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Abstract: In this study, a mathematical model for the transmission dynamics of malaria among
different socioeconomic groups in the human population interacting with a susceptible-infectious
vector population is presented and analysed using a fractional-order derivative of the Caputo type.
The total human population is stratified into two distinguished classes of lower and higher income
individuals, with each class further subdivided into susceptible, infectious, and recovered populations.
The socio hierachy-structured fractional-order malaria model is analyzed through the application of
different dynamical system tools. The theory of positivity and boundedness based on the generalized
mean value theorem is employed to investigate the basic properties of solutions of the model, while
the Banach fixed point theory approach is used to prove the existence and uniqueness of the solution.
Furthermore, unlike the existing related studies, comprehensive global asymptotic dynamics of the
fractional-order malaria model around both disease-free and endemic equilibria are explored by
generalizing the usual classical methods for establishing global asymptotic stability of the steady
states. The asymptotic behavior of the trajectories of the system are graphically illustrated at different
values of the fractional (noninteger) order.

Keywords: fractional-order system; social hierarchy model; malaria dynamics; Banach fixed point
theory; global stability

MSC: 37N25; 34D23; 34A08; 92D25

1. Introduction

The evolution of infectious diseases has been a regular threat to humanity and a
bone of contention for policymakers [1]. Several dangerous infectious diseases such as
Ebola, malaria, measles, Zika, Acquired Immune Deficiency Syndrome (AIDS), tuberculosis,
chickenpox, chikungunya virus (CHIKV) and COVID-19 have posed an intensifying threat
to humanity due to their emergence and re-emergence in the population [2,3]. To date,
malaria, which is caused by a single-celled parasite of the genus Plasmodium has maintained
its stance as one of the vector-borne diseases with an overwhelming adverse effect on the
human population [2]. The transmission mode requires the parasitic interaction between a
human (host) and a vector (mosquito).

The malaria parasite is typically transmitted to humans through the bite of an infected
female Anopheles mosquito, which is the main carrier of the parasite. Malaria parasites
may also be transmitted to humans through the transfusion of infected blood, organ
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transplant, or the sharing of contaminated needles or syringes, as well as from a mother to
her unborn infant before or during delivery (congenital malaria) [4]. In 2020, the World
Health Organization (WHO) stated in their 2021 malaria global report that there were
around 241 million cases of malaria globally and 627,000 deaths due to the whip of the
disease [2]. Malaria symptoms may include fever, headache, sweats, muscle aches, chills,
tiredness, nausea, vomiting, and diarrhea, among others [2]. If promptly detected, the
disease is preventable and curable, but symptoms may go out of hand if not detected early
and properly treated [5,6].

Mathematical modeling has become an inestimable tool for finding solutions to the
complexities encountered in the transmission of infectious diseases. In particular, sev-
eral recent mathematical models have been devoted to the study of malaria dynamics
in the literature; see for instance [5–18] and some of the cited references in the recent
scoping review presented in Anwar et al. [19]. Specifically, Abimbade et al. [5] designed a
mathematical model for the evolution of recurrent malaria in the human population. The
authors considered all categories of recurrent malaria, including recrudescence, relapse,
and reinfection. In a similar development, Tasman et al. [6] developed and analyzed a
deterministic model to study the transmission dynamics of recurrent malaria with relapse,
reinfection, and recrudescence, thus taking into account the inadequacy of hospital beds.
Bakare [8] formulated and analyzed a nonautonomous malaria model that took into ac-
count five optimal control measures representing the use of insecticide-treated bed nets,
educational campaigns, indoor residual sprayings, the clearance of mosquito breeding sites,
and treatment control in mitigating the dynamical spread of malaria in the population.
Traore [9] designed a temperature-dependent malaria model where the mosquito popula-
tion was structured into stages. In [10], the authors presented an optimal framework for
the transmission dynamics of malaria that incorporated mosquito seasonal factors, and
the impacts of insecticide, prevention, and treatment controls on the malaria model were
examined. Furthermore, Keno [14] applied optimal control theory and economic analysis
to a deterministic mathematical model with atmospheric variation.

In another development, the authors in [15] presented and rigorously analyzed a
malaria model incorporating a direct atmospheric-mediated transmission mode. In [16],
the authors formulated and analyzed a malaria model incorporating relapse and unenlight-
ened infected individuals. Furthermore, Olaniyi and coworkers [17] presented an optimal
control framework for the transmission dynamics of malaria through the transfusion of
infected blood and the indirect horizontal transmission (human vector) route with satu-
rated treatment function. The authors in [20] presented an optimal control framework for
recurrent malaria dynamics with a view to providing effective optimal control strategies to
be implemented in setting the recurrence of malaria in the human population to extinction.
In addition, Olaniyi et al. [21] stressed on the efficiency and economic analyses of a recur-
rent malaria model. Their focus was centered on identifying the most efficient and most
cost-effective strategy that best averts the highest number of recurrent malaria infection in
the population.

