix

Σ(θ̂sp
ij ), where θ̂

sp
ij is the unique value θ that solves

dW2(Σ(1), Σ(θ))
maxθ′∈[0,1] dW2(Σ(1), Σ(θ′))

= dij,

where dij is the normalized distance between si and sj. Notice that Σ(1) is the (sin-
gular) correlation matrix showing maximal dependence (comonotonic case). For the
existence and uniqueness of θ̂

sp
ij see Remark 2. In particular, we notice that since

θ′ ∈ [0, 1], the maximal spatial distance is interpreted by the vector of independent
components.

3. For a fixed α ∈ ]0, 1[, the copula C(α)
ij from Section 3.3 is replaced with the G-copula

having the correlation matrix

Σ(α) = D−1/2Σ′D−1/2, (15)

where Σ′ = Σ(θ̂ts
ij )#αΣ(θ̂sp

ij ) is the weighted barycenter of Σ(θ̂ts
ij ) and Σ(θ̂sp

ij ) given
by (6) and D is the diagonal matrix associated with Σ′. In other words, we transform
the covariance matrix of the weighted barycenter into a correlation matrix with the
natural projection.

Summarizing, in the quasi-Gaussian approach, we define the modified dissimilarity
between the time series i and j as

∆̃(α)
ij = dW2(Σ(1), Σ(α)), (16)

i.e., in terms of the Wasserstein distance between two correlation matrices associated with
elements of G. This is analogous to Equation (14) since both matrices Σ(1) and M represent
the comonotonic case, while C(α)

ij and Σ(α) correspond to the weighted barycenters in their
respective spaces.

Remark 2. In the bivariate case, the Wasserstein distance among two Gaussian distributions is
obtained via Formula (5). In particular, if we consider the singular correlation matrix Σ(1), we
obtain that

d2
W2

(Σ(1), Σ(θ)) = 4 − 2
√

2 + 2θ.

The plot of θ 7→ dW2(Σ(1), Σ(θ)) is visualized in Figure 2.

0.0

0.5

1.0

1.5

2.0

−1.0 −0.5 0.0 0.5 1.0
θ

d W
2(Σ

(1
), 

Σ(
θ)

)

Figure 2. Graph of θ 7→ dW2 (Σ(1), Σ(θ)) where θ ∈ [−1, 1].
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5. An Illustration with a Fuzzy-PAM Algorithm

Given an (n × n) dissimilarity matrix among time series, various algorithms can be
exploited to provide a suitable clustering. Here, we will apply a (fuzzy) partitioning-around-
medoid (PAM) clustering method for time series whose output expresses the membership
degree of each time series to a cluster (see [11]). As known, the main advantage of PAM
is that the prototypes (i.e., medoids) of each cluster are time series actually observed and
not average time series, which is often very appealing for the interpretation of the selected
clusters (see, e.g., [61]). For a fixed number K of clusters, the fuzzy PAM algorithm can be
formalized as follows:

min
uij

n

∑
i=1

K

∑
k=1

up
ik∆ik

s.t.
K

∑
k=1

uik = 1, uik ≥ 0,

where uik indicates the membership degree of the i-th unit to the k-th cluster (k = 1, . . . , K);
and p > 1 is a weighting exponent that controls the fuzziness of the obtained partition
(hereinafter, p = 1.5). Here, ∆ik is a suitable dissimilarity between the time series of the i-th
unit and the time series of the k-th medoid.

To illustrate the proposed algorithm, we consider the fuzzy PAM algorithm applied
to the dissimilarity given in (16). We consider a scenario similar to the one in Section 3.1
of [11]. Specifically, we consider n = 48 time series of innovations of length T = 100. We
assume that for each i = 1, . . . , 48, the i-th time series has been observed with a vector of
attributes si so that dist(si, sj) = dist(sj, si) = 1 if 1 ≤ i ≤ 12 and 13 ≤ j ≤ 48; otherwise,
dist(si, sj) = 0. Roughly speaking, the time series can be either contiguous (distance equal
to 0) or not (distance equal to 1).

