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Abstract: Considering the requirements of the actual production scheduling process, the utilization
of the genetic programming hyper-heuristic (GPHH) approach to automatically design dispatching
rules (DRs) has recently emerged as a popular optimization approach. However, the decision objects
and decision environments for routing and sequencing decisions are different in the dynamic flexible
job shop scheduling problem (DFJSSP), leading to different required feature information. Traditional
algorithms that allow these two types of scheduling decisions to share one common feature set are
not conducive to the further optimization of the evolved DRs, but instead introduce redundant and
unnecessary search attempts for algorithm optimization. To address this, some related studies have
focused on customizing the feature sets for both routing and sequencing decisions through feature
selection when solving single-objective problems. While being effective in reducing the search space,
the selected feature sets also diminish the diversity of the obtained DRs, ultimately impacting the
optimization performance. Consequently, this paper proposes an improved GPHH with dual feature
weight sets for the multi-objective energy-efficient DFJSSP, which includes two novel feature weight
measures and one novel hybrid population adjustment strategy. Instead of selecting suitable features,
the proposed algorithm assigns appropriate weights to the features based on their multi-objective
contribution, which could provide directional guidance to the GPHH while ensuring the search space.
Experimental results demonstrate that, compared to existing studies, the proposed algorithm can
significantly enhance the optimization performance and interpretability of energy-efficient DRs.

Keywords: dynamic flexible job shop; genetic programming; dispatching rule; dual feature weight
sets; energy-efficient

MSC: 90-08

1. Introduction

With the vigorous development of manufacturing technology and artificial intelligence
technology, intelligent manufacturing has become one of the mainstream directions of the
manufacturing industry [1,2]. So far, artificial intelligence technology has been effectively
applied in many directions and fields of the manufacturing industry. In terms of the opera-
tion research and management aspect, it mainly focuses on using intelligent optimization
algorithms to solve the job shop scheduling problem (JSSP) [3].

JSSP entails the efficient allocation of production resources for a decomposable process-
ing task under certain constraints to optimize performance metrics, such as total processing
time, flow time, and tardiness [4]. The flexible job shop scheduling problem (FJSSP) allows
for more flexible use of machine resources compared to the JSSP, where each operation
of a job can be processed on multiple candidate machines, better reflecting real-world
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situations [5–7]. Therefore, it is essential to first assign jobs to suitable machines (i.e., the
routing decisions) in the FJSSP and then sequence the jobs in the waiting queue of each
machine for processing (i.e., the sequencing decisions).

The JSSP and the FJSSP, as typical NP-hard problems, have garnered widespread
attention and thorough research from experts and scholars due to their extensive ap-
plication and complexity in the manufacturing domain. For small-scale problems,
researchers tend to utilize exact methods, such as mathematical programming [8] and
branch-and-bound [9]. These methods can solve the problem effectively while ensuring
the accuracy and optimality of the obtained solutions, but they also suffer from the
drawbacks of being computationally intensive and time-consuming. On the other hand,
to tackle large-scale problems and tighter time constraints, meta-heuristic algorithms
have been viewed as prominent choices. Meta-heuristic algorithms, such as the ge-
netic algorithm [10], the Tabu Search algorithm [11], particle swarm optimization [12],
teaching–learning-based optimization [13], and simulated annealing [14], etc., can find
approximate optimal solutions in a relatively short time, offering acceptable solutions
for decision-making in practical production scenarios.

However, the actual manufacturing environment is usually dynamic, which means
that unexpected random events (such as the arrival of new jobs, machine failures, reworking
of jobs, etc.) often occur in the dynamic flexible job shop scheduling problem (DFJSSP) [15].
Traditional meta-heuristic methods typically use rescheduling mechanisms to tackle these
dynamic events, but these approaches present challenges in terms of increased computa-
tional complexity and stability issues [16,17].

As another promising approach, dispatching rules (DRs) demonstrate their effective-
ness as a heuristic strategy for solving the DFJSSP due to their scalability, reusability, and
rapid response to dynamic events [18–20]. In essence, DRs are priority functions that consist
of features containing job shop-related information and mathematical operators. At each
routing and sequencing decision point, DRs compute priority values for each scheduling
object (such as waiting operations and candidate machines) and choose the most prioritized
one for the next processing action. In the past few decades, numerous types of features (e.g.,
processing time of each operation, idle time of each machine, etc.) and manually designed
DRs (e.g., first in, first out, etc.) have been proposed to address various job shop scenarios
and optimization objectives [21].

However, it is exceedingly challenging and perhaps even infeasible to depend solely
on workers’ expertise to clarify potential correlations among different features and to
design effective DRs. This is due to the intricate interactive interconnection of various
production components in the job shop, as well as the distinct decision environment and
information requirements associated with different scheduling decisions in the DFJSSP.
In this case, the application of a genetic programming hyper-heuristic (GPHH) for the
automated design and generation of appropriate DRs has become a widely used method
for effectively addressing the DFJSSP. Numerous studies have demonstrated that using
GPHH could automatically evolve DRs that outperform manually designed ones [22,23].

GPHH has the ability to autonomously generate efficient DRs without extensive
domain-specific knowledge. This is achieved by continuously adapting the combination
of features and mathematical operators in the DRs during evolutionary iterations with
predetermined algorithmic parameters (e.g., maximum depth of the tree, function set,
feature set, etc.) and genetic operators (e.g., crossover, mutation, etc.). In comparison to
most meta-heuristic algorithms for solving the JSSP, GPHH has the advantages of flexible
encoding representation, powerful search capability, and easier application to real-world
environments. Hence, DRs produced by GPHH are naturally suitable for solving the
large-scale DFJSSP. In solving the JSSP, GPHH first uses a set of features (corresponding
to leaf nodes) representing the states of jobs, machines, and job shops, as well as a set of
mathematical functions (corresponding to non-leaf nodes) to generate DRs automatically
and iteratively through off-line training. When scheduling online, the generated DRs are
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directly used to make scheduling decisions without repeated training by GPHH, thus
realizing real-time scheduling [24].

Previous works have shown that the maximum depth of DRs, the function set, and
the feature set were the three main factors that could determine the diversity of DRs and
the search space of GPHH [25]. If the maximum depth of the DRs is d, and the DRs are
generated using the “full method” (i.e., full growth method), the size of the GPHH search

space is |F |2
d−1× |T |2

d
, whereF and T denote the function set and feature set, respectively.

However, the number of effective DRs is much smaller than the above theoretical value,
which indicates that finding solutions through GPHH is still a difficult task.

Therefore, reducing the number of features is a viable approach to narrow the search
space of GPHH and enhance its searching efficiency [26,27]. The feature set of GPHH can
encompass numerous features describing various aspects and forms of information per-
taining to the job shop scheduling process, including system-related, machine-related, and
job-related features. However, not all of these features contribute positively to scheduling
decisions. For instance, the due date of a job is usually considered to be an irrelevant feature
for optimizing the mean flow time [26]. In addition, there are correlations between many
features, which can cause some of the same information to be double-counted. Therefore,
by integrating feature selection techniques with GPHH, it is possible to eliminate irrelevant
and redundant features, allowing the algorithm to purposefully explore regions containing
more promising DRs and then improve algorithm efficiency.