At this point, it is worth noting that all the aforementioned studies did not consider
the stratification of the human population into social classes. However, the authors in [22]
developed a mathematical model for the transmission dynamics of malaria by categorizing
the human population into two main socioeconomic divisions, namely low-income and
high-income individuals. The formulated model was analyzed via optimal control theory
and extended to include efficiency and economic analyses to procure the most efficient and
effective control strategy for mitigating the spread of malaria among social classes in the
population. Modeling infectious disease using a fractional-order derivative operator allows
for a more accurate description of the disease transmission than the classical modeling
approach. The nonlocal nature of the fractional-order system makes it more suitable to
model disease dynamics where prior history of the disease governs its future evolution
(see, [23,24]). Thus, modeling malaria spread in a social hierarchy-structured population
with fractional-order derivative operator will create a history such that the current behav-



Mathematics 2024, 12, 1593 3 of 19

ior of the disease will depend on the previous outbreaks. This explains the capacity of
fractional-order models in capturing memory effects in the transmission dynamics of dis-
ease. Hence, it is of essence to improve on the existing knowledge of malaria transmission
dynamics by studying the effect of memory on the evolution of malaria within social classes
in the population. This can be achieved by generalizing the model developed in [22] in the
framework of fractional calculus.

It is worthy of note that Atangana–Baleanu and piecewise Caputo–Fabrizio fractional
versions of the model have been analyzed in Bonyah [25] and Aldwoah et al. [26], respec-
tively. Both studies in [25,26] focused on establishing the existence and uniqueness of
the solution of the model, thereby exploring the crossover effects associated with malaria
dynamics. However, the comprehensive global stability dynamics of the social hierarchy-
structured malaria model with either a classical or fractional derivative operator remains
unexplored thus far. As a result of this, the fractional-order of the Caputo type is employed
in this present study, with specific focus on gaining insights into the global asymptotic
dynamics of social hierarchy-structured malaria transmission with memory using a more
generalized approach for establishing the global asymptotic stability of the steady states of
the fractional-order model. In other words, this study examines the influence of memory
on the global dynamics of malaria among social classes by extending the usual classical
methods for investigating the global asymptotic stabilities of both disease-free and en-
demic equilibrium points to a more general approach using fractional calculus with a
Caputo derivative operator. The remaining aspects of the study are organized as follows:
In Section 2, the noninteger-order social hierarchy-stratified model is presented with its
qualitative analysis for the existence and uniqueness of solutions. Section 3 presents the
global asymptotic dynamics of the fractional-order model with simulations and discussion.
Section 4 deals with the concluding remarks of the study.

2. Fractional-Order Social Hierarchy-Stratified Model

The mathematical model presented in this study is a fractionalized version of the
classical-order nonlinear malaria model developed in Olaniyi et al. [22]. It has been
established by a plethora of researchers that fractional-order derivatives define real-life
situations better than the usual classical-order derivatives. This is due to the fact that
fractional-order derivatives possess distinctive properties such as memory and heredity,
which enable adequate and effective comprehension of real-life phenomena [27–33]. It
is on this note that this study is focused on the application of fractional calculus to the
epidemiology of malaria with a view to gaining further insights into how the consequences
of memory affect the transmission dynamics of the disease in a social heirarchy-structured
human population. To start with, it is of essence to state some basic concepts and analytic
results in fractional calculus following [3,34,35].

Definition 1. A Riemann–Liouville fractional integral of order α of relation h : R+ → R,
designated by Iα

t h(t), is defined as

Iα
t h(t) =

1
Γ(α)

∫ t

0

h(ξ)
(t − ξ)1−α

dξ, (1)

where α ∈ R+ such that α ∈ (0, 1) and t > 0. The gamma function, Γ(α), is given by

Γ(α) =
∫ ∞

0
xα−1e−xdx. (2)
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Definition 2. A fractional derivative of order α of h : R+ → R of the Caputo type, denoted by
CDα

t h(t), is defined as

CDα
t h(t) =


1

Γ(1 − α)

∫ t

0

h′(ϱ)
(t − ϱ)α

dϱ,

dα

dtα
h(t), 0 < α ≤ 1.

(3)

Lemma 1 (Generalized Mean Value Theorem). Let g(t) ∈ C[0, t∗] and CDα
t g(t) ∈ C[0, t∗] for

0 < α ≤ 1; then,

g(t) = g(0) +
CDα

t g(φ)tα

Γ(α)
, φ ∈ [0, t], ∀ t ∈ (0, t∗].

(i) If CDα
t g(t) ≥ 0 ∀ t ∈ [0, t∗], then g(t) is nondecreasing for each t ∈ (0, t∗).

(ii) If CDα
t g(t) ≤ 0 ∀ t ∈ [0, t∗], then g(t) is nonincreasing for each t ∈ (0, t∗).

Lemma 2. Let χ(t) ∈ C([0, ∞)) satisfy

CDα
t χ(t) + a1χ(t) ≤ a2, χ(0) = χ0,

where α ∈ (0, 1] and a1, a2 ∈ R, with a1 ̸= 0; then,

χ(t) ≤
(

χ0 −
a2

a1

)
Eα,1(−a1tα) +

a2

a1
,

where Eα,1(·) is a Mittag–Leffler function with one parameter α given by

Eα,1(x) =
∞

∑
n=0

xn

Γ(αn + 1)
.