Moreover, the time series have a temporal dependence given by the following cop-
ula model:

C(u1, . . . , u48) = C1(u1, . . . , u24) · C2(u25, . . . , u48), (17)

where C1 and C2 are copulas belonging to the Frank family (see, e.g., [48]), with a pairwise
Kendall’s τ ∈ {0.25, 0.50, 0.75}.

Figure 3 reports the membership degree of unit 1 to the same cluster of unit 13 at
different levels of α (which is the weight assigned to the spatial component). Clearly, when
α = 0 (i.e., no spatial information) units 1 and 13 tend to belong to the same cluster, since
they are positively associated via the copula C1. However, when α increases, the spatial
component plays a major role and, roughly speaking, it moves unit 13 far from unit 1,
i.e., into a different cluster.

It is important to highlight the effects of different choices of the spatial component.
When we assume that the maximal spatial distance between two units corresponds to a
zero correlation in the Gaussian model (Figure 3, on the left), the membership degree of
unit 1 to its natural temporal cluster tends to decline sharply only for α close to 0.5. Instead,
the decline comes earlier when the maximal spatial distance between two units corresponds
to a correlation equal to −1 in the Gaussian model (Figure 3, on the right). We notice that
this latter choice was also adopted in [11] when the Fréchet family of copulas was used.
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Figure 3. Membership degree of unit 1 to the same cluster of unit 13 for different values of the
dissimilarity matrix of (16). Solid line: τ = 0.25; dashed line: τ = 0.50; dotted line: τ = 0.75.
(Left) Maximal spatial correlation equal to 0. (Right) Maximal spatial correlation equal to −1.
The results are mean values over R = 25 replications from model (17).

6. An Empirical Application

In this section, we apply the fuzzy-PAM clustering algorithm on time series repre-
senting the summer temperature maxima of Italy from 1971 to 2023. The data have been
downloaded from the Climate Data Store (https://cds.climate.copernicus.eu/, accessed on
1 September 2023) which collects global climate and weather data of the past eight decades.
Specifically, we focus on JJA (June–July–August) maxima of daily maximum temperatures
over a grid of the Italian land. The considered data are n = 527 grid points. Similarly
to [62], we detrend the observed temperatures from the long-term warming trend, follow-
ing a two-step procedure. First, we remove the multi-year climatological average from the
daily temperature maxima within the dataset. Then, from these temperature residuals, we
remove the 92-day running average. After this detrending process, we consider the maxi-
mum value of each season for each grid point, leading to a collection of time series of length
T = 53. Given the set of detrended time series and the geographical locations, we compute
the temporal and the spatial dependencies, as described in Section 4. Specifically, for every
pair of (i, j), i ̸= j, we use the estimation of the normal score correlation to compute the
temporal correlation matrix Σ(θ̂ts

ij ) as in step 1, and we use the normalized distances dij to

compute the spatial correlation matrix Σ(θ̂sp
ij ) according to step 2. Initially, we consider the

fuzzy-PAM algorithm applied to the dissimilarity given in (16) for α = 0 representing the
pure temporal case. We select the number of clusters via the fuzzy silhouette (FS) index [63],
a suitable measure for the fuzzy clustering algorithm that is computed as the weighted
average of the individual silhouettes. The better the units are assigned to the clusters,
at the same time as minimizing intra-cluster distance and maximizing inter-cluster distance,
the higher the value of FS. We represent the obtained clusters in the pure temporal case
(α = 0) in Figure 4. From the maximization of the FS we have that the optimal number of
clusters is K = 3.

In the pure temporal case, time series belonging to the same cluster may be not con-
tiguous. This aspect can be reduced by combining the two dissimilarities via Equation (16)
for some α ∈ [0, 1]. As an illustration, we show the cluster composition when α = 0.30
(clearly, other values are possible, although a range of 0.05–0.30 seems generally reasonable,
as suggested in [30]).

