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Abstract: Reducing procurement risks to ensure the supply of emergency supplies is crucial for miti-
gating the losses caused by mine thermodynamic disasters. The risk preference of decision-makers
and supply chain collaboration are the important aspects for this reductiom. In this study, a novel
P-CVaR (Piecewise conditional risk value) distributionally robust optimization model is proposed
to accurately assist the decision-makers’ decision of risk preference for reducing procurement risks.
Meanwhile, the role of cooperation between procurement and reserves are considered for the weak-
ening procurement risks. A risk-averse bi-level optimization model is proposed to obtain the optimal
procurement strategy. Furthermore, by applying the Lagrange duality theorem, the complexity of
the bi-level optimization model is simplified then solved using a PSO algorithm. Using empirical
analysis, it has been verified that the model presented in this paper serves as a valuable guideline for
mine thermodynamic pre-disaster emergency material procurement strategies for the prevention of
thermodynamic disasters.

Keywords: mine thermodynamic disasters; emergency material procurement; risk preferences;
CVaR distributionally robust optimization; bi-level optimization

MSC: 90B50

1. Introduction
1.1. Background

Mine thermodynamic disasters are complex disasters related to heat release and trans-
fer. According to relevant statistics, thermodynamic disasters accounted for 60.9% of the
severe and major mine accidents that occurred in China from 2000 to 2021 [1]. In the case
of mine thermodynamic disasters, a severe accident occurred at the Babao Coal Mine in
Tong Hua, Jilin province, China, on 1 April 2013. This accident was triggered by coal
spontaneous combustion and a gas explosion in the goaf area, followed by a secondary
gas explosion during the sealing of the working face. It resulted in 53 fatalities and di-
rect economic losses of CNY 47.089 million. On 27 September 2020, a major fire accident
occurred at the Song Zao Coal Mine in Chonggqing, resulting in 16 fatalities, 42 injuries,
and direct economic losses of CNY 25.01 million [2]. It is therefore evident that mine
thermodynamic disasters can result in significant casualties and economic losses. It is
essential to procure emergency supplies before mine thermodynamic disasters to ensure
the timely implementation of emergency response activities and prevent significant losses.
An accurate procurement strategy pre-disaster can prevent significant losses caused by
purchasing at higher prices to meet extreme demand after the disaster. However, the same
type of disaster phenomenon may be caused by the superposition of different causative
mechanisms in mine thermodynamic disasters. For example, fire can be caused by mine
fires, gas combustion, or coal seam explosions. In this context, it is difficult to accurately
estimate the emergency supplies demand for mine thermodynamic disasters using tradi-
tional methods that rely on factors such as disaster types and occurrence locations. More
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serious procurement risks are included in the emergency supplies for mine thermodynamic
disasters due to the enormous uncertainty in demand. These risks can exacerbate the
fatalities and economic losses in mine thermodynamic disasters. The risk-averse procure-
ment strategy of emergency supplies for mine thermodynamic disasters is a practical and
meaningful research topic.

1.2. Relate Works

Currently, researchers have proposed various risk-averse methods for emergency pro-
curement in different perspectives. Some scholars have introduced supply chain contracts,
such as framework agreements and option contracts, into emergency supplies procurement
management to enhance procurement flexibility and reduce procurement risks. Tian Jun
et al. [3] developed an emergency procurement model based on capability options con-
tracts and demonstrated that this approach effectively reduces physical inventory while
mitigating the risk of stockouts. Zhang et al. [4] conducted research on emergency supplies
procurement under joint reserve based on framework agreements. They established a
nonlinear mathematical model to determine the optimal procurement reserve and physical
storage quantities, aiming to ensure the fulfillment of emergency demands while reduc-
ing procurement costs. The emergency supplies procurement risks can be reduced by
enhancing supply chain collaboration to improve the flexibility of emergency supplies
provisioning. However, the demand of emergency supplies for mine thermodynamic
disasters is complex and uncertain, and relying solely on supply chain collaboration cannot
eliminate risks effectively. It is necessary to consider multiple factors comprehensively and
take further risk-averse measures to ensure the reliability of procurement strategies.

In the study of risk-averse procurement strategies problems, the procurement strate-
gies optimization considering risk preferences has been extensively studied over the past
decade [5-8]. Cai Xin et al. [9] proposed optimal ordering decision models based on the
M-CVaR risk metric under uncertain demand conditions. They analyzed the impact of
suppliers’ risk preferences on ordering decisions, using case studies to show that optimal
ordering strategies differ across different types of risk preferences. Elham et al. [10] con-
sidered disruption risks and used conditional value at risk (CVaR) for the assessment of
risk under specific scenario probabilities. They studied supplier selection and strategy
problems of order allocation under risk-neutral and risk-averse attitudes, finding that diver-
sifying suppliers is a viable method to mitigate disruption risks and that the attitude of the
decision-maker towards risk plays a significant role in supplier selection and order quantity.
In summary, optimizing procurement strategies in response to sudden risks is closely
related to decision-makers’ risk preferences. Different risk preferences lead to varying
procurement strategy adjustments and play a significant role in supply chain management.
Therefore, understanding decision-makers’ risk preferences is of paramount importance to
effectively optimize emergency procurement decisions for mine thermodynamic disasters.