As far as we know, the research on feature selection methods for GPHH and its varia-
tions is still limited and primarily focuses on single-objective problems. The initial studies
emphasized measuring the importance of features by calculating the frequency of their oc-
currence in the best DRs [28]. Mei et al. [29] were the first to propose a metric to measure the
feature importance based on the contribution of features to the fitness values of individuals.
Compared to feature frequency, this metric could avoid the negative influence brought
by redundant features and offer better accuracy. However, these methods were mainly
explored in the context of the DFJSSP, considering only sequencing rules. Zhang et al. [30]
were pioneers in applying feature selection methods to the DFJSSP, involving two feature
sets for both routing and sequencing decisions, respectively. Additionally, in their subse-
quent work [31], they further developed a continuous two-stage GPHH framework to fully
utilize excellent individuals during the feature selection process. However, although these
methods could reduce the dimensionality of the feature set and enhance the interpretability
of generated DRs through feature selection, they did not lead to an improvement in the
optimization performance of GPHH.

Although feature selection has been successfully applied to single-objective problems,
no feasible methods have been found for the multi-objective DFJSSP. The main challenge
is that calculating the feature importance in multi-objective problems takes into account
not only the performance indexes themselves, but also the correlation and non-domination
relationships among these indexes. As a result, the existing feature importance measures
based on fitness values for single-objective problems are no longer applicable, especially
considering that the objectives in multi-objective problems are usually interrelated, and
a feature may bring positive effects in one objective but may lead to negative effects in
another. Therefore, it becomes very difficult to design an effective feature importance
measure for multi-objective problems. In addition, the result of feature selection is heavily
dependent on manually set parameters. For instance, the condition for features to be
selected in the previous studies [29–31] is that the feature weight value is greater than or
equal to half of the total weight value. Such a parameter setting is too rigid, lacking not
only fault tolerance and flexibility, but also sufficient adaptability for different scheduling
problem scenarios.

Aiming at the limitations of the aforementioned feature selection methods, this paper
proposes an improved GPHH with dual feature weight sets to automatically design energy-
efficient DRs. In this proposed GPHH, two novel feature weight measures are proposed for
calculating the feature weights in the multi-objective DFJSSP and forming the dual feature



Mathematics 2024, 12, 1463 4 of 24

weight sets. Additionally, a novel hybrid population adjustment strategy is also presented
to use the obtained dual feature weight sets to guide the algorithm. The main difference
between the proposed feature weight measures and the existing feature selection methods
is that the proposed feature weight measures do not select the features but rather assign
proper weights to the features according to their contribution/importance to multi-objective
problems, which serve as the probabilities of the features being selected in subsequent
iterations. This way, the influence of manually set parameters on the feature set and the
optimization performance of obtained DRs can be avoided, and the directional guidance for
the searching process of GPHH can be provided while ensuring the diversity of generated
DRs and the search space of GPHH. In this case, more excellent DRs can be obtained. The
main contributions and innovations of this paper are as follows:

1. An improved GPHH algorithm based on dual feature weight sets is designed to guide
the exploration of GPHH through measured feature weights, thereby improving the
searching efficiency of the algorithm and automatically generating more promising
and understandable DRs.

2. In order to measure feature weights (i.e., feature importance) more accurately in the
multi-objective DFJSSP, two feature weight measures are proposed: one based on the
fitness values of DRs and another based on the diversity of the Pareto front. Based on
these two feature weight measures, the feature set for GPHH can be separated as dual
feature weight sets for routing and sequencing decisions, respectively.

3. In order to use the obtained dual feature weight sets more effectively, a novel hybrid
population adjustment strategy is also given in this paper. This strategy can adjust
and refine the current population based on the feature weights so that the irrelevant
and redundant features can be eliminated.

4. By considering total energy consumption and mean tardiness as two optimization
objectives [32,33], the effectiveness of the proposed GPHH is demonstrated on an
energy-efficient DFJSSP by comparing them with the existing related algorithms.
Additionally, the specific behaviors and associated impacts of the dual feature weight
sets in the scheduling process are also comprehensively analyzed.

2. Background

This section gives a brief description of the energy-efficient DFJSSP considered in this
paper and the basic idea of GPHH.

2.1. Mathematical Description of the Energy-Efficient DFJSSP

The energy-efficient DFJSSP presents as a typical combinatorial optimization problem [33].
Its mathematical description is as follows. There are m machinesM = {M1, · · · , Mm} utilized
for processing jobs. Each machine has a designated standby power MPk in this job shop. New
jobs J = {J1, · · · , Jn} randomly arrive over time, and their related information is allocated after
their arrival, including arrival time (ati), due date (ddi), and the specified operation sequence{

Pi1, · · · , Pini

}
(where ni represents the number of operations for processing job Ji). Each

operation Pij has a designated candidate machine setMij, and this operation can be processed
by any machine Mk ∈ Mij. In this case, the corresponding processing time is PTijk, and the
corresponding energy consumption is ECijk. Considering the real production situations, the
DFJSSP must adhere to the following constraints:

1. Before jobs arrive at the shop floor, the job-related information is unknown and
therefore not taken into consideration during the current machining process.

2. Jobs can only be processed upon reaching the job shop, and all operations must be
processed in the order given. Each operation can be performed on only one machine
selected from its candidate machine set.

3. Machines can process only one job/operation at a time, and the process cannot be
interrupted. Additionally, they are in a standby state when not processing, and they
consume energy with standby power.
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In this paper, we simultaneously optimize two production objectives in the DFJSSP:
Mean Tardiness (MT) and Total Energy Consumption (TEC) [33,34], whose mathematical
expressions are shown in Equations (1) and (2). Here, MT is used to ensure that considered
jobs can be finished in time, while TEC responds to the energy consumption of the whole
job shop, which mainly consists of two parts: energy consumption for machining and
energy consumption for being on standby.

min MT =
1
n

n

∑
i=1

max{ci − ddi, 0}, (1)

min TEC =
m

∑
k=1

(
cmax −

n

∑
i=1

ni

∑
j=1

PTijk

)
MPk +

n

∑
i=1

ni

∑
j=1

m

∑
k=1

ECijk, (2)

where ci is the completion time of the job Ji, and cmax = maxi={1,...,n} ci is the completion
time of the last job.

2.2. Solving the DFJSSP Based on GPHH

As a well-known optimization approach, GPHH has been widely used in all kinds
of optimization problems, especially the combinatorial optimization problem represented
by the JSSP [7,35]. As a hyper-heuristic method, GPHH does not directly find a specific
solution to the problem but iteratively generates a set of heuristic rules to guide the solution
generation. In the JSSP, GPHH generates DRs, which are used to make scheduling decisions
to generate a specific scheduling scheme for solving the JSSP, rather than the scheduling
scheme itself like meta-heuristic algorithms do [36,37]. For solving the energy-efficient
DFJSSP mentioned in Section 2.1, the DRs generated by GPHH in this paper contain two
rules: a routing rule and a sequencing rule, which are used to handle the routing decisions
and sequencing decisions, respectively.