Lemma 3. χ(t) = χ(0)Eα,1(ktα) solves the fractional-order differential equation of the form
CDα

t χ(t) = kχ(t).

Consequently, the nonlinear fractional-order differential equations of the Caputo type
describing the evolution of the social hierarchy-structured malaria model are given by

CDα
t SL(t) = (1 − r)ΛH − β1SL(t)IV(t) + ωRL(t) + σHSH(t)− (µH + σL)SL(t)

CDα
t SH(t) = rΛH − bβ1SH(t)IV(t) + ϵRH(t) + σLSL(t)− (µH + σH)SH(t)

CDα
t IL(t) = β1SL(t)IV(t)− (µH + γ + δ)IL(t)

CDα
t IH(t) = bβ1SH(t)IV(t)− (µH + α + ϕ)IH(t)

CDα
t RL(t) = γIL(t)− (ω + µH)RL(t)

CDα
t RH(t) = αIH(t)− (ϵ + µH)RH(t)

CDα
t SV(t) = ΛV − β2(IL + θ IH)SV(t)− µVSV(t)

CDα
t IV(t) = β2(IL + θ IH)SV(t)− µV IV(t).

(4)

with initial conditions

SL(0) = SL0, SH(0) = SH0, IL(0) = IL0, IH(0) = IH0,
RL(0) = RL0, RH(0) = RH0, SV(0) = SV0, IV(0) = IV0.

(5)
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Malaria transmission dynamics involve the interaction between human and vector popula-
tions. The total human population, NH(t), is socially structured into six mutually exclusive
compartments, namely a low social class susceptible population denoted by SL(t), a high
social class susceptible population denoted by SH(t), a low social class infectious popu-
lation denoted by IL(t), a high social class infectious population denoted by IH(t), a low
social class recovered population denoted by RL(t), and a high social class recovered popu-
lation denoted by RH(t). The vector population is stratified into a susceptible population
designated by SV(t) and an infectious population denoted by IV(t). Then, the total human
population, NH(t) at time t is given by

NH(t) = SL(t) + SH(t) + IL(t) + IH(t) + RL(t) + RH(t), (6)

and the total vector population is given by

NV(t) = SV(t) + IV(t). (7)

The lower social class human population is a set of lower income individuals, given
by {SL(t), IL(t), RL(t)}, who have little or no accessibility to medical treatment and other
resources for sustainance in the population unlike the higher social class population set
{SH(t), IH(t), RH(t)}. The population of lower social class is generated by the fraction of
recruitment of individuals into the population assumed susceptible at a rate of (1 − r)ΛH ,
while the remaining fraction rΛH goes to the higher social class population. The susceptible
individuals in the lower and higher social groups are infected following effective contact
with infectious mosquitoes at incidence rates of β1SL IV and bβ1SH IV , where β1 is the
transmission probability of infection, and b is the modification parameter responsible for
the degree of infection within higher social group individuals.

The susceptible lower and higher social class individuals are further increased by the
rate at which recovered humans RL(t) and RH(t) loss their immunity at rates ω and ϵ,
respectively. The infectious individuals in lower and higher income classes recover from
the disease at rates γ and α, respectively. The populations of infectious individuals in
both social classes are downsized by the disease-induced death at their respective rates
δ and ϕ, while the total human population is dwindled by the natural mortality rate µH .
Furthermore, the population of susceptible mosquitoes is increased by the recruitment
of mosquitoes at a rate ΛV and become infected due to the contact with both infectious
lower and higher social class individuals at incidence rate β2(IL + θ IH), with β2 being the
effective contact rate and θ being the modification parameter responsible for the reduction
of infection among the higher social class individuals. The total mosquito population is
diminished by the natural mortality rate µV . The Caputo fractional derivative operator is
chosen to formulate system (4) because of its suitability for initial conditions in a classical
sense unlike the Riemann–Liouville derivative operator. In addition, the Caputo derivative
of a constant function always yields zero, thus satisfying the fundamental principle of
calculus, unlike some other fractional-order derivative operators [27,28]. It should be
emphasized that the full description and assumptions governing the model formulation
can be found in the classical version presented in [22], but it is pertinent to mention that all
the parameters of the model governed by the system (4) are measured per fractional-order
time, t−α (see, e.g., [28,32,35]), unlike the classical model in [22], where parameters were
measured per unit time t−1.

2.1. Basic Properties of the Fractional Model

Herein, the basic properties of solutions of the fractional-order malaria model (4) are
investigated using the theory of positivity and boundedness.
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2.1.1. Positivity and Boundedness of Solution

Theorem 1. The solutions {SL(t), SH(t), IL(t), IH(t), RL(t), RH(t), SV(t), and IV(t)} of the
fractional-order social hierarchy-structured model (4) remain non-negative for all t > 0 if the
associated initial conditions (5) are non-negative.