CVaR is a classic method of measuring risk preference at a certain confidence level.
By selecting an appropriate confidence level, decision-makers can measure and manage
risks as per their preferences and risk tolerance [11]. Assessing risk preference using CVaR
optimization models relies on the real tail information of random variables. However, due
to the difficulty in accurately estimating the stochastic demand distribution of emergency
supplies in mine thermodynamic disasters, there are significant challenges in directly using
CVaR to characterize the risk preferences of procurement decision-makers. Thus, the CVaR
distributionally robust optimization model offers a solution approach for solving such
problems [12]. The method aims to approximate the true distribution of random variables
by capturing the distribution uncertainty set. Uncertainty sets are a central element in
distributionally robust optimization models, and moments and statistical distances are
widely used methods for constructing uncertainty sets. Li et al. [13] propose that moments
and statistical distances should be combined to construct uncertainty sets. It is indicated
that the distributionally robust optimization model based on moments and distribution dis-
tances increased probability distribution information, and further reduced the conservatism
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of uncertainty sets and improved out-of-sample performance. Cornilly [14] studied the
robust boundary problem of distortion risk measures with respect to the known potential
risk at the Kth moment condition. They found that using uncertainty sets constructed
with higher-order moments can capture distribution tail characteristics, helping narrow
the gap between worst-case risk values and actual values. Glasserma [15] conducted
simulations and demonstrated that relative entropy can be used as an indicator for ef-
fectively quantifying the distribution model error of uncertain sets approaching the true
distribution. Feng [16] pointed out that using Wasserstein distance as a substitute for
relative entropy has shown significant effectiveness in characterizing the model errors of
distribution uncertainty sets.

The demand distribution of emergency supplies for mine thermodynamic disasters
exhibits characteristics of having a small-sample and heavy-tail due to the sudden nature
of the disasters. At these conditions, the use of lower order integer moments to charac-
terize the random distribution tail information of CVaR robust optimization models may
introduce significant statistical errors [17]. In addition, the Wasserstein distance generates
a significant tail distribution measurement bias [18,19]. These unfavorable factors will
seriously affect the accuracy of the robust optimization model for CVaR distribution. The
risk preference of decision-makers in emergency material procurement for mine thermody-
namic disasters is difficult to accurately measure based on traditional CVaR distributionally
robust optimization models.

1.3. Contribution

This paper proposes a risk-averse procurement strategy for mine thermodynamic
pre-disaster. The main contributions of this paper are summarized as follows:

e  Therisk-averse procurement strategy based on the joint reserve framework is proposed
in this paper, which considers the optimization of physical supplies and capacity before
mine thermodynamic disasters.

e A new P-CVaR distributionally robust model is proposed to characterize decision-
makers’ risk preferences based on small-sample and heavy-tailed features of emer-
gency supplies demand distributions for mine thermodynamic disasters.

e An emergency supplies procurement strategy bi-level optimization model is estab-
lished considering decision-makers’ risk preference to balance the procurement risks
and supplier benefits.

The rest of this paper is organized as follows. In Section 2, the problem description
and proposed emergency material procurement framework are provided. In addition, un-
derlying assumptions and symbol description are presented. Section 3 develops a P-CVaR
distributionally robust optimization for decision-makers’ risk preference measurement,
and an emergency material procurement risk-averse optimization model is established. In
addition, the models are solved and analyzed. Section 4 verifies the effectiveness of the
model through empirical analysis. Some conclusions and management inspirations are
summarized in Section 5.

2. Problem Description
2.1. Procurement Framework

In this study, the mine procurement department simultaneously has three functions:
Prior to the mine thermodynamic disasters, the procurement department predicts emer-
gency material demand based on probability distribution theory and historical mine ther-
mal disasters, and selects suitable suppliers for framework agreements to joint reserve.
Then, the risk of emergency material procurement and the risk preference of decision-
makers are measured. Finally, a procurement strategy is determined according to the
decision-maker’s risk preference. This strategy includes the optimal joint reserves that
determine the framework suppliers and the corresponding optimal capacity quantity, in
addition to determining the pre-disaster amounts of physical reserves that are stored in the
mine warehouse. After the mine thermodynamic disasters occur, the emergency physical
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supplies reserved by the mine warehouse are first used for the emergency rescue operations.
Then, emergency supplies are continuously transported from the framework agreement
providers to the distribution center; then, the capacity is immediately produced and dis-
tributed to the disaster site. The emergency material procurement system described above
is represented in Figure 1.

—>
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Figure 1. Emergency material procurement system for mine thermodynamic disasters.