The DRs generated by GPHH are usually represented as a tree-based structure, as
shown in Figure 1. Such a tree-based structure can help GPHH perform genetic operators,
such as replication, crossover, and mutation, to generate new DRs. Figure 1 illustrates an
example of the DR with two rules. The leaf nodes at the bottom of the tree are constants or
features that represent job shop-related information, such as PT standing for the processing
time of the current operation, WIQ standing for the total processing time of all the opera-
tions in the waiting queue of a machine, etc. The non-leaf nodes are connected by function
operators such as {+, −, ×, / }, etc.

PT

+

WIQ

2 PT

SL

×

/ -

WKR EC MP

+

+

PT+WIQ  2PT+[(SL/WKR)+(EC-MP)]

(a) routing rule (b) sequencing rule

Figure 1. An example of the DR with routing and sequencing rules.

In this paper, only one dynamic event is considered, i.e., random job arrivals, and their
related information is unknown until the jobs arrive at the shop floor. A typical scheduling
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decision-making process for how to use generated DRs to solve the DFJSSP in real time is
given in Figure 2. At each decision point, priority values are computed for each scheduling
object (i.e., candidate machines for routing decisions or waiting operations in the machines’
queues for sequencing decisions) using DRs, and the scheduling object with the minimum
priority value is chosen as the decision output. As shown in Figure 2, when a new job
arrives, its related information becomes known, and it enters the waiting area. The routing
decision, guided by the routing rule, assigns a machine from the corresponding candidate
machine set for the current operation of the job. When the machine is machining, the job
will be placed into the queue of this chosen machine. The sequencing decision uses the
sequencing rule to designate the next job/operation being processed from the machine’s
queue immediately after it completes one operation. For instance, in the figure, after the
operation P12, which means the second operation of job J1, is processed on machine M3
based on routing and sequencing decisions, its next operation P13 will be assigned to the
queue of machine M2, waiting for machining. This process continues until all operations
are completed, leading to the output of the finished job. Routing and sequencing decisions
work together to create a scheduling scheme that adheres to constraints and optimizes
production objectives.

New jobs arrive 

Routing decision Sequencing decision

Waiting queues of machines

P12 P92P24

P71 P62P53

P82 P34P45
P82

P12

P53

P13

Ready operations

M1

M2

M3

Finished

jobs

Dynamic flexible job shop

Assign related 

information

Figure 2. A typical scheduling decision-making process based on DRs.

2.3. Difference between Feature Selection and Feature Weights

It has been proven that features in GPHH are not of equal importance [26]. In fact,
including irrelevant features in the feature set could reduce the optimization performance
of GPHH. Existing feature selection methods for GPHH focus more on using fewer features
to obtain more compact and understandable DRs than on improving their effectiveness. For
instance, in previous work [31], more interpretable DRs were evolved by applying feature
selection methods in GPHH to only select useful features. However, since the results of
feature selection are overly dependent on human-set thresholds, it is easy to mistakenly
remove both irrelevant and redundant features and features that are useful to the DFJSSP.
In this case, GPHH fails to get enough valid information when generating DRs, which
ultimately affects the performance of the algorithm.

In addition, different objectives need different features when solving the multi-objective
DFJSSP. It is more difficult to measure the contribution and importance of features in such a
situation, which further increases the difficulty of feature selection because existing feature
selection methods focus mainly on single-objective problems [31].

Therefore, compared to the feature selection methods, this paper proposes two novel
feature weight measures for the multi-objective DFJSSP. These measures assign appropri-
ate weight values to features based on their importance and contribution to solving and
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optimizing multi-objective DFJSSP. In doing so, they can effectively avoid the heavy depen-
dence on human-set thresholds in the selection methods. Additionally, feature weights can
provide guidance for the evolutionary process of GPHH while ensuring the algorithm’s
search space. This characteristic could improve the search efficiency of the algorithm so
that higher-quality and more interpretable DRs can be generated.

In summary, the improved GPHH with dual feature weight sets proposed in this
paper retains the advantages of the feature selection methods (i.e., improving the search
efficiency of GPHH and the interpretability of the generated DRs) while avoiding the
negative impact of feature selection on the algorithm performance (i.e., guaranteeing the
search space of GPHH).

3. GPHH Based on Dual Feature Weight Sets
3.1. Framework of the Proposed GPHH

This paper considers the diversity of decision information needs for routing and
sequencing decisions and introduces the concept of dual feature weight sets into GPHH,
which essentially generates two different feature weight sets for the routing and sequencing
DRs. For this goal, two novel feature weight measures and a hybrid population adjustment
strategy are presented to more effectively utilize the useful information from outstanding
individuals during the iterative process, thus producing superior DRs.

Figure 3 depicts the overall framework of our proposed GPHH in detail. Compared
with traditional GPHH, Figure 3 highlights the proposed feature weight measure module
and feature weight utilization module (including the hybrid population adjustment strategy
and the mutation operator in Stage 2) in red.

Initialization

Initial population

(seen DRs as individuals)

Evaluate population

Elitist strategy

New population

Select the final Pareto front as 

a set of excellent individuals

Feature weight measure module

Routing 

feature set

Sequencig 

feature set 

Measure the voting 

weights of individuals 

Replace the original 

unweighted feature sets with 

the newly obtained dual 

feature weight sets

Hybrid population 

adjustment strategy based 

on the feature weights

Yes

No
Individuals vote for each 

feature based on its 

contribution/importance.

Generation=51

Evolve population

Evaluate population

Generation=100

New population

End
Yes

No

The weighted voting values of 

the features are seen as their 

final weightsGenetic operators 

(replication,

 crossover, 

mutation) 

Elitist strategy

Evolve population

Genetic operators 

(replication, 

crossover, 

mutation) 

Stage 1

(evolve population with 

unweighted feature sets)

Stage 2

(evolve population with 

dual  feature weight sets)

Figure 3. The overall framework of the proposed GPHH with dual feature weight sets.

There are two stages shown in Figure 3. In Stage 1, the algorithm utilizes an un-
weighted feature set for both routing and sequencing decisions in the initial 50 generations,
essentially following the steps of the traditional GPHH. The goal of this stage is to generate
a set of high-quality individuals for precise feature weight assessment.

After this, the feature weight measure module calculates the contributions and sig-
nificance of each feature for two different scheduling decisions, hence forming the rout-



Mathematics 2024, 12, 1463 8 of 24

ing/sequencing feature weight set (i.e., the dual feature weight sets). Notably, the Pareto
front generated from Stage 1 is directly chosen as a set of excellent and diverse individuals
in the feature weight measure modules due to the nature of the multi-objective optimization
problem. Here, the feature weight measure module only performs one time during the
entire iteration of the improved GPHH for the sake of efficiency, as shown in Figure 3.