In order to choose the optimal number of clusters for α = 0.30, we proceed with the
fuzzy silhouette index maximization. Table 1 shows the evolution of the fuzzy silhouette
index for different values of K ∈ {2, . . . , 10}. Thus, K = 3 is selected.

https://cds.climate.copernicus.eu/
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Figure 4. Membership representation of the pure temporal clustering. Darker colors and bigger
points represent a higher membership degree. The crossed points are the medoids of each group.

Table 1. Fuzzy silhouette index for α = 0.30 and K ∈ {2, . . . , 10}.

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

0.176 0.208 0.194 0.163 0.120 0.154 0.118 0.105 0.102

The corresponding clustering configuration is shown in Figure 5.
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Figure 5. Membership representation of the clustering for α = 0.30. Darker colors and bigger points
represent a higher membership degree. The crossed points are the medoids of each group.
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We note that when α increases, the cluster composition increases the spatial contiguity
among its elements. Clearly, however, some time series still exhibit a behavior that is not
driven by geographic proximity. Such time series are particularly of interest in order to
detect spatial anomalies in some geographic area, and their behavior should be the object
of in-depth investigations.

7. Conclusions

In this paper, we proposed a way to define a suitable dissimilarity matrix interpreting
the comovements of time series subjected to spatial constraints. The ultimate goal was
the clustering of time series with geo-referenced information. The proposed extraction
of the dissimilarity matrix leverages on the 2-Wasserstein distance between probability
measures and on optimal transport theory. Moreover, as the computational aspects of
such an extraction are involved in practical applications, we proposed a quasi-Gaussian
approximation of the correlation matrices in order to define a modified dissimilarity and
reduce the complexity and the computational burden of the procedure. In the second part
of the paper, we presented an illustration with a fuzzy-PAM algorithm to show the effect of
the spatial dependence on the whole procedure. Lastly, we proposed a case study showing
the effects of the proposed method on real data involving climatic time series.
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Appendix A

Here we compute the Wasserstein distance dW2(M, (1 − θ)M + θW). Due to the
probabilistic interpretation of the copulas M, W and of their convex combination (see,
e.g., [48]), this corresponds to computing

inf
{
(E((U, U)− (V, 2ZV − V − Z + 1))2)1/2

}
where the infimum is taken over all possible joint probability distribution of the involved
random variables. Here, U and V are random variables uniformly distributed on [0, 1],
while Z is a Bernoulli variable, so that Z = 1 with probability θ, and Z = 0 with probability
1 − θ. Thus, (U, U) ∼ M and (V, 2ZV − V − Z + 1) ∼ CFre

θ . We start by computing the
expression to be minimized.

https://cds.climate.copernicus.eu/
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E|(U, U)− (V, 2ZV − V − Z + 1)|2

= E((U − V)2 + (U − (2ZV − V − Z + 1))2)

= E(U2 + V2 − 2UV + U2 + 4Z2V2 + V2 + Z2 + 1

− 4ZUV + 2UV + 2UZ − 2U − 4ZV2 − 4Z2V + 4ZV + 2VZ − 2V − 2Z)

= E(2U2 + 2V2 + Z2 + 1 + 6VZ + 4Z2V2 − 4ZUV + 2UZ

− 2U − 2V − 2Z − 4ZV2 − 4Z2V)

= E(4U2 + Z2 + 1 + 6θV + 4Z2V2 − 4θUV + 2θU − 1 − 1 − 2θ − 4θV2 − 4Z2V)

= 4E(U2) +E(Z2)− 1 + 2θ + 4E(Z2)E(V2)− 4θE(UV)− 4θE(V2)− 2E(Z2)

=
4
3
+ θ − 1 + 2θ +

4
3

θ − 4θE(UV)− 4
3

θ − 2θ

=
1
3
+ θ − 4θE(UV)

=
1
3
+ θ − 4θ · ρ + 3

12

=
1
3
+ θ − θ

3
(ρ + 3)