The principle of emergency management for mine thermodynamic disasters is the
prioritization of life. When coal mining enterprises make emergency material procurement
decisions, the reliability of emergency material supply should be emphasized to reduce
disaster losses. At the same time, supplier benefits should also be considered to ensure
the reliability of the supply. Considering the uncertainty of the distribution of emergency
material demand for mine thermodynamic disasters, a risk-averse bi-level distributionally
robust optimization model is established for emergency material procurement. The upper
level of the model aims to minimize the risk of coal mining enterprise procurement costs
according to the decision-makers’ risk preference, while the lower level of the model aims
to minimize the production cost of suppliers. The robustness of the optimal procurement
plan is ensured through the distributed robust optimization method in the case of uncertain
demand distribution for thermal and dynamic disasters in mines. The interruption of
emergency supplies supply is reduced through joint reserves. The reduction in procurement
cost risk in coal mines and the increase in supplier profits are both achieved through a
risk-averse bi-level optimization model based on P-CVaR.

2.2. Model Assumptions

Considering the suddenness characteristic of the mine thermodynamic disasters, the
following assumptions are made:

1.  The sample of historical emergency material demand can reflect the distribution
pattern of the demand variable for mine thermodynamic disasters.

2. The random demand variable follows a heavy-tailed distribution with small-samples.
3. Each supplier has an ample supply of emergency supplies.
4.  The emergency management department has the authority to determine the procure-

ment strategy for emergency supplies.

2.3. Symbol Description

The symbols used in the model construction are as follows (Table 1).
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Table 1. Symbol description.

Parametric Variable

n The set of candidate suppliers, i € n
B Maximum capacity per unit vehicle
0% Maximum capacity of coal mine warehouse
@ The budget upper limit for emergency material procurement
c Unit inventory cost of physical supplies
T° If the demand is less than the physical reserve, 7° is 1; otherwise, it is 0
v If the demand is between physical reserves and total reserves, the value is 1, otherwise it is 0
1 If the demand is greater than total reserves, it is 1; otherwise, it is 0
e® Unit residual value of expired physical supplies
x Emergency material demand for mine thermodynamic disasters
d=(dy,...,dy) The distance from the supplier to the accident coal mine
T={Ty,...,Tu} Unit cost of the supplier transporting supplies to the accident coal mine
cP = Cf e, cf,} The selling unit price of physical supplies provided by the supplier
" ={d,....chy Reserve unit price of production capacity
@ ={c, ...} The selling unit price of physical supplies produced by production capacity
= C’Z, o Shortage unit cost due to insufficient reserves
ct={cf,...,cp Unit cost vector of additional physical supplies produced by suppliers
Pv = {¢l, ..., p1} Unit price vector of additional physical supplies produced by suppliers
" ={¢Y,.... 0} Unit cost of production capacity into supplies
PF = (pf e, <P5} The unit cost of physical supplies produced by suppliers
" ={¢t, ... P} Unit cost reserved by supplier’s production capacity
or =19, gpﬁ} The minimum physical procurement quantity allowed by the supplier
¢ =1{91,..., 9, } Minimum capacity reserve allowed by the supplier.
Yr = %’, ..., 1/;5} Maximum physical supply quantity that the supplier can provide
Y=y, ) The maximum capacity reserve that the supplier can provide
Decision variables
y=W1---Yn) Physical reserves quantity purchased from supplier i
z=(z1,...2n) Capacity reserve quantity purchased from supplier i

3. Model Construction

In the procurement system for joint reserves based on the framework agreement, the
cost of coal mines as purchasers within the unit reserve cycle is as follows:

C,2) = £ Dyt eyt izt Tdild) = 8 (weoys) + 5 (00 (e (x — ) + Ty ¥
i B" i3 i=1 B (1)

i=

(T°(cfzi + Tidz% +cl(x —yi—z)))

1

It

The first part of the above formula is the procurement cost, including the physical
procurement cost, physical inventory cost, capacity storage cost, and transportation cost;
the second part is the residual value profit of residual assets. The third part is the cost of
purchasing physical supplies produced by production capacity and the cost of transporting
these supplies. The fourth part is the cost of purchasing physical supplies produced by
production capacity and the cost of transporting these supplies, as well as the cost of
purchasing additional emergency supplies to meet actual demand.

The cost per unit reserve cycle for suppliers is as follows:

W(y,z) =} (@ yi+¢"z —clyi —cizi) + ) (T (¢ (x —wi) —cf (x =) + }_ (T*(¢i'zi — =) (2)
i=1 i=1 i=1
The first part of the above formula is the production cost of the supplier, including the
cost of physical emergency material production and reserve capacity. The second part is
the cost of producing a portion of the production capacity into physical goods; the third
part is the cost of producing all production capacity into physical products.
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3.1. Risk Preference Measured Optimization Model

The decision-makers’ risk preference measurement model is the main content in the
risk-averse procurement optimization of emergency supplies for mine thermodynamic
disasters. In this paper, the demand for emergency supplies is evaluated by its probability
distribution. The risk preferences are measured via a CVaR distributionally robust opti-
mization model. In the following, the classical model of a CVaR distributionally robust
optimization with moments and distribution distance is first introduced, and then the
P-CVaR model is proposed based on this to accurately describe the risk preference of
emergency material procurement decision-makers for mine thermodynamic disasters.