The resulting new dual feature weight sets are then applied in Stage 2 of our algorithm
for 50 additional generations. Specifically, these sets aid in refining the population from
Stage 1 by eliminating irrelevant features, which is called population adjustment in Figure 3.
Additionally, the dual feature weight sets can also guide the search and evolution direction
of the improved algorithm. Features with higher weights, indicating their importance in
optimization performance, are more likely to be selected by genetic operators, enhancing
the performance of individuals in the subsequent 50 generations of evolution (i.e., Stage 2).
Conversely, features with lower weights, having minimal impact on performance, are less
likely to be chosen, also leading to the improved optimization performance of individuals.
This kind of mechanism can enhance the effectiveness and interpretability of the proposed
GPHH without altering the algorithm’s search space.

3.2. Feature Weight Measures for the Multi-Objective DFJSSP

As shown in Figure 3, accurately measuring the weights of features is crucial for guid-
ing GPHH to generate outstanding DRs. This is because the accuracy of measured feature
weights will directly affect the subsequent population adjustment strategy and mutation
operator, which in turn affects the search direction of the whole algorithm. For this reason,
this paper proposes two different feature weight measures suitable for multi-objective
optimization problems: fitness-based and diversity-based feature weight measures.

3.2.1. Fitness-Based Feature Weight Measure

Mei et al. [26] presented a feature selection method for GPHH to tackle the single-
objective JSSP and pointed out that the importance of each feature was determined by
both individuals’ fitness values and the contribution of the features themselves. Following
this idea, our study focuses on the non-dominated relationships among individuals in the
multi-objective DFJSSP and presents a fitness-based weight measure suitable for solving
multi-objective problems.

Algorithm 1 gives the pseudo-code of the proposed fitness-based feature weight mea-
sure, which essentially is a weighted voting process. First, the Pareto frontR obtained from
the 50th generation (viewed as a group of outstanding individuals) and the unweighted
feature sets used in the first 50 generations are utilized as inputs. Then, each feature is
evaluated one by one for its contribution to the fitness of the individuals inR. If a feature
contributes to the fitness value of that individual, the individual will vote for it. Eventually,
each feature accumulates all the obtained voting weights as its own weight value, which
is used to measure the importance of this feature. Note that the dual feature weight sets
mentioned in this paper indicate that the feature weight sets for routing and sequencing
decisions are different.

Equation (3) is used to determine the voting weight w f it(r) of an individual r, where
there are m objectives, and f iti(r) represents the fitness value of the DR r for the ith objective.
The goal of this study is to minimize the objective values; hence, the lower the fitness value
of an individual, the higher its voting weight.

w f it(r) =
m

∑
i=1

max{ f iti(r) | r ∈ R}− f iti(r)
max{ f iti(r) | r ∈ R}−min{ f iti(r) | r ∈ R} (3)

Equation (4) defines the contribution of a feature f to an individual r. Here, when a
feature is set to 1, it is analogous to removing this feature from the individual. For instance,
(PT + WIQ|PT = 1) = 1 + WIQ. The contribution of a feature to an individual is determined
by the result in the numerator of Equation (4). If the final Con( f , r) > 0, it indicates that
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this feature has a positive contribution to the individual, and the individual will vote for
this feature.

Con( f , r) =
m

∑
i=1

f iti(r | f = 1)− f iti(r)
max{ f iti(r) | r ∈ R}−min{ f iti(r) | r ∈ R} (4)

Algorithm 1 Fitness-Based Feature Weight Measure

Require: the Pareto frontR obtained from the 50th generation and the unweighted feature
sets Fw

Ensure: the dual feature weight sets F∗w
1: for all feature f ∈ Fw do
2: vote( f )← 0
3: for all individual/DR r ∈ R do
4: calculate the voting weight w f it(r) of this individual r using Equation (3)
5: calculate the contribution Con( f , r) of this feature f to this individual r using

Equation (4)
6: if Con( f , r) > 0 then
7: vote( f )← vote( f ) + w f it(r)
8: end if
9: end for

10: end for ▷ Each feature has been assigned a weight value.
11: F∗w ← normalized feature weights for all f ∈ Fw
12: return F∗w

3.2.2. Sparsity-Based Feature Weight Measure

Considering that the goal of solving multi-objective problems is to obtain a more
widely distributed and diverse Pareto front, in addition to the above proposed fitness-
based feature weight measure, this paper also proposes a feature weight measure based on
the sparsity of the Pareto front to evaluate the importance/contribution of features. This
method pays more attention to the contribution of both features and individuals to the
entire Pareto front, whose pseudo-code is given in Algorithm 2.

Algorithm 2 Sparsity-Based Feature Weight Measure

Require: the Pareto frontR obtained from the 50th generation and the unweighted feature
sets Fw

Ensure: the dual feature weight sets F∗w
1: for all feature f ∈ Fw do
2: vote( f )← 0
3: for all individual/DR r ∈ R do
4: calculate the voting weight wspa(r) of this individual r using Equation (5)
5: set feature f to 1 in individual r, denoted as r | f = 1, and calculate f iti(r | f = 1)
6: if there exists an individual/DR inR dominating r | f = 1, then
7: Con( f , r) = 1
8: else
9: Con( f , r) = 0

10: end if
11: if Con( f , r) > 0 then
12: vote( f )← vote( f ) + wspar(r)
13: end if
14: end for
15: end for ▷ Each feature has been assigned a weight value.
16: F∗w ← normalized feature weights for all f ∈ Fw
17: return F∗w



Mathematics 2024, 12, 1463 10 of 24

Equation (5) describes the sparsity of an individual as its voting weight, where
f iti(r + 1)− f iti(r− 1) represents the difference in fitness values between two individuals
adjacent to the individual r. The advantage of this feature weight measure is that it can
more evenly assign voting weights to all individuals in the Pareto front, helping to enhance
the optimization performance of multi-objective problems considering the non-dominance
relationship. Hence, small voting weights are given to individuals that are clustered too
close in a very small region, thus ensuring that the final individuals obtained in the Pareto
front are uniformly distributed.

wspa(r) =
m

∑
i=1

| f iti(r + 1)− f iti(r− 1) |
max{ f iti(r) | r ∈ R}−min{ f iti(r) | r ∈ R} (5)

When calculating the contribution Con( f , r) of a feature f to an individual r, the first
step is to compute f iti(r | f = 1). If r | f = 1 is dominated by any existing individual in the
Pareto front, the feature f is considered to have a positive contribution to the individual r.
The condition for domination is defined as: for ∀i ∈ {1, 2, · · · , m}, f iti(r) ≤ f iti(r | f = 1),
and there exists at least one i ∈ {1, 2, · · · , m}, such that f iti(r) < f iti(r | f = 1).

3.3. Hybrid Population Adjustment Strategy Based on Feature Weights

After completing the measure of feature weights, less important features will be as-
signed lower weight values. If a feature is given a weight of zero, it can be identified as
an irrelevant feature to the problem. Although GPHH itself has the inherent ability to
select suitable features during the iteration, it is still challenging to effectively eliminate
these irrelevant features solely through genetic operators such as crossover and mutation.
Allowing these irrelevant features to persist in individuals will lead to the contamina-
tion of the whole population, resulting in more individuals with redundant, duplicated,
and unnecessary features. This hinders the further evolution of the population and the
optimization performance of generated DRs.