Proof. It is straightforward from system (4) that

CDα
t (SL)(t)|SL=0 = (1 − r)ΛH + ωRL(t) + σHSH(t) > 0,

CDα
t (SH)(t)|SH=0 = rΛH + ϵRH(t) + σLSL(t) > 0,

CDα
t (IL)(t)|IL=0 = β1SL(t)IV(t) ≥ 0,

CDα
t (IH)(t)|IH=0 = bβ1SH(t)IV(t) ≥ 0,

CDα
t (RL)(t)|RL=0 = γIL(t) ≥ 0,

CDα
t (RH)(t)|RH=0 = αIH(t) ≥ 0,

CDα
t (SV)(t)|SV=0 = ΛV > 0,

CDα
t (IV)(t)|IV=0 = β2(IL + θ IH)SV(t) ≥ 0.

(8)

Following the fact that the Caputo derivatives in (8) are non-negative on the bounding
planes R8

+ with the non-negative initial conditions, then by using the generalized mean
value theorem (see, Lemma 1), it follows that the solutions SL(t), SH(t), IL(t), IH(t), RL(t),
RH(t), SV(t), and IV(t) are non-decreasing for all time t > 0. Hence, we have the proof.

Theorem 2. A region D of the fractional-order social hierarchy-structured malaria model (4), which
is defined by D = DH ×DV ⊂ R6

+ ×R2
+, where

DH =

{
(SL(t), SH(t), IL(t), IH(t), RL(t), RH(t)) ∈ R6

+ : NH(t) ≤
ΛH
µH

}
,

DV =

{
(SV(t), IV(t)) ∈ R2

+ : NV(t) ≤
ΛV
µV

}
,

is positively invariant.

Proof. Given that NH(t) = SL(t) + SH(t) + IL(t) + IH(t) + RL(t) + RH(t) and NV(t) =
SV(t) + IV(t), it then follows that the Caputo derivatives of NH(t) and NV(t) are given by

CDα
t NH(t) = CDα

t SL(t) + CDα
t SH(t) + CDα

t IL(t) + CDα
t IH(t) + CDα

t RL(t) + CDα
t RH(t)

= ΛH − µH NH − δIL − ϕIH ,

≤ ΛH − µH NH .
(9)

Similarly,
CDα

t NV(t) + µV NV ≤ ΛV . (10)

Now, invoking Lemma 2 on (9) and (10) yields

NH(t) ≤
(

NH(0)−
ΛH
µH

)
Eα,1(−µHtα) +

ΛH
µH

, (11)
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and

NV(t) ≤
(

NV(0)−
ΛV
µV

)
Eα,1(−µV tα) +

ΛV
µV

. (12)

Then, taking the lim sup as t → ∞ implies that NH(t) ≤ ΛH/µH and NV(t) ≤ ΛV/µV .
Accordingly, the solution path of the system (4) is bounded in D, thus showing that the
region D is positively invariant.

2.1.2. Existence and Uniqueness of Solution

This subsection is dedicated to the investigation of the existence and uniqueness of
the solution of the social hierarchy-structured fractional-order malaria model (4) using the
Banach’s fixed point theory approach [3,33,36,37]. Suppose the noninteger-order malaria
model (4) is rewritten in a compact form:

CDα
t (G(t)) = H(t,G(t)), 0 ≤ t ≤ Φ,

G(0) = G0,
(13)

where G(t) = (SL(t), SH(t), IL(t), IH(t), RL(t), RH(t), SV(t), IV(t))⊺, and
H(t,G(t)) : [0, Φ]×R8

+ → R are defined by

H(t,G(t)) = (Hi(t, SL(t), SH(t), IL(t), IH(t), RL(t), RH(t), SV(t), IV(t))⊺,

for i = 1, 2, ..., 8 so that

H1(t,G(t)) = (1 − r)ΛH − β1SL(t)IV(t) + ωRL(t) + σHSH(t)− (µH + σL)SL(t),

H2(t,G(t)) = rΛH − bβ1SH(t)IV(t) + ϵRH(t) + σLSL(t)− (µH + σH)SH(t),

H3(t,G(t)) = β1SL(t)IV(t)− (µH + γ + δ)IL(t),

H4(t,G(t)) = bβ1SH(t)IV(t)− (µH + α + ϕ)IH(t),

H5(t,G(t)) = γIL(t)− (ω + µH)RL(t),

H6(t,G(t)) = αIH(t)− (ϵ + µH)RH(t),

H7(t,G(t)) = ΛV − β2(IL + θ IH)SV(t)− µVSV(t),

H8(t,G(t)) = β2(IL + θ IH)SV(t)− µV IV(t),

(14)

where G0 = (SL0, SH0, IL0, IH0, RL0, RH0, SV0, IV0, )⊺.

Now, following Definition 1 by integrating (13) fractionally gives

G(t) = G0 +
1

Γ(α)

∫ t

0
(t − Ψ)α−1H(Ψ,G(Ψ))dΨ. (15)

Assume that M = (C[0, Φ], ∥ · ∥) is a Banach space for all real-valued continuous functions
with the supremum norm governed by

∥G(t)∥ = sup{|G(t)| : t ∈ [0, Φ]},

with

sup |G(t)| = sup(|SL(t)|+ |SH(t)|+ |IL(t)|+ |IH(t)|+ |RL(t)|+ |RH(t)|+ |SV(t)|+ |IV(t)|).
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At this juncture, it is important to establish that H(t,G(t)) is Lipschitz continuous, and this
is investigated as presented in the next result.