3.1.1. CVaR Distributionally Robust Optimization

The classical CVaR distributionally robust optimization model based on moments and
distribution distances can be described in the following form [20]:

%neagg CVaR,(I(x)) 3)
CVaR 1)) = min{p + 1= El(1(x) - )]} @

where x = {x1,...,xN} is a random variable with an unknown probability distribution
p and a density function g(x); I(x) is the loss function; § denotes the expected loss; «a
represents the confidence level for controlling risk aversion. The unknown true probability
distribution p of variable x is defined by the following uncertain set:

d
Lo ={p: Ex] = oL <) ©)
In the formula above, E[x?] = y is the 6-th moments reflecting the true distribution

characteristics; %’ < 1 is a criterion that measures errors of the distribution model; g € P is

the prior reference distribution of x with a density function of f(x).

The CVaR distributionally robust optimization model based on Wasserstein distance
and second-order moment [13] is one of the classic models described in formula (3). Its
expression is as follows

max CVaR, (I(x)) (6)
per
F:{p:E[xZ]:U,W(p,q)Sﬂ} )

where E[x?] = y is the second-order moment of distribution p. W(p,q) is the Wasserstein
distance between the probability distributions p and 4.

N N
W(p,q) = inf Y Y c(x;, &) v(xi, &) (8)
=13

¢ ~yq,c(x,&):SxS — R is the cost function, y(x, &) € Ilis ajoint distribution of p and
g, and satisfies

N
,217(351',@]‘) =q,i,j=1,...N,

i=

N

,;17(3(1'/6]') :Pi/i,jzl,...,N, )
'N N

L ,217(xir5j) =1ij=1,..N

1= ]:

The classic CVaR distributionally robust optimization model (6) can accurately mea-
sure the risk preference of decision-makers in large sample sizes.
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Definition 1. Fractional moments [21]

E[x%] = /xef(x)dx,f) €R (10)
S

It should be indicated that fractional moments not only accurately capture distribution information
more than integer moments under a small-sample, but also have outstanding advantages in capturing
tail characteristics of heavy-tail distributions.

Definition 2. Wasserstein distance with entropy constraint [22,23].

N N
W(p,q) = inf ¥ ¥ c(x;,§j)v(xi, Gj)

TElli=1 j=1

N N (11)
H(p.9) = L ¥ —m(x&)log(n(x,¢)) =

1=1]=

Wasserstein distance can measure the distance between any two distributions. However, the
Wasserstein distance suffers from the curse of dimensionality when computing high-dimensional
sample data. Introducing information entropy constraints based on the Wasserstein distance can
transform optimization problems containing the Wasserstein distance into strictly convex problems
and more reasonably represent the uncertainty of distribution.

3.1.2. P-CVaR Distributionally Robust Optimization Model

Mine thermodynamic disasters are generally sudden and major disasters. This makes
its demand distribution of emergency supplies exhibit characteristics of being small-sample
and heavy-tailed. At these conditions, the uncertain set I of the classic CVaR distributionally
robust optimization model (6) faces the challenge of accurately estimating the uncertainty
of distribution. Two reasons for the bias are that second-order moments cannot capture the
distribution tail features of heavy-tailed distributions in small-samples, and the Wasserstein
distance can also lead to significant errors in measuring heavy-tailed distributions due
to the different selection of cost functions. These may lead to a significant bias in using
the classical CVaR model to measure the risk preferences of procurement decision-makers
in mine thermodynamic disasters. In order to accurately measure the risk preference of
decision-makers in emergency material procurement for mine thermodynamic disasters, a
P-CVaR distributionally robust optimization model will be proposed based on fractional
moments, Wasserstein distance with entropy constraint, and piecewise optimization.

Dividing the distribution support set S of the random demand variable x into L
sub-support sets S;,/ = 1,..., L, each of which satisfy the following conditions:

S= U S 12
1=1,...,L ! ( )
i #lp=5,NS, =¢ (13)

On each sub-support set Sj, the P-CVaR optimization model based on negative fractional mo-
ments and Wasserstein distance is established. The P-CVaR distributionally robust optimization
model can be expressed in the following form based on the total probability principle.

P-CVaR,(I(x,y)) = }_ p;(maxCVaR.(I(x,y))) (14)

leL 1<
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. fS ()% (x, &)dxdE =
. fS ci(x, &)y (x, E)dxdE < 1
i = Sl log(n(x £))dxdg = x (15)
[ v(x, &)dxdg = 1
S;xS; P

where the p; = prop{x; € S;},1 = 1,...,L and can be calculated from sample data.

In the P-CvaR model, the fractional moment increases the constraint that can more
finely characterize the tails of heavy-tailed distributions, and the selection of the Wasserstein
distance cost function improves the approximation effect of the CVaR risk measurement
problem. The accuracy of measuring risk preference using the P-CVaR distributionally
robust optimization model has been improved through the piecewise method. This accu-
racy is crucial to risk-averse emergency material procurement for mine thermodynamic
disasters. The P-CVaR model overcomes the limitations of Wasserstein distance in mea-
suring differences in distribution tails and achieves the control and optimization of tail
distribution and overall model errors.