The minimum value of 1
3 + θ − θ

3 (ρ + 3) is reached for ρ = 1 and corresponds to 1
3 − 1

3 θ.
For the previous chain of equalities we used the following facts:

• E(Z) = θ, E(Z2) = θ;
• V(U) = 1

12 , E(U2) = E(V2) = 1
3 ;

• E(UV) = ρ+3
12 , where ρ is the Pearson’s correlation between U and V.
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transport. Sankhyā Ser. B 2021, 83, 167–184. [CrossRef]

50. Wiesel, J. Measuring association with Wasserstein distances. Bernoulli 2022, 28, 2816–2832. [CrossRef]
51. Fuchs, S.; Di Lascio, F.M.L.; Durante, F. Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables.

Comput. Statist. Data Anal. 2021, 159, 107201. [CrossRef]
52. Marti, G.; Andler, S.; Nielsen, F.; Donnat, P. Exploring and measuring non-linear correlations: Copulas, Lightspeed Transportation

and Clustering. In Proceedings of the NIPS 2016 Time Series Workshop; PMLR: Beijing, China, 2017; pp. 59–69.
53. Chen, X.; Fan, Y. Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula

misspecification. J. Econom. 2006, 135, 125–154. [CrossRef]
54. Patton, A. A review of copula models for economic time series. J. Multivar. Anal. 2012, 110, 4–18. [CrossRef]
55. Rémillard, B. Goodness-of-Fit Tests for Copulas of Multivariate Time Series. Econometrics 2017, 5, 13. [CrossRef]
56. Nasri, B.R.; Rémillard, B.N. Copula-based dynamic models for multivariate time series. J. Multivar. Anal. 2019, 172, 107–121.

[CrossRef]
57. Hofert, M.; Kojadinovic, I.; Mächler, M.; Yan, J. Elements of Copula Modeling with R; Springer: Cham, Switzerland, 2018.
58. Genest, C.; Nešlehová, J.G.; Rémillard, B. Asymptotic behavior of the empirical multilinear copula process under broad conditions.

J. Multivar. Anal. 2017, 159, 82–110. [CrossRef]
59. Pfeifer, D.; Mändle, A.; Ragulina, O.; Girschig, C. New copulas based on general partitions-of-unity. III: The continuous case.

Depend. Model. 2019, 7, 181–201. [CrossRef]
60. Segers, J.; Sibuya, M.; Tsukahara, H. The empirical beta copula. J. Multivar. Anal. 2017, 155, 35–51. [CrossRef]
61. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NJ,

USA, 2009.
62. Bador, M.; Naveau, P.; Gilleland, E.; Castellà, M.; Arivelo, T. Spatial clustering of summer temperature maxima from the

CNRM-CM5 climate model ensembles & E-OBS over Europe. Weather Clim. Extrem. 2015, 9, 17–24.
63. Campello, R.J.; Hruschka, E.R. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets Syst. 2006,

157, 2858–2875. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s13571-021-00255-0
http://dx.doi.org/10.3150/21-BEJ1438
http://dx.doi.org/10.1016/j.csda.2021.107201
http://dx.doi.org/10.1016/j.jeconom.2005.07.027
http://dx.doi.org/10.1016/j.jmva.2012.02.021
http://dx.doi.org/10.3390/econometrics5010013
http://dx.doi.org/10.1016/j.jmva.2019.03.002
http://dx.doi.org/10.1016/j.jmva.2017.04.002
http://dx.doi.org/10.1515/demo-2019-0009
http://dx.doi.org/10.1016/j.jmva.2016.11.010
http://dx.doi.org/10.1016/j.fss.2006.07.006

	Introduction
	Background on Optimal Transport, Wasserstein Distance, and Copulas
	The Methodology
	Extract the Temporal Dependence
	Extract the Spatial Dependence
	Create the Dissimilarity Measure

	The Quasi-Gaussian Approach
	An Illustration with a Fuzzy-PAM Algorithm
	An Empirical Application
	Conclusions
	Appendix
	References