Theorem 3. The vector function H(t,G(t)) is Lipschitzian in G(t) on C([0, Φ]×R8
+,R) if there

exists a constant P > 0 such that

∥H(t,G1(t))−H(t,G2(t))∥ ≤ P∥G1(t)− G2(t)∥. (16)

Proof. Since the states of the fractional-order social hierarchy-structured malaria model (4)
are bounded by ΛH/µH for the human population and ΛV/µV for the vector population
in a positively invariant region D, then considering H1(t, SL(t)), and for SL1(t) and SL2(t),
it follows that

∥H1(t, SL1(t))−H1(t, SL2(t))∥ ≤ ∥(β1 IV + µH + σL)∥∥SL1 − SL2∥. (17)

Since IV ≤ ΛV/µV in D, then the inequality (17) becomes

∥H1(t, SL1(t))−H1(t, SL2(t))∥ ≤ P1∥SL1 − SL2∥, (18)

where P1 =
(

β1ΛV
µV

+ (µH + σL)
)
> 0.

In a similar manner, for any SH1(t) and SH2(t),

∥H2(t, SH1)−H2(t, SH2)∥ ≤ P2∥SH1 − SH2∥, (19)

where P2 =
(

bβ1ΛV
µV

+ (µH + σH)
)
> 0, since IV ≤ ΛV/µV . For any IL1(t) and IL2(t),

∥H3(t, IL1)−H3(t, IL2)∥ ≤ P3∥IL1 − IL2∥, (20)

where P3 = (γ + δ + µH) > 0. For any IH1(t) and IH2(t),

∥H4(t, IH1)−H4(t, IH2)∥ ≤ P4∥IH1 − IH2∥, (21)

where P4 = (α + ϕ + µH) > 0. For any RL1(t) and RL2(t),

∥H5(t, RL1)−H5(t, RL2)∥ ≤ P5∥RL1 − RL2∥, (22)

where P5 = (ω + µH) > 0. For any RH1(t) and RH2(t),

∥H6(t, RH1)−H6(t, RH2)∥ ≤ P6∥RH1 − RH2∥, (23)

where P6 = (ϵ + µH) > 0. Furthermore, considering H7(t, SV(t)), and for any SV1(t) and
SV2(t), following a similar procedure yields

∥H7(t, SV1(t))−H7(t, SV2(t))∥ ≤ ∥β2(IL + θ IH)∥∥SV1 − SV2∥. (24)

Since IL and IH are bounded above by ΛH/µH in the invariant region D, it then follows
that the inequality (24) becomes

∥H7(t, SV1(t))−H7(t, SV2(t))∥ ≤ P7∥SV1 − SV2∥, (25)

where P7 =
(

β2ΛH
µH

(1 + θ) + µV

)
> 0. Also, for any IV1(t) and IV2(t),

∥H8(t, IV1(t))−H8(t, IV2(t))∥ ≤ P8∥IV1 − IV2∥, (26)

where P8 = µV > 0.
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In view of the foregoing, it is clear that the noninteger-order social hierarchy-structured
malaria model (4) is Lipschitz continuous, thus satisfying the condition 16, where the
Lipschitz constant P = max{Pi}, and i = 1, 2, ..., 8.

Now, we define a fixed point of an operator Q : M → M by Q(G(t)) = G(t) so that

Q(G(t)) = G0 +
1

Γ(α)

∫ t

0
(t − Ψ)α−1H(Ψ,G(Ψ))dΨ. (27)

Theorem 4. The fractional-order system (4) has a unique solution G(t) ∈ M provided that
ΦαP < Γ(α + 1).

Proof. The main interest in proving this result is to show that Q is a contraction. Since
H(t,G(t)) is Lipschitz continuous, as theorized in Equation (16), it follows that for any
G1(t),G2(t) ∈ M and since 0 ≤ t ≤ Φ,

∥Q(G1(t))−Q(G2(t))∥ =

∥∥∥∥ 1
Γ(α)

∫ t

0
(t − Ψ)α−1[H(Ψ,G1(Ψ))−H(Ψ,G2(Ψ))]dΨ

∥∥∥∥
≤ 1

Γ(α)

∫ t

0
(t − Ψ)α−1∥H(Ψ,G1(Ψ))−H(Ψ,G2(Ψ))∥dΨ

≤ P
Γ(α)

∥G1(t)− G2(t)∥
∫ t

0
(t − Ψ)α−1dΨ

≤ P∗∥G1(t)− G2(t)∥,

where P∗ = ΦαP/(αΓ(α)), thus implying that Q is a contraction, since P∗ < 1. Hence,
there exists a unique solution for the fractional-order social hierarchy-structured malaria
model (4).

2.2. Basic Reproduction Number

The malaria-free (disease-free) equilibrium of the fractional-order malaria model (4) is
obtained as

ε0 = (S0
L, S0

H , 0, 0, 0, 0, S0
V , 0), (28)

where

S0
L =

ΛH(µH(1 − r) + σH)

µH(µH + σH + σL)
,

S0
H =

ΛH(µHr + σL)

µH(µH + σH + σL)
,

and
S0

V =
ΛV
µV

.