3.2. Risk-Averse Procurement Optimization Model

Based on the above P-CVaR model, a risk-averse bi-level distributionally robust
optimization model for emergency material procurement can be expressed as follows:

i P-CVaR, (C(y,
min max aRy(C(y,2))

n
s.t. Y cfy,' +cfyi+cizi <@
i=1
n
121 yi<y (16)
i

of <yi<yl
{ min max E(W(y,z))

z  Pely
{stoj<z <y

In the above model, the upper-level objective function accurately reduces the risk of extreme
loss in procurement costs by introducing P-CVaR. The first constraint indicates that the
procurement cost cannot exceed the budget of the coal mine. The second constraint is that
the physical procurement quantity does not exceed the maximum inventory level of the
coal mine. The third constraint represents the physical procurement quantity meeting the
minimum supply quantity of the supplier and that it cannot exceed its maximum supply
quantity. The lower objective function is to ensure optimal profits for suppliers by reducing
their production costs. The constraints of the lower optimization model indicate that the
production capacity reserve must be greater than the supplier’s minimum production
capacity reserve and cannot exceed its maximum production capacity reserve.

In the robust optimization model of emergency material procurement distribution
based on joint reserves, the robustness of the optimal procurement plan is ensured through
the distributed robust optimization method in the case of uncertain demand distribution for
thermal and dynamic disasters in mines. The interruption of emergency supplies supply is
reduced through joint reserves. The reduction in procurement cost risk in coal mines and
the increase in supplier profits are both achieved through a risk-averse bi-level optimization
model based on P-CVaR.

3.3. Model Transformation and Solving

The objective function of the risk-averse bi-level distributionally robust optimization
model (16) cannot be directly solved due to the unknown distribution p. It is necessary to
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transform the dual theorem into a deterministic problem to reduce the complexity of the
solution. The specific process is as follows.
The interior model of the upper-level objective function of the bi-level model (16) is

max CVaRu(C(y,z)) (17)

This can be rewritten in the following form based on the definition of CVaR and I’;.

min{py + 1= el /S (Cly,2) — B) i (x, §)dxdg) a9
1X9]

. fs ()" (x, €)dxdE =

1X9]
s fS Cl(xr (;()'Yl (x’ (f)dxdg < Uil

1X9]

st Sl @) log(m(x,£)dxde = g

1X9]

I e, )dds = —
S;xS; P

The internal maximization problem of the above model can be organized as follows

max{( [ (C(y,z)—By) " 7i(x,&)dxdZ}

g%,

o ()% (x, &) dxdE =py

51{51 c(x,&)vi(x,¢)dxdg < (19)
st st —7(x, &) log(m

I mi(x,&)dxde =

S[XSI

—

x,&))dxdg > K

RS

This is a convex optimization problem about 7;(x, ¢) that is continuously differentiable and
satisfies the constraint gauge condition and strong duality theorem. It can be solved
according to the Lagrange duality theorem [24]. The Lagrange dual function of the
model is
i An A+ Apr — A 27
A Fn + At — Mgk + 5 At

max [ 3(<JE)((C(y2) ~ )" = Anx® = Aper(x,8) ~ A log m(x|e) ~ Aue)d (20)

A1, A, Az, Ay are Lagrange multipliers. According to the duality theory, model (20) can
be transformed into the following model:

: 1
min A+ A — Ak + =A
/\11//\12,?\13,/\14]/” " 21 BT

st. (C(y,z) = B1) " — Anx® — Apey(x, &) — Az log 1 (x|€) = Ay — A3 =0 1)
A, As € R Ap, Az 20

Therefore, the upper-level model of the bi-level model (16) can be equivalently written as

: 1 1
min 1+ =5 (A + Api — Ak + 5-Ag)
?\11,/\1er13,91,/31'8 T H 1 Pi

st (C(y,z) — )" — Anx® — Aper(x, &) — Az log 11 (x[¢) — Aig — Az = 0. (22)
M1, A € R Ap, Ai3 > 0.
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In other words, the upper-level optimization model of the risk-averse bi-level optimization
model (16) can be equivalently transformed into the following model.
Similarly, the lower-level model of the bi-level model (16) can be equivalently written as

. 1
min 7T —+ 7T — T2 K] + 7Tja —
P 7~/7T11-7T12/7713/7T14( np o+ Tl = sk T )

I
s.t. W(y, z) — i x® — 10, (x,y) — mizlog vy (x|y) — mpy — 13 = 0 (23)
¢; <z < Y,

1, s € R, 7, 7113 2 0

TTy1, T2, 703, 714 are also Lagrange multipliers.

The final equivalent form of the risk-averse bi-level optimization model (16) can be
obtained by organizing the equivalent upper-level optimization problem and lower-level
optimization problem. The equivalent form is the following model (24):
zeZLﬁl(Wz1/\I£/i/\r;3/91/ﬁzﬁl + 1170((]41)\11 + Api — Ak + %’)\14))
st (CP(y,2) — B)" — Anx® — Apei(x, &) —

n
El yi+cyi+cz <a,
i=

AM3(C(y, z) — mnx® — mpei(x,y) — my — m3)
3

— Ay —A3=0

n
Lyi< ol <yi <yl
=

A, Al € R A, Az >0, (24)
2 <60, <4,0,eR

_ . 1
Y 7i( min (7t p + 72 — 3K 4+ T =)
IEL 2T 348 P .
W(y,2) — Bi)" — Anxd — A A
st C(1,2) — s — mpcy(,y) — 78 (W(y,z) — B1) n Y)\Zs pa(x,6) — Ay — A T 73 = 0

¢ <z <Y

7, s € R, 7, 7113 > 0

The above transformed model is a deterministic and nonlinear bi-level programming
problem [25]. This paper uses the PSO algorithm [26] to solve it.

