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Abstract: Electrodermal Activity (EDA) has shown great potential for emotion recognition and the
early detection of physiological anomalies associated with stress. However, its non-stationary nature
limits the capability of current analytical and detection techniques, which are highly dependent on
signal stability and controlled environmental conditions. This paper proposes a framework for EDA
normalization based on the exponential moving average (EMA) with outlier removal applicable
to non-stationary heteroscedastic signals and a novel set of features for analysis. The normalized
time series preserves the morphological and statistical properties after transformation. Meanwhile,
the proposed features expand on typical time-domain EDA features and profit from the resulting
normalized signal properties. Parameter selection and validation were performed using two different
EDA databases on stress assessment, accomplishing trend preservation using windows between 5
and 20 s. The proposed normalization and feature extraction framework for EDA analysis showed
promising results for the identification of noisy, relaxed and arousal-like patterns in data with
conventional clustering approaches like K-means over the aforementioned normalized features.

Keywords: electrodermal activity; normalization; stochastic; biosignals; stress; feature extraction;
rolling window; unsupervised classification

MSC: 68T20

1. Introduction

The main tenet of operationalism establishes that concepts cannot be fully understood
until they can be measured [1]. For a long period, the analysis of Electrodermal Activity
(EDA) has focused on understanding the underlying physiological processes that trigger
any observable and measurable phenomena [2]. Sweat gland activity is regulated by the
sympathetic function and has shown higher levels of reactivity to psychological stimuli
than to environmental factors like temperature and humidity [3]. EDA can be measured
from the skin conductance produced when a current is applied. Therefore, EDA can
objectively assess the level of cognitive arousal and operation of the autonomous system,
as the time and amplitude of the stimuli generated in the brain control centers dictate the
observable properties. Its analysis has proven useful in clinical, behavioural and cognitive
research. For example, the assessment of acute stress and anxiety derived from pain
levels or cognitive load [4,5], emotional and cognitive stress detection [6–10], or emotional
response detection [11], among others.

Nowadays, ambulatory and clinical EDA acquisition is trending towards the usage of
embedded sensors in wearable devices. For example, devices with EDA measurements
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like Shimmer3 GSR+, Biopac or the Fitbit Sense 2 have contributed to establishing the
prominence of wearable technology in the landscape of EDA analysis [11,12]. Nevertheless,
research studies on EDA have shown Empatica devices (E4, EmbracePlus) to be the most
prevalent among these due to the availability of their raw EDA data as well as their
accessibility and reliability despite a more limited sampling rate and sensitivity than
conventional approaches [7,13]. EDA as an indicator of sympathetic nervous activity
has proven helpful for classification problems in clinical areas like stress, epilepsy or
perioperative monitoring through pain detection [2,6,14]. EDA has successfully replaced
more complex signals like EEG or EMG in these scenarios, increasing the viability of
ambulatory analysis. In most cases, EDA is one of several biosignals acquired to achieve an
enhanced data context of the user’s state, such as ECG, skin temperature or body movement.
Shifting from clinical applications, emotion recognition applications have incorporated the
usage of EDA to assist the decision [15,16].

However, EDA data acquisition and experimental repeatability has shown great com-
plexity due to its nonstochastic behavior and sensitivity to environmental conditions [2],
reducing the amount of available data and their quality. The quick fluctuations or response
in EDA is the most valuable asset in regards to its analysis. Several factors determine the
variability observed over the response properties: first, the diversity in skin properties as-
sociated to gender, age and ethnicity [2]; second, the major differences in response from the
induced stimuli [2,13]; last but not least, when recording aspects like artifacts from move-
ment or respiration, electrode malfunctions occur after long periods or excessive sweat.

In light of these considerations , the statistical properties can drastically change be-
tween studies and users. Data normalization can help standardize EDA analysis, as there is
no general consensus on the processing approach. As a matter of fact, novel EDA-based ap-
plications like stress detection rely on Support Vector Machines (SVMs) [17], Convolutional
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) Neural Networks [18–20],
which are techniques that benefit from standardized and normalized features and values.

This paper proposes a novel technique for the normalization of EDA using the ex-
ponential moving average (EMA) inspired by the works of Ogasawara et al. [21] on the
normalization of the monetary exchange rate time series. EMA is a frequently used indica-
tor for sudden trend change detection due to its parameterization controlling the weight
of the most recent values. Our method adapts the cited normalization technique to EDA
properties and proposes a new set of features from the normalized time series for EDA
analysis. The proposed features are in the time domain and can be easily normalized with
minor considerations over the selected parameter values. In order to test the potential of
the proposed normalized features, unsupervised classification with K-Means after PCA
feature selection was performed using two different stress-induced response EDA datasets.
THe clustering results showed that the proposed features and their distribution identi-
fied groups in data with response, noise and relaxation patterns as determined by their
centroid values.