To this end, the existing studies focusing on feature selection methods propose the
following three population adjustment strategies [31], which remove unselected features
from the current population and improve the interpretability of the resulting DRs based on
the selected feature set.

1. Simply replace each unselected feature with a constant of 1. This strategy is pro-
posed based on the above calculation of the feature contribution Con( f , r), which can
maximally retain the structure and performance of the current good individuals.

2. Replace unselected features with other selected features. However, such random
substitution may change the behavior of good individuals in some aspects, affecting
their final optimization performance.

3. Directly use the resulting selected feature set to randomly initialize the population.
This way, the effective information of good individuals in the current population will
be lost.

Related studies using feature selection methods to solve single-objective problems [31] have
shown that the first strategy can better improve the performance of the algorithm compared with
the third strategy. In addition, Section 3.2 of this paper also adopts the basic idea of calculating
the feature contribution Con( f , r) in the first strategy as the basis of the proposed feature weight
measures. Hence, this method not only helps to eliminate redundant information and retain
the individuals’ structure, but also may improve the performance of these individuals.

Therefore, on the basis of the above existing work, this paper proposes a novel hybrid
population adjustment strategy based on the obtained dual feature weight sets. In this hy-
brid strategy, the first and third strategies are both applied to adjust the current population
so that the irrelevant features (whose weights are zero) can be removed and the search
efficiency can be enhanced.

Algorithm 3 gives the pseudo-code of this hybrid population adjustment strategy.
Specifically, Algorithm 3 only removes irrelevant features from the top 20% of individuals
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using the first strategy to retain the valid information of good individuals. For the remaining
80% of non-excellent individuals, they are directly deleted and regenerated based on the
obtained dual feature weight sets using the third strategy to improve the diversity of
individuals in the population while deleting irrelevant features.

Algorithm 3 Hybrid Population Adjustment Strategy Based on Feature Weights

Require: the population P generated from the 50th generation and the obtained dual
feature weight sets F∗w

Ensure: the new population P∗
1: sort individuals by the non-dominated rank and crowding distance
2: for all individual/DR r ∈ P do
3: if r is the top 20% of all the individuals in P then
4: for all feature f ∈ F∗w do
5: if weight( f ) < 0.0001 then
6: replace feature f with a constant of 1
7: ▷ This is the first strategy.
8: end if
9: end for

10: else
11: use F∗w to randomly generate a new individual and replace the old one
12: ▷ This is the third strategy.
13: end if
14: end for
15: return P∗

4. Experimental Design
4.1. Simulation Model Design

The configuration of the energy-efficient DFJSSP simulation model adopted in this pa-
per is shown in Table 1, which has been extensively employed in previous research [30,33,38].

Table 1. Configuration of the energy-efficient DFJSSP simulation model.

Parameter Setting

Number of machines m 10
Number of arrived jobs n 2000
Number of warm-up jobs 500
Number of operations per job discrete U(1, 10)
Available machines per operation discrete U(1, 10)
Job arrival process Poisson process
Utilization level u 0.85, 0.95
Due date factor α 2, 4, 6
Mean processing time PTij discrete U(1, 99)
Mean energy consumption ECij discrete U(1, 99)

Standby power MPk
{10, 12.5, 4.5, 3.6, 7.0,
1.5, 8.5, 2.2, 22.9, 6.4}

According to existing research [35,39], the machine utilization level u and the due date
factor α are the primary factors defining the workload of different job shop environments.
Therefore, this paper considers two machine utilization levels {0.85, 0.95} and three due
date factors {2, 4, 6}, resulting in a total of 2 × 3 = 6 different production scenarios. During
the training phase, the GPHH reruns independently 30 times under each scenario using
different random seeds. To evaluate the effectiveness of the generated DRs, the results
of each run undergo 100 independent tests. The average of these 100 test results is then
taken as the final fitness value of the obtained DRs, thereby validating their real generality
and applicability.
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4.2. Parameter Settings of GPHH

Table 2 presents the initial feature set of GPHH in this paper, consisting of 28 features
related to the JSSP. These features are commonly utilized in existing research [33] and
encompass various aspects such as information related to jobs, machines, and the job
shop itself.

Table 2. Feature set of the GPHH.

No. Feature Description

1 PT Processing time PTijk of operation Pij on Mk
2 SL Slack of the job Ji
3 OWT Waiting time of operation Pij since ready
4 NPT Processing time of the next operation Pij+1
5 WKR Work remaining for the job Ji
6 TIS Time of the job Ji in job shop
7 WIQ Workload in the queue of the machine Mk
8 MWT Waiting time of the machine Mk since ready
9 DD Due date of the job Ji
10 MRT Ready time of the machine Mk
11 ORT Ready time of the operation Pij
12 WINQ Workload in the queue of the next machine
13 AT Arrival time of the job Ji
14 NRT Ready time of the next machine
15 EC Energy consumption ECijk of operation Pij on Mk
16 NEC Energy consumption of the next operation Pij+1
17 ECR Energy consumption remaining for the job Ji
18 EIQ Total energy consumption of all operations in the queue

of the next machine Mk
19 EINQ Total energy consumption of all operations in the queue

of machine Mk
20 MP Standby power of machine Mk
21 NOR Number of remaining operations of the job Ji
22 NOS Number of optional machines for the operation Pij
23 NIQ Number of operations in the queue of machine Mk
24 NINQ Number of operations in the queue of next machine
25 NOPS Number of operations of the job Ji

26 RPT Relative processing time =
PTijk

min{PTijk | k=1,...,|Mij|}
27 REC Relative energy consumption =

ECijk

min{ECijk | k=1,...,|Mij|}
28 RMP Relative standby power = MPk

min{MPk | k=1,...,m}

The function set includes {+, −, ×, /, max, min} [27,33], where the division returns one
if divided by zero. Additionally, max/min are functions that take two inputs and return
their maximum/minimum values, respectively.

Table 3 shows the parameter setting of the GPHH in this section [27,33]. The feature
weights are measured at the 51st generation, and this process is executed only once in the
whole algorithm.
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Table 3. Parameter settings of GPHH.

Parameter Setting

Initialization Ramped half-and-half
Population size 600
Maximum depth of DRs 8
Crossover rates 80%
Mutation rates 15%
Reproduction rates 5%
Parent selection Tournament selection with size 7
Elitism 10 best individuals
Number of generations 101
Feature weight measure At the 51st generation
Population adjustment strategy See Algorithm 3

4.3. Comparison Design

In order to effectively analyze the performance of our proposed GPHH with dual
feature sets, which considers feature weights during the iterations, three existing algorithms
are compared in this section. In this way, a total of five improved GPHH algorithms are
compared in this section as follows.

1. GPLWT [40] (i.e., GPHH-LWT) uses the Least Waiting Time (LWT) as its routing rule,
and the sequencing rule is generated by GPHH. In other words, this algorithm only
automatically evolves sequencing rules via GPHH while its routing rule is fixed. In
this section, it is considered as the baseline for solving the energy-efficient DFJSSP.