4. Case Analyses

As a case study, this paper examines a major mine thermodynamic disaster incident
that occurred at the Fuhua Coal Mine in Hegang City, China on 20 September 2008. The
actual firefighting process consumed 825 tons of liquid CO,, with three suppliers capa-
ble of providing liquid CO,. The random demand for liquid carbon dioxide is treated
as a random variable x. Using the sample data of liquid CO; demand from 39 histor-
ical accidents [27] (Table 2), the random liquid CO, demand probability distribution
and procurement risks for the Fuhua mine thermodynamic disaster are evaluated based
on sample data, and procurement strategies are established based on decision-maker
risk preferences to determine the optimal physical procurement quantity and capacity
substitute reserves.

Table 2. Demand data for liquid CO; in fire accidents.

Accidents Demand Accident Demand Accidents Demand
1 30 tons 14 160 tons 27 20 tons
2 220 tons 15 40 tons 28 380 tons
3 190 tons 16 23 tons 29 15 tons
4 170 tons 17 36 tons 30 27 tons
5 420 tons 18 440 tons 31 40 tons
6 450 tons 19 320 tons 32 240 tons
7 360 tons 20 260 tons 33 270 tons
8 45 tons 21 225 tons 34 480 tons
9 25 tons 22 520 tons 35 45 tons
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Table 2. Cont.
Accidents Demand Accident Demand Accidents Demand
10 35 tons 23 540 tons 36 105 tons
11 180 tons 24 825 tons 37 36 tons
12 50 tons 25 32 tons 38 740 tons
13 205 tons 26 55 tons 39 500 tons

4.1. Hypothesis Testing

In this section, it will be verified that the probability distribution of the random variable
x has small-sample and heavy-tailed distribution characteristics. According to the data in
Table 2, the small-sample feature is obvious. Meanwhile, the statistical characteristics of
the sample data of liquid CO, demand in Table 2 are analyzed, and the results are shown
in Figure 2.

18

16

14

Count
—
o

0 200 400 600 800
Liquid CO2 demand/ton

Figure 2. Histogram of sample data for liquid CO, demand.

Figure 2 shows the histogram distribution of demand sample data. It can be clearly
seen that the demand distribution for liquid CO, is a positively skewed heavy-tailed
distribution. The demand in the [700, 900] range can be considered as extreme demands,
and the liquid CO, demand for the Fuhua coal mine accident is an extreme event.

Lognormal distribution, exponential distribution, and Weibull distribution are classic
heavy-tailed distributions that can be used to describe the demand for emergency supplies.
In order to further determine the type of random demand distribution for liquid CO,, the
distribution of the sample data for liquid CO; is fitted based on the principle of maximum
likelihood. The fitting results are shown in Table 3 and Figure 3.

Table 3. Distribution goodness of liquid CO;.

Heavy-Tailed Distribution Log Likelihood Fitting Effect
Lognormal —250.413 best
Weibull —250.125 normal
Exponential —250.134 better

Note: The smaller the Log likelihood value, the better the distribution for liquid CO, demand is fitted.

Observing and analyzing the fitting results shown in Table 3, the Log likelihood value
obtained via lognormal distribution fitting is —250.413, which is the smallest compared to the
—250.134 for the exponential distribution and —250.125 for the Weibull distribution. This result
indicates that the liquid CO, demand for Fuhua coal mine follows a lognormal distribution.



Mathematics 2024, 12, 2222

12 0of 17

o
3

<
[}
T

o
IS
T

Cumulative probability
o
[,

S :

& O sample data

3 Lognormal distribution |
@ - — Weibull distribution
Exponential distribution |

o
w

o
o
o
~
(&

o
-
T
o
N

50 150 250

100 200 300 400 500 600 700 800
Liquid CO2

o

Figure 3. The fitted distribution of liquid CO, demand.

Figure 3 shows the fitted distribution of liquid CO, demand; it can be observed that
compared to exponential and Weibull distribution, the tail of the distribution for liquid
CO; demand can be more accurately represented by a lognormal distribution.

Based on the above results, the distribution of liquid CO, random demand for Fuhua
coal mine has small-sample and heavy-tailed characteristics; assumption 2 is held. The
distribution type is lognormal distribution.

4.2. Benefits of the Proposed Models

This section aims to demonstrate that the performance of the proposed risk-averse bi-
level distributionally robust optimization model (16) for emergency material procurement
under the liquid CO; random demand distribution is lognormal. Firstly, the fact that
P-CVaR is more accurate in measuring decision-makers’ risk preferences compared to
classical CVaR models will be verified. Secondly, the impact of decision-makers’ varying
degrees of risk aversion preferences on the procurement model and the impact of this
accuracy on emergency material procurement models will be explored. The parameter
values used in the risk-averse bi-level optimization model are shown in Table 4.