In what follows, the basic reproduction number of the model is as obtained in [22],
and it is given by

R0 =

√
ΛH β1β2ΛV(θbm1(rµH + σL) + m2(µH(1 − r) + σH))

µHµ2
Vm1m2(µH + σH + σL)

, (29)

where m1 = µH + γ + δ and m2 = µH + α + ϕ. The basic reproduction number, R0, is the
key epidemiological threshold that determines the average number of secondary cases of
malaria infection produced by an infectious individual during its period of infectiousness
in a wholly susceptible population [38].
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3. Global Asymptotic Dynamics of the Model

This section explores the global asymptotic stability of the fractional-order social
hierarchy-structured malaria model (4), since stability analysis has been proven to be an
essential performance metric for any dynamical system [29].

3.1. Global Asymptotic Stability of DFE

Since fractional calculus is a generalization of the standard theory of calculus, the
global asymptotic stability of the model around the disease-free equilibrium (DFE) of the
model (28) is analyzed by extending the classical method that has been x-rayed in [39–42]
to a fractional-order derivative operator. To do this, let the fractional-order system (4) be
rewritten in a vector form given by

CDα
t X(t) = F(X,Z),

CDα
t Z(t) = G(X,Z), G(X, 0) = 0,

(30)

of which X ∈ R5
+ and Z ∈ R3

+, where X represents the uninfected compartments, and Z
represents the population of infected individuals. In essence, X = (SL, SH , RL, RH , SV),
and Z = (IL, IH , IV). Furthermore, let the disease-free equilibrium of the malaria model (4)
be represented by ε0 = (X∗, 0); then, the global asymptotic stability of the social hierarchy-
structured malaria model can be established if the following conditions are obeyed:

(N1): For CDα
t X(t) = F(X, 0), X∗ is globally asymptotically stable;

(N2): G(X,Z) = AZ− Ĝ(X,Z), Ĝ(X,Z) ≥ 0, for (X,Z) ∈ D.

where A = ∂G/∂Z is an M matrix evaluated at (X∗, 0) with non-negative off-diagonal elements.

Theorem 5. The disease-free equilibrium ε0 = (X∗, 0) of the fractional-order social hierarchy-
structured malaria model (4) is globally asymptotically stable if conditions (N1) and (N2) are satisfied.

Proof. F(X,Z) and G(X,Z) are obtained from (4) as follows:

F(X,Z) =



(1 − r)ΛH − β1SL IV + ωRL + σHSH − (µH + σL)SL

rΛH − bβ1SH IV + ϵRH + σLSL − (µH + σL)SH

γIL − (ω + µH)RL

αIH − (ϵ + µH)RH

ΛV − β2(IL + θ IH)SV − µVSV


(31)

and

G(X,Z) =


β1SL IV − (µH + γ + δ)IL

bβ1SH IV − (µH + α + ϕ)IH

β2(IL + θ IH)SV − µVSV

. (32)
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Since

F(X, 0) =



(1 − r)ΛH + ωRL + σHSH − (µH + σL)SL

rΛH + ϵRH + σLSL − (µH + σL)SH

−(ω + µH)RL

−(ϵ + µH)RH

ΛV − µVSV


, (33)

then CDα
t X(t) = F(X, 0) implies that

CDα
t SL = (1 − r)ΛH + ωRL + σHSH − (µH + σL)SL,

CDα
t SH = rΛH + ϵRH + σLSL − (µH + σL)SH ,

CDα
t RL = −(ω + µH)RL,

CDα
t RH = −(ϵ + µH)RH ,

CDα
t SV = ΛV − µVSV .

(34)

Using Lemma 3 and solving system (34) simultaneously gives

SL(t) =
(

(1−r)ΛH
(σH+σL+µH)

+ σHΛH
µH(σH+σL+µH)

)
(1 − Eα,1(−(σH + σL + µH)tα))

+
(

σH
σH+σL

(L(0) + RL(0) + RH(0))− σHΛH
µH(σH+σL)

)
×(Eα,1(−µHtα)− Eα,1(−(σH + σL + µH)tα)) + (ω−σH)RL(0)

σH+σL−ω

×(Eα,1(−(ω + µH)tα)− Eα,1(−(σH + σL + µH)tα)) + SL(0)

×Eα,1(−(σH + σL + µH)tα) + (σH)RH(0)
σH+σL−ω

×(Eα,1(−(σH + σL + µH)tα)− Eα,1(−(ϵ + µH)tα)),

SH(t) =
ΛH
µH

(1 − Eα,1(−µHtα)) + RL(0)(Eα,1(−µHtα)− Eα,1(−(ω + µH)tα))

+RH(0)(Eα,1(−µHtα)− Eα,1(−(ϵ + µH)tα))

+L(0)Eα,1(−µHtα)− SL(t),

RL(t) = RL(0)Eα,1(−(ω + µH)tα),

(35)

RH(t) = RH(0)Eα,1(−(ϵ + µH)tα),

SV(t) =
ΛV
µV

+

(
SV(0)−

ΛV
µV

)
Eα,1(−µV tα).