2. GPDR [33] (i.e., GPHH-Delayed-Routing) is one of the current state-of-the-art algo-
rithms, which adopts both multi-tree representation [39] to generate routing and
sequencing rules simultaneously and a delayed routing strategy to ensure the timeli-
ness of the feature information at the decision-making point. In this paper, GPDR is
used as the basic algorithm, in which the proposed feature weight measures and the
hybrid population adjustment strategy are introduced.

3. GPFS [31] (i.e., GPHH-Feature-Selection) is the GPHH algorithm that incorporates a
feature selection method. In their work, GPFS is only used to solve single-objective
problems. It is applied to multi-objective problems based on the linear weighting
method in this section so that its performance can be analyzed.

4. GPFW(fit) (i.e., GPHH-Feature-Weight based on fitness) is the GPDR with dual feature
sets that adopts the feature weight measure based on fitness values of individuals (see
Section 3.2.1) and the hybrid population adjustment strategy proposed in Section 3.3.

5. GPFW(spa) (i.e., GPHH-Feature-Weight based on sparsity) is the GPDR with dual
feature sets that adopts the feature weight measure based on sparsity of the Pareto
front (see Section 3.2.2) and the hybrid population adjustment strategy proposed in
Section 3.3.

4.4. Performance Measures for Comparison

When assessing the quality of the Pareto front obtained by the algorithms, this pa-
per employs two commonly used performance metrics for multi-objective optimization
problems: Hyper-Volume (HV) and Inverted Generational Distance (IGD) [41,42]. Their
calculation formulas are as follows:

HV =
nPF⋃
i=1

vi, (6)

IGD =
1

nAPF

(
nAPF

∑
i=1

di

)
, (7)
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where nPF is the number of individuals in the Pareto front, vi is the hyper-volume formed
by individuals in the Pareto front and a reference point, nAPF is the number of individuals
in the true Pareto front, and di is the minimum Euclidean distance from individuals in the
true Pareto front to the Pareto front obtained by algorithms.

An outstanding algorithm is expected to have a higher HV value and a lower IGD
value, indicating that the Pareto front generated by this algorithm is closer to the true
Pareto front and more evenly distributed. Normalization is essential when computing
HV and IGD. As the true Pareto front is unknown in our energy-efficient DFJSSP, the
results from all algorithms in this paper are amalgamated, and the resulting Pareto front is
utilized as an approximate true Pareto front. HV also necessitates a reference point, set as
1+ 1/(nAPF − 1) [43], where nAPF represents the number of individuals in the approximate
true Pareto front.

5. Experimental Results Analysis
5.1. Overall Performance Analysis of the Algorithms

Tables 4 and 5 show the mean and standard deviation of the HV and IGD values
obtained by the different algorithms after 30 independent runs for optimizing both MT
and TEC in six different scenarios. Additionally, Wilcoxon rank-sum tests were conducted
(at a 5% confidence level) to further analyze the significance of their optimization perfor-
mance [44]. Here, GPFW(fit) and GPFW(spa) are compared with three existing algorithms
(i.e., GPLWT, GPDR, and GPFS). If the p-value of the Wilcoxon rank-sum test is less than
0.05 for all of them, the significant differences are marked in bold in the tables.

Table 4. Mean (standard deviation) of HV values for different algorithms in six scenarios.

Algorithms <0.85–2> <0.85–4> <0.85–6> <0.95–2> <0.95–4> <0.95–6>

GPLWT 0.324 (0.001) 0.549 (0.000) 0.602 (0.000) 0.392 (0.001) 0.578 (0.001) 0.668 (0.001)
GPDR 0.977 (0.010) 1.000 (0.007) 1.024 (0.005) 0.970 (0.009) 1.005 (0.005) 1.027 (0.006)
GPFS 0.923 (0.101) 0.996 (0.018) 1.024 (0.004) 0.957 (0.033) 0.994 (0.024) 1.017 (0.019)

GPFW(fit) 0.985 (0.008) 1.002 (0.005) 1.024 (0.005) 0.982 (0.010) 1.011 (0.006) 1.029 (0.005)
GPFW(spa) 0.984 (0.009) 1.002 (0.006) 1.024 (0.005) 0.983 (0.012) 1.012 (0.006) 1.029 (0.005)

Under the Wilcoxon rank-sum test with the significance level of 0.05, the significantly better results are marked
in bold.

Table 5. Mean (standard deviation) of IGD values for different algorithms in six scenarios.

Algorithms <0.85–2> <0.85–4> <0.85–6> <0.95–2> <0.95–4> <0.95–6>

GPLWT 0.538 (0.001) 0.420 (0.000) 0.398 (0.000) 0.457 (0.001) 0.372 (0.001) 0.325 (0.001)
GPDR 0.014 (0.005) 0.025 (0.006) 0.047 (0.010) 0.025 (0.006) 0.044 (0.013) 0.032 (0.007)
GPFS 0.044 (0.074) 0.025 (0.012) 0.045 (0.010) 0.034 (0.021) 0.045 (0.020) 0.036 (0.012)

GPFW(fit) 0.009 (0.006) 0.024 (0.005) 0.046 (0.008) 0.019 (0.006) 0.037 (0.014) 0.031 (0.007)
GPFW(spa) 0.009 (0.005) 0.023 (0.006) 0.047 (0.008) 0.018 (0.005) 0.040 (0.010) 0.030 (0.005)

Under the Wilcoxon rank-sum test with the significance level of 0.05, the significantly better results are marked
in bold.

Overall, one can see that GPLWT is the worst among the five algorithms. Of the three
existing algorithms, GPDR performs the best. As for the two algorithms proposed in this
paper, GPFW(fit) and GPFW(spa) both show better optimization performance when the
problem is difficult (see scenarios <0.85–2> and <0.95–2> in Tables 4 and 5).

From these tables, it can be observed that the performance of all algorithms is sig-
nificantly better than GPLWT, indicating that using routing rules generated by GPHH
is more effective than using a fixed LWT rule. This is because GPHH can generate ap-
propriate routing rules based on the current job shop state for routing decisions, thereby
creating more rational waiting queues for the machines and enhancing the following
sequencing decisions.
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Among the three existing GPHH algorithms, GPDR and GPFS are both the current
state-of-the-art algorithms that consider the influence of GPHH’s feature sets. It is pointed
out that GPFS can filter out insignificant features in single-objective problems, making
the generated DRs more interpretable and similar performance-wise to traditional GPHH
by utilizing fewer features [31]. In this section, GPFS is applied to multi-objective prob-
lems using the linear weighting method. The results shown in Tables 4 and 5 indicate
that the performance of GPFS is inferior to GPDR, with a notably higher standard de-
viation in most scenarios, especially in situations with a tighter due date factor such as
<0.85–2> and <0.95–2>. This suggests that a simple transfer of the GPFS to multi-objective
problems through the linear weighting method is not appropriate. The selected features
cannot satisfy the requirements of multi-objective optimization well, thus impacting the
algorithm’s optimization performance and stability.