Table 4. Parameter values.

¢ = (0.70, 0.70, 0.70)
¢ = (0.20, 0.20, 0.20)
¢ = (0.40, 0.45, 0.50)
¢? = (0.70, 0.70, 0.70)
¢ = (1.00, 1.00, 1.00)

" = (0.50, 0.40, 0.30)
¢ = (0.95,0.95, 0.95)
¢ = (0.40, 0.30, 0.20)
¢" = (0.20, 1.50, 0.10)
P = (80.0, 80.0, 80.0)

" = (100, 100, 100)
P = (100, 100, 100)

r = (500, 500, 500)
T = (0.15, 0.18, 0.20)

d = (100, 150, 300)
B = (25, 25, 25)
~ =300
@ = 1000

4.2.1. Benefits of the P-CVaR Models

In the progress of emergency material procurement for mine thermodynamic disasters,

the analysis of the impact of piecewise number L and fractional moments on the accuracy
of the decision-maker’s risk preference measurement of the optimal procurement strategy
for the risk-averse bi-level optimization model under the liquid CO, demand for follows a

lognormal distribution. Three scenarios are set up as follows in the analyses.

Scenario 1:  Risk-averse bi-level distributionally robust optimization model based on CVaR
with second moment and Wasserstein distance.

Scenario2: Risk-averse bi-level distributionally robust optimization model based on
P-CVaR with fractional moments and piecewise number L = 1.

Scenario 3: Risk-averse bi-level distributionally robust optimization model based on
P-CVaR with fractional moments and optimal piecewise number L = L" deter-
mined by multiple attempts.



Mathematics 2024, 12, 2222 13 of 17

In the scenarios above, the Scenario 2 models would be compared with the model
of Scenario 1 to verify the fractional moments impact on the accuracy of decision-maker
risk preference measurement in the risk-averse bi-level optimization model. Meanwhile,
compared with the Scenario 2 model, the Scenario 3 model is set to verify the piecewise
numbers impact on the accuracy of decision-maker risk preference measurement in the
risk-averse bi-level optimization model.

We can solve the optimization models of the above scenarios via the PSO algorithm.
In the obtained results, the worst-case CVaR is shown in Table 5, and the worst-case
distribution of liquid CO, demand is as shown in Figure 4.

Table 5. The worst-case CvaR of the risk-averse bi-level optimization model for liquid CO, procurement.

Piecewise Number (L)

Scenarios Worst-Case CVaR True CVaR Relative Error (%)
Lnumber Number
1 - 85.5901 58.0546 47.4303
2 1 79.3031 58.0546 36.6008
3 6 60.7848 58.0546 4.7028
1 1
0.8+ 10.8
0.6 10.6
04 0.4
0.2 0.2
Scenario 1 Scenario 2 Scenario 3
0 : : - : 0 ; : : 0& . : : :
0 02 04 0.6 0.8 I o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1
Liquid CO2 demand Liquid CO2 demand Liquid CO2 demand

—@— Experience distribution —#— Scenariol worst-case distribution

—A— Scenario2 worst-case distribution —#— Scenario3 worst-case distribution
Figure 4. Worst-case distribution of the risk-averse bi-level optimization model for liquid CO, procurement.

The analysis of the worst-case risk of the risk-averse bi-level optimization model for
emergency material procurement under different scenarios can be seen in Table 5. The
relative error (36.6008) of Scenario 2 is smaller than the relative error (47.4303) of Scenario 1.
This indicates that fractional moments are more effective in improving the accuracy of
measuring risk preference compared to second-order integer moments. The relative error of
Scenario 3 risk assessment is the smallest at 4.7028%, which means that using the piecewise
Wasserstein distance can help improve the accuracy of measuring risk preference. The
above content verifies that the P-CVR distributionally robust optimization model with
fractional moments and an optimal piecewise number can provide a more accurate risk
preference measurement of decision-makers for emergency material procurement.

Through the analysis of Figure 4, it can be observed that the worst-case distribution
optimized by the model constructed in Scenario 2 is closer to the empirical distribution of
liquid CO; compared to Scenario 1. Meanwhile, the worst-case distribution in Scenario
3 is closest to the empirical distribution of liquid CO,. This indicates that the risk-averse
bi-level optimization model based on the P-CVaR model with fractional moments and
optimal piecewise number can more reliably estimate the actual demand of liquid CO,.
This result is of great significance to obtain more reliable procurement decisions for the
Fuhua mine thermodynamic disaster.
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4.2.2. Benefits of the Risk-Averse Bi-Level Optimization Model Based on P-CVaR

In the risk-averse bi-level distributionally robust optimization model of emergency
material procurement for mine thermodynamic disasters, scenarios with different confi-
dence levels of decision-maker risk-averse preference &, equal to 0.75, 0.85 and 0.90, are
set to study the impact of the risk-averse size of the decision-maker on the emergency
supplies procurement decision. The three confidence levels of « mean that the objective
function minimizes the highest 25%, 15%, 5% of all procurement costs under possible
random demand. The scenarios settings are as follows:

Scenario 1:  Risk-averse bi-level distributionally robust optimization model based on
P-CVaR under a = 0.75.