(36)

Consequently, as t → ∞ in (35) and (36), regardless of the initial conditions SL(0), SH(0),
RL(0), RH(0), and SV(0), then SL(t) → S0

L, SH(t) → S0
H , RL(t) → 0, RH(t) → 0 and

SV(t) → S0
V . As a consequence, the condition (N1) is satisfied, thus implying that X∗ is

globally asymptotically stable.
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Further, to establish (N2), an M matrix with non-negative off-diagonal entries is
given by

A =
∂G
∂Z |(X∗ ,0) =


−(µH + γ + δ) 0 β1S0

L

0 −(µH + α + ϕ) bβ1S0
H

β2S0
V θβ2S0

V −µV

. (37)

Simplifying Ĝ(X,Z) = AZ− G(X,Z) gives

Ĝ(X,Z) =


β1 IV(S0

L − SL)

bβ1 IV(S0
H − SH)

β2(IL + θ IH)(S0
V − SV)

. (38)

It is clear that Ĝ(X, Z) ≥ 0, since 0 ≤ SL ≤ S0
L, 0 ≤ SH ≤ S0

H , and 0 ≤ SV ≤ S0
V . Hence,

property (N2) is satisfied. Accordingly, the disease-free equilibrium of the fractional-order
malaria model (4) is globally asymptotically stable. This ends the proof.

3.2. Global Asymptotic Stability of EE

Let the endemic equilibrium point of the fractional-order social hierarchy-structured
model (4) be represented by ε∗∗ so that

ε∗∗ = (S∗∗
L , S∗∗

H , I∗∗L , I∗∗H , R∗∗
L , R∗∗

H , S∗∗
V , I∗∗V ).

It is important to mention that the explicit form of ε∗∗ is omitted due to the complexity
of the model. However, if it is assumed that the endemic equilibrium point exists, then it
is pertinent to establish the asymptotic behavior of the fractional-order social hierarchy-
structured model (4) around the endemic equilibrium. To do this, the following result is
considered necessary as a consequence of the idea in [29].

Lemma 4. If G∗∗ is an equilibrium point of the Caputo fractional-order system (13), and V(G(t))
is a Lyapunov functional defined by

V(G(t)) =
8

∑
i=1

bi
2
(Gi − G∗∗

i )2, ∀ bi > 0,

then
CDα

t V(G(t)) ≤
8

∑
i=1

[bi(Gi − G∗∗
i )] CDα

t Gi(t).

Theorem 6. The endemic equilibrium point, ε∗∗, of the social hierarchy-structured malaria model (4)
is globally asymptotically stable if the associated threshold quantity, R0, is greater than unity.

Proof. Consider a quadratic Lyapunov function L : D → R defined by (see, e.g., [43,44])

L(G(t)) = 1
2 [(SL − S∗∗

L ) + (SH − S∗∗
H ) + (IL − I∗∗L ) + (IH − I∗∗H ) + (RL − R∗∗

L )

+(RH − R∗∗
H )]2 + 1

2
[
(SV − S∗∗

V ) + (IV − I∗∗V )
]2.

(39)

With Lemma 4 in mind, the Caputo fractional time derivative of L, along the solution path
of the fractional-order system (4), gives
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CDα
t L ≤ [(SL − S∗∗

L ) + (SH − S∗∗
H ) + (IL − I∗∗L ) + (IH − I∗∗H ) + (RL − R∗∗

L )

+(RH − R∗∗
H )]

[CDα
t (SL + SH + IL + IH + RL + RH)

]
+
[
(SV − S∗∗

V ) + (IV − I∗∗V )
][CDα

t (SV + IV)
]

= [(SL − S∗∗
L ) + (SH − S∗∗

H ) + (IL − I∗∗L ) + (IH − I∗∗H ) + (RL − R∗∗
L )

+(RH − R∗∗
H )][ΛH − µH(SL + SH + IL + IH + RL + RH)− δIL − ϕIH ]

+
[
(SV − S∗∗

V ) + (IV − I∗∗V )
]
(ΛV − µV(SV + IV))

≤ −µH [(SL − S∗∗
L ) + (SH − S∗∗

H ) + (IL − I∗∗L ) + (IH − I∗∗H ) + (RL − R∗∗
L )

+(RH − R∗∗
H )]

(
(SL + SH + IL + IH + RL + RH)− ΛH

µH

)
−µV

[
(SV − S∗∗

V ) + (IV − I∗∗V )
](

(SV + IV)− ΛV
µV

)
≤ −µH [(SL − S∗∗

L ) + (SH − S∗∗
H ) + (IL − I∗∗L ) + (IH − I∗∗H ) + (RL − R∗∗

L )

+(RH − R∗∗
H )]2 − µV

[
(SV − S∗∗

V ) + (IV − I∗∗V )
]2.

Hence, the Caputo fractional time derivative CDα
t L(G(t)) is negative semidefinite, that

is, CDα
t L ≤ 0 with equality if and only if SL = S∗∗

L , SH = S∗∗
H , IL = I∗∗L , IH = I∗∗H ,

RL = R∗∗
L , RH = R∗∗

H , SV = S∗∗
V , and IV = I∗∗V . This implies that the largest invariant set

in {G(t) ∈ D | CDα
t L(G(t)) = 0} is the singleton {ε∗∗}. It follows by LaSalle’s invariance

principle [45] that the endemic equilibrium point ε∗∗ is globally asymptotically stable.