When comparing the two algorithms proposed in this paper with three existing al-
gorithms, especially GPDR, it can be seen that the proposed algorithms are better than
the other algorithms overall, especially in the scenarios of <0.85–2> and <0.95–2>, which
show significant advantages. This phenomenon suggests that the proposed fitness-based
and sparsity-based feature weight measures can more accurately calculate the impor-
tance/contribution of each feature to solving the multi-objective optimization problem,
which further improves the algorithm’s search efficiency and optimization performance.
Tables 4 and 5 also show that the proposed algorithm has limited performance improve-
ment relative to the basic algorithm (i.e., GPDR), especially in the case of easier problems.
This is due to the fact that the GPHH itself has a certain function of feature selection,
because the performance of the DRs that incorporate irrelevant and non-essential fea-
tures is not good, and thus it will be eliminated by the GPHH in the process of iterative
evolution. Therefore, even with the introduction of the dual feature weight sets, the
improved GPFWs (i.e., GPFW(fit) and GPFW(spa)) will not have a significantly larger
performance improvement.

The comparison between GPFW(fit) and GPFW(spa) reveals that their results are very
close to each other, with no statistically significant differences. In theory, the sparsity-based
feature weight measure may be slightly better than the fitness-based method, as the former
takes into account the non-dominated relationships between individuals. This suggests
that the Pareto front obtained after 50 iterations of GPHH is good enough to be used to
accurately measure the feature weights.

5.2. Comparison of Training and Testing Time

Training and testing time are two important measures of the efficiency of an algorithm.
Hence, the average training time for 30 independent runs of all five algorithms is given
in Table 6. One can see that GPLWT has the shortest training time because it uses a fixed
routing rule (i.e., LWT) and is less computationally intensive. Although GPFS, GPFW(fit),
and GPFW(spa) all need extra steps to select features or measure feature weights, there
is no significant difference between these algorithms and GPDR. This indicates that the
introduction of the feature selection module or feature weight measure module does not
bring too much additional computation cost and time to the algorithms, and the overall
training time consumed is still acceptable.

Table 6. Mean training time of 30 independent runs for all five algorithms (s).

Algorithms <0.85–2> <0.85–4> <0.85–6> <0.95–2> <0.95–4> <0.95–6>

GPLWT 5124 4988 5032 4587 4602 4495
GPDR 11,745 11,568 11,814 10,656 11,948 12,530
GPFS 12,670 11,923 11,086 9657 9502 10,183
GPFW(fit) 13,029 12,383 13,441 10,122 10,590 10,097
GPFW(spa) 10,741 10,375 13,697 11,638 13,791 12,864



Mathematics 2024, 12, 1463 16 of 24

Table 7 gives the average testing time of the DRs obtained by different algorithms after
testing. It can be observed that these DRs take only about 20 ms (or less) to complete all the
scheduling decisions in one single simulation. In this case, the decision time spent by these
DRs will be even less for each decision point, thus meeting the requirement of real-time
decision-making.

Table 7. Mean testing time for DRs obtained by different algorithms (ms).

Algorithms <0.85–2> <0.85–4> <0.85–6> <0.95–2> <0.95–4> <0.95–6>

GPLWT 3.90 3.00 3.00 4.40 4.04 3.43
GPDR 14.36 15.58 16.17 14.34 16.93 16.50
GPFS 11.31 15.08 13.26 12.99 13.74 13.95
GPFW(fit) 21.00 20.95 23.02 19.45 22.10 25.04
GPFW(spa) 15.03 15.90 14.45 14.88 16.73 17.42

6. Behavior Analysis of the Proposed Algorithms
6.1. Analysis of the Number of Unique Features

The number of unique features refers to the quantity of different types of features
included in the DRs [31,45]. In this study, the quantity of unique features existing in
the final population is analyzed, which should positively contribute to the performance
of the proposed algorithms. The specific calculation involves examining the number of
different types of features present in the final population. A lower number of unique
features indicates that the DRs formed by these features are more concise, possess better
interpretability, and are consequently more comprehensible to humans.

Figure 4 illustrates the mean and standard deviation of the number of unique features
in the DRs generated by different algorithms over six scenarios. Since GPLWT only evolves
sequencing rules, it is excluded from the analysis in this section. In this context, GPFS
demonstrates a relatively lower number of unique features due to its aim of generating
high-quality DRs using a smaller feature set. The number of unique features of GPFS is
mainly determined by the threshold value set during the feature selection, where features
are selected if their voting weight is greater than half of the total voting weight [31].
Consequently, features with weights below half of the total voting weight are removed,
leading to a significant reduction in the number of feature types. However, this reduction
also results in a decrease in the optimization performance of the algorithm.

In contrast, our proposed feature weight measures do not directly remove features
like GPFS does. Only irrelevant features with a weight of zero are completely removed
in the hybrid population adjustment strategy. Additionally, the obtained dual feature
weight sets can guide the evolutionary direction of GPHH, as less important features may
not appear in the final population. This also contributes to a reduction in the number
of unique features. Therefore, the results in Figure 4 suggest that the proposed GPFWs
with dual feature weight sets can effectively decrease the number of unique features in
generated DRs and even improve the performance of GPHH. This reduction contributes
to the evolution of more readable and interpretable energy-efficient DRs. Furthermore, it
underscores the rationale and effectiveness of introducing feature weights into the GPHH,
since the algorithm does benefit a lot, even in complex multi-objective environments.

Additionally, it can be observed from Figure 4 that the number of unique features for
sequencing rules is optimized more easily. One possible reason is that sequencing decisions
require relatively less decision information. Sequencing decisions are typically more con-
cerned with job/operation-related information, since the scheduling objects of a sequencing
decision are the job/operations in the machines’ queues. In contrast, routing rules need to
determine which candidate machine is suitable for processing the current job/operation,
taking into account the availability of the machine, the status of the processing queue, and
other factors in addition to the characteristics of the job/operation itself. This makes the
routing rules require more complex decision information (i.e., a greater number of unique
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features) to assist in decision-making. Hence, the number of unique features for routing
rules is relatively higher, making more complex routing decisions.

Figure 4. The numbers of unique features of both routing and sequencing rules obtained by
different algorithms.

6.2. Analysis of the Rule Sizes of DRs

Rule size is another key indicator that describes the readability and interpretability of
DRs. Typically, the smaller the rule size, the lower the depth of the rule, the simpler the
structure of the rule, and the easier it is understand.

Figure 5 gives the rule sizes of the DRs obtained by each algorithm. Overall, the rule
sizes of DRS generated by these algorithms are not significantly different. Through the
introduction of feature selection methods or feature weight measures, the rule sizes of DRs
obtained from GPFS and the proposed GPFWs are not significantly reduced, and they only
show advantages in a few scenarios, e.g., <0.95–6>.

Figure 5. The rule sizes of both routing and sequencing rules obtained by different algorithms.

This result is also expected because what really reduces the rule size is the initializa-
tion method (i.e., the third strategy) within the population adjustment strategy. The top
20% of outstanding individuals, although inheriting the valid information from the first
50 generations, also have relatively large rule sizes and are more likely to be selected by
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genetic operators in the next 50 generations, thus leading to a rise in the rule size of other
individuals in the population.