Scenario2: Risk-averse bi-level distributionally robust optimization model based on
P-CVaR under « = 0.85.

Scenario 3: Risk-averse bi-level distributionally robust optimization model based on
P-CVaR under a = 0.95.

In the scenarios above, the decision-maker is more risk-averse as the value of «
increases. The scenarios above are great methods to verify the impact of decision-makers’
risk-averse preference on the emergency supplies procurement decision under different
value of .

In terms of solving the optimization models of the above scenarios using the PSO
algorithm, the optimal procurement decision of the risk-averse bi-level optimization model
for liquid CO; procurement is shown in Table 6, which includes physical procurement

quantity y = {y1, 2, y3} and capacity reserve z = {z1, 23,23 }. The statistical analysis of the
optimal decision is shown in Figure 5.

Table 6. Optimal procurement decision of the risk-averse bi-level optimization model for liquid
CO; procurements.

Scenarios Scenario 1 Scenario 2 Scenario 3

Risk-Averse Preference «=0.75 «=0.85 «=0.95
Y1 83.3676 62.1060 72.2192
Y Y2 60.0473 74.5196 56.7818
Y3 64.7256 71.8019 93.1394
208.4275 208.1405 208.4275

total y
Z1 135.9968 145.2650 224.9239
z Zn 100.4338 131.2661 125.3373
Z3 166.3836 144.5964 150.6712
402.8142 402.8142 421.1275

total z
610.9547 629.5550 723.0728

total

total y/total 34.0680% 33.1071% 30.7217%
total z/total 65.9320% 66.8929% 69.2783%

Analyzing the optimal procurement decision of the risk-averse bi-level optimization
model for liquid CO, under different scenarios in Table 6 and Figure 5, the confidence
levels of decision-maker risk-averse preference increases from 0.75 to 0.85 and 0.95, and
the total of procurement quantity is increased from 610.9547 to 629.5550 and 723.0728.
This indicates that the decision-maker risk-averse levels are positively correlated with
the total procurement amount of the risk-averse bi-level optimization model. In addition,
according to the value of totalz/total under different scenarios, it can be found that the
total purchase volume of production capacity increases more than the actual purchase
volume. This indicates that the impact of capacity reserves on averting procurement risk is
greater than physical procurement volume. The above content shows that the risk-averse



Mathematics 2024, 12, 2222

15 of 17

bi-level distributionally robust optimization model of emergency material procurement for
mine thermodynamic disasters is sensitive to risk-averse preference a and capacity reserve
quantity z.
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Figure 5. The optimal decision of the risk-averse bi-level optimization model for liquid CO, procurement.
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5. Conclusions

In this paper, the strategy optimization of emergency material procurement for mine
thermodynamic disasters under the joint reserve model is studied. Considering the crucial
role of decision-maker risk preferences and reserve models in emergency material pro-
curement, a risk-averse bi-level optimization model is established based on analyzing the
game relationship between procurement risks and supplier interests. Although most of the
risk-averse optimization models in the literature have only studied the general distribution
of emergency material demand, this paper focuses on the situation of small-sample size
and heavy-tailed distribution. Considering the crucial role of decision-maker risk prefer-
ences and reserve models in emergency material procurement, a P-CVaR distributionally
robust optimization model is established to accurately measure the decision-makers’ risk
preferences when the emergency material demand distribution is small-sample sized and
heavy-tailed. Secondly, a risk-averse bi-level optimization model is established to improve
the accuracy of averting emergency material procurement risk for mine thermodynamic dis-
asters, based on analyzing the game relationship between procurement risks and supplier
in the P-CVR distributionally robust optimization model; this can provide a more accurate
risk preference measurement of decision-makers for emergency material procurement
than a classical CVaR model. And the total of procurement quantity is increased with the
increase in the confidence levels of the decision-maker’s risk-averse preference; the total
purchase volume of production capacity increases more than the actual purchase volume.

The inspiration for coal mine emergency management can be provided through the
emergency material procurement strategy model proposed in this paper, and these manage-
ment inspirations are as follows. In situations where the emergency supplies” demand for
mine thermodynamic disasters supplies is uncertain, the consideration of decision-maker
risk preferences should flexibly balance the benefits and risks of emergency material pro-
curement for mine thermodynamic disasters. Coal mines can develop correct reserve and
procurement plans based on decision-makers’ risk preferences to avoid potential risks,
which can improve the emergency management capabilities of thermal and dynamic dis-
asters in mines. The accuracy of the risk-averse preference of decision-makers is crucial
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for meeting the actual needs of emergency material. At the same time, in the emergency
management preparation stage of coal mines, a reasonable joint reserve model that includes
physical reserves and capacity storage should be selected based on demand risk assessment
to flexibly meet the needs of emergency situations in mine thermodynamic disasters. This
model construction method can improve the efficiency and flexibility of coal mines in the
emergency management of thermodynamic disasters.

The performed analysis in this work can be expanded in different aspects. In practical
applications, physical reserves and production capacity reserves may still be unable to
deal with the uncertainty of emergency material demand. Risk-averse emergency material
procurement optimization based on two or more reserve models may be further explored
in the future.
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