3.3. Simulations and Discussion

To visualize the overall behavior of the fractional-order system (4), the generalized
Euler’s method discussed in [46,47] was used. Specifically, in Figure 1, the values of the
fractional order parameter α were allowed to vary in the interval 0 < α ≤ 1 at the basic
reproduction number R0 = 0.7266. It can be observed that as the memory increased, the
size of the high social class infectious human population reduced and converged to the
malaria-free equilibrium rapidly. In other words, a lower value of the fractional-order
parameter α makes the convergence to the disease-free equilibrium faster when compared
with a higer value of the fractional-order α. Similar behavior can be observed for the
infectious vector population. In Figure 2, when the basic reproduction number was greater
than unity, that is R0 = 2.2978, it can be observed that the decrease in the value of the
fractional order parameter α increased the convergence of the high social class infectious
human population to the endemic equilibrium, thus implying that the presence of the
memory enabled the fractional-order social hierarchy-structured system to stabilize more
quickly when compared to a memoryless system where α = 1. Similar behavior can be
observed in Figure 2b for the infectious vector population when R0 > 1.

In another development, Figure 3 shows the global asymptotic behavior of the fractional-
order system (4) for α = 0.85 at different values of initial data. In particular, when
R0 = 0.7266 < 1, it is shown that every trajectory of the infectious vector population, re-
gardless of the initial conditions, tended to the disease-free equilibrium. This corroborates the
theoretical result established in Theorem 5 for the global asymptotic stability of the disease-free
equilibrium. Conversely, in the same Figure 3, when R0 = 2.2978 > 1, it can be seen that
every solution originating at different sizes of the infectious vector population converged
asymptotically to the endemic equilibrium point. This is in support of Theorem 6.
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Figure 1. (a) Varying effects of the fractional-order parameter α on the high social class infectious
human population. (b) Varying effects of the fractional-order parameter α on the infectious vector
population. In both cases, r = 0.2, ΛH = 0.11, β1 = 0.001, β2 = 0.002, ΛV = 100, b = 0.003, θ = 0.65,
µH = 0.0000548, γ = 0.82, δ = 0.7, σL = 0.95, α = 0.88, ϕ = 0.5, σH = 0.0065, and µV = 0.067 so that
R0 = 0.7266 < 1.
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Figure 2. (a) Varying effects of the fractional-order parameter α on the high social class infectious
human population. (b) Varying effects of the fractional-order parameter α on the infectious vec-
tor population. Using the same parameter values as in Figure 1, except for β2 = 0.02, so that
R0 = 2.2978 > 1.
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Figure 3. Global asymptotic stability of the fractional-order social hierarchy-structured malaria
model (4), at α = 0.85, around the disease-free equilirium and endemic equilirium when R0 = 0.7266
and R0 = 2.2978, respectively.

4. Conclusions

In this work, fractional calculus has been applied to describe the transmission dy-
namics of malaria in a social hierarchy-structured population with memory effects. The
formulated fractional-order model is a system of differential equations with a Caputo
derivative operator. The well-posed nature of the model was established via the general-
ized mean value theorem for the positivity of bounded solutions, and the Banach fixed
point theory was employed for the existence and uniquesness of solutions. The global
asymptotic stabilities of both disease-free and endemic equilibria of the fractional-order
model were investigated by extending the methods in the classical calculus to the Caputo
fractional calculus, and the theoretical results were graphically illustrtated. Consequently, it
was proved that at R0 < 1, the fractional-order social hierarchy-structured malaria model
has a globally asymptotically stable disease-free equilibrium where solutions at different
initial values converge to. It was also proved that every solution of the model initiating at
various values tends to the endemic equilibrium asymptotically when R0 > 1.

In addition, the effects of various values of the fractional order 0 < α ≤ 1 were tested
on the behavior of the fractional-order social hierarchy-structured malaria model. It was
revealed that an increase in the fractional order α results in slow convergence of the state
solutions of the system to both the disease-free and endemic equilibria. Hence, it was
established that solutions of the fractional-order system with values of α < 1 stabilize more
rapidly than a memoryless system with α = 1. Therefore, it can be stated that the presence
of memory in a dynamical system operates as a control parameter, which enhances the
convergence of the solutions. This underscores the importance of fractional calculus in
modeling dynamical systems with memory.

In the presence of real data, fractional-order models can have more degree of freedom
for exploring disease dynamics than the classical models. This is so because the fractional
order can be employed as a fit parameter to improve the agreement with the real data.
Thus, for a more realistic approach and accurate prediction of malaria disease spread in
the population, it is worth considering the robust data-driven analysis of the fractional-
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order model for malaria dynamics. Also worthy of consideration is modeling malaria
dynamics via a reaction–diffusion system in order to describe how the disease spreads
through contact between host–vector interactions and spatial movement in a heterogeneous
environment. These are the limitations of the present work, which can be explored as future
considerations.
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