6.3. Conjoint Analysis of Feature Weights and Feature Frequencies

In order to gain insight into the importance/contribution of different features in the
evolutionary process of GPHH, this section takes the examples of GPFW(fit) and GPFW(spa)
to conduct a conjoint analysis of feature weights and feature frequencies. Figures 6 and 7
present the feature weights and frequencies of routing/sequencing rules, respectively, in
six scenarios using these two algorithms, and the statistics are the average of the results of
30 independent runs.

1. Gen50 counts the frequency of each feature in the individuals from the Pareto front
that GPFW(fit) and GPFW(spa) have iterated to the 50th generation. Because the first
50 generations are the same for these two algorithms, the same results are obtained.

2. Gen51(fit) and Gen51(spa) denote the feature weights obtained by the fitness-based
and sparsity-based feature weight measures, respectively, at generation 51.

3. Gen100(fit) and Gen100(spa) denote the frequency of each feature in the individ-
uals from the final obtained Pareto front after 100 generations of GPFW(fit) and
GPFW(spa), respectively.

Figures 6 and 7 unambiguously demonstrate that the results of Gen50, Gen51(fit),
Gen51(spa), Gen100(fit), and Gen100(spa) are generally congruent, indicating the correla-
tion between feature weights and feature frequencies. The feature frequencies in Gen50
align well with the feature weights obtained in Gen51(fit) and Gen51(spa), suggesting
that feature frequencies can also, to some extent, measure the importance of features. On
the other hand, this indirectly implies that GPHH itself has the feature selection ability.
The Pareto front achieved after 50 generations is excellent enough to serve as a set of
outstanding individuals for feature weight measures.

The minor difference between the results of Gen51(fit) and Gen51(spa) suggests a
strong correlation between them, offering diverse viewpoints on the importance of features
in solving multi-objective problems. This conclusion is consistent with the findings in
Tables 4 and 5, suggesting that, when the results of feature weight measures are similar, the
final optimization performance also tends to be similar.

When contrasted with the feature frequencies in Gen50, the results in Gen100(fit) and
Gen100(spa) show that features with higher weights have higher frequencies, while lower-
weighted features have lower frequencies. This implies that the obtained dual feature
weight sets indeed guide the algorithm’s search direction in the latter 50 generations.
The proposed hybrid population adjustment strategy based on feature weights aids the
algorithm in mitigating the negative effects of irrelevant features.

Another observation from Figures 6 and 7 is that the results of most features’ weights
and frequencies are quite similar in all scenarios. Specifically, features such as PT, MP,
and their respective related features RPT, RMP, and WIQ, MWT, NIQ, etc., demonstrate
a high level of importance in the generation of routing rules. This aligns with the actual
situation, as PT, MP, RPT, and RMP play critical roles in optimizing both MT and TEC.
Combining them with features like WIQ, MWT, and NIQ enables a more effective and
rational allocation of machine resources, leading to increased speed in job processing. This
also ensures that jobs are scheduled on machines with higher MP, thereby reducing their
energy consumption from being idle.

From the perspective of sequencing rules, PT, SL, and WKR are three important
features. Previous studies [26,27] have demonstrated their significant role in optimizing
MT. Xu et al.’s research [33] also highlights the importance of these features in optimizing
energy consumption related objectives. An interesting observation is that WKR (i.e., the
remaining work of the job) and NOR (i.e., the remaining number of jobs) are functionally
correlated, both related to the remaining work of jobs. The results reveal a competitive
relationship between these two features: when the weight/frequency of WKR is high,
the weight/frequency of NOR is low, and vice versa, though they can also both be high
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simultaneously. This implies inherent correlations among different features, emphasizing
the necessity of introducing the feature weight measures in this study.

Figure 6. The feature weights and frequencies of routing rules in six scenarios.
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Figure 7. The feature weights and frequencies of sequencing rules in six scenarios.

7. Comprehensive Discussion of the Experimental Results

As numerous experimental results have been presented in Sections 5 and 6, this section
offers a comprehensive discussion of the results.
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First of all, the experimental results in Sections 5.1 and 5.2 point out that our improved
GPHH algorithms (i.e., GPFW(fit) and GPFW(spa)) outperform existing methods (i.e.,
GPLWT, GPDR, and GPFS) with slightly longer training and testing times. This indicates
that using feature weights to guide the evolutionary process of GPHH does benefit the
optimization performance when compared to GPDR and surpasses the feature selection
method proposed in existing work [31], which focuses more on single-objective problems.
Additionally, if we take the experimental results for the number of unique features (in
Section 6.1) and the rule size (in Section 6.2) into consideration, one can see that our
algorithms not only perform better but also produce more interpretable DRs. This is because
the improved GPHH generates DRs with fewer unique features and smaller rule sizes after
eliminating irrelevant and redundant features, making the DRs easier to understand.

Considering that the occurrence frequency of each feature in a rule can reflect to
some extent the importance or contribution of the feature to the optimization objective,
a conjoint analysis of feature weights and feature frequencies is also given in Section 6.3.
From the experimental results, one can see that feature frequencies and computed feature
weights mostly align. This is because features useful for the optimization objective have
larger contributions in individuals/DRs and also occur more frequently. However, feature
frequencies can be influenced by irrelevant and redundant features in individuals, limiting
the rationality of the results.

In summary, all the above experiments demonstrate that the proposed feature weight
measures can more effectively and rationally calculate the significance or contribution of
features in the multi-objective DFJSSP compared to existing methods. Hence, they can effec-
tively improve the optimization performance of GPHH and the interpretation of generated
DRs by removing irrelevant and redundant features and increasing the occurrence frequen-
cies of high-weight features. Further experiments also point out that the proposed feature
weights, in contrast to feature frequencies, better capture the importance and contribution
of each feature to the optimization objectives. This is because the feature weights take into
account the validity of both individuals and features for the Pareto front.

8. Conclusions and Future Work

This paper addresses the negative impact of irrelevant features on scheduling
decisions made by GPHH when generating scheduling rules, as well as the different
demands of routing and sequencing scheduling decisions on different feature informa-
tion. An improved GPHH with dual feature weight sets is proposed and applied to the
energy-efficient multi-objective DFJSSP so that high-quality and understandable DRs
can be automatically developed.

Specifically, this paper investigates the importance/contribution of different features
in solving multi-objective problems and evolving high-quality routing and sequencing
rules with GPHH. Then, an improved GPHH with dual feature weight sets is proposed.
During the iteration of the population, the importance/contribution of each feature is
evaluated based on the fitness of individuals or the sparsity of the Pareto front. In this
way, different weights are assigned to the features, which form two different feature
weight sets for both routing and sequencing decisions. After this, a hybrid population
adjustment strategy is also proposed to genetically update the population based on these
newly obtained dual feature weight sets. Experimental results indicate that the proposed
improved GPHH with dual feature weight sets surpasses existing related GPHH algorithms
and their feature selection methods. The DRs generated by our proposed GPFWs can
achieve better optimization performance and interpretability when dealing with multi-
objective problems.

In future work, it will be worthwhile to explore the impact of mutation probability on
the optimization performance of this proposed GPFW, extend the proposed feature weight
measures to many-objective problems, and further improve the population adjustment
strategy. These directions could provide valuable exploration for enhancing the algorithm’s
performance and broader applications.
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