The remaining parts of the document are structured as follows: first, the methodology
section presents the background on EDA analysis and the proposed EDA normalization
and feature extraction framework. Then, the results section displays the parameterization
analysis and the framework validation scenario with unsupervised learning. Finally, this
paper concludes with a discussion around the normalization, parameterization, features
and potential application scenarios for the framework described in this study.

2. Methodology

This section covers the basis and details of the proposed framework. First is the
background on the properties of EDA and its variability as well as the current approaches
for processing and analysis. After that, the different modules of the EDA normalization
and feature extraction are presented. Last of all, we propose the validation scenario for the
framework with K-means unsupervised classification and feature selection over stress data.
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2.1. Background on EDA Analysis

The most commonly used measure of EDA is skin conductance (SC). It is acquired
by applying direct current (DC) with constant voltage to the skin. SC can be decomposed
into two components: tonic and phasic. The tonic component includes slow drifts of the
baseline skin conductance level (SCL) and spontaneous fluctuations (SFs) in SC. On the
other hand, the phasic component corresponds to the rapid variations in the conductance
caused by changes in the sweat levels. High correlation between the sweat produced by the
level of sympathetic arousal and bursts of sympathetic nerve activity and the amplitude of
the rapid transient events in the EDA signal have been observed [22].

The skin conductance response (SCR) is the most outstanding property and reflects the
short-time reaction to a stimulus while the non-specific response, known as Ns.SCR, relates
to the remaining underlying processes. The typical shape of SCR is comprised of a relatively
rapid rise from the conductance level followed by a slower, asymptotic exponential decay
back to the baseline [23] as shown in Figure 1. The morphology of the responses has been
accurately parameterized and described in relation to the acquisition, on the observed
latency, recovery times, amplitude, shape, and area under the curve [2,23]. As a result, the
tonic component can be interpreted as the combination of SCL and the Ns.SCRs because
they cannot be linked to a specific stimuli but are the result of spontaneous fluctuations
in EDA.

Artifacts from motion during acquisition also impact the observed EDA distribution,
and in some cases they can be misidentified as sudden and brief responses followed by a
change in the observed EDA baseline [2]. The major challenge regarding artifacts is the lack
of a predetermined range of amplitude values. Nevertheless, several approaches have been
deemed useful for artifact removal, such as low-pass filtering, curve fitting or Wavelets [13].

Figure 1. Original and median filtered EDA acquired using a wearable sensor placed on the wrist
(Empatica E4). The evolution of the EDA signal with time shows the baseline and response during
cognitive activity. The highlighted area around 35 s shows the amplitude, rise and recovery times
from an observed Ns.SCR.

2.1.1. Statistical Differences in EDA Properties

Specifically, the SCL and Ns.SCRs exhibited higher coefficients of variation [13]. Aging
and gender stand out as the two main demographic factors for the variability observed
in EDA. On the one hand, a decrease in SCL is observed for older aging groups during
all main scenarios (resting, active, etc.) along with lower Ns.SCR frequency and SCR
amplitude in older males [2]. On the other, gender differences focus on higher SCL scores
in females, while males present higher reactivity under stimulation [2,24].

The SCL oscillates with sweat, blood flow changes, phase of the day and environmental
factors, like temperature or humidity [2,25]. Under high-arousal inference scenarios, the
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SCL can suffer a quick increasing swift caused by unidentified high-frequency Ns.SCRs.
Consequently, the upper boundary of the tonic component cannot be accurately delimited
for all scenarios. In some cases, the baseline value can exceed more than 20 µS. Genuine
SCL determination is hindered by low predictable response fluctuations, sweat caused after
prolonged electrode contact, and environmental factors that can alter skin properties, like
temperature or humidity.

Meanwhile, the phasic component presents amplitude, latency and recovery parame-
ters that describe its course much differently to the shape of artifacts. Typical latency times
range between 1 and 2 s but can be prolonged up to 5 s under skin cooling [2,26]. Minimal
conductance values can range between 0.1 and 0.5 µS depending on the acquisition ranges,
signal-to-noise ratio and reactivity during acquisition [2]. Moreover, the response has
shown dependency with the observed SCL at its initial point. This level serves as reference
for a relative amplitude criterion of between 0.1% and 10% of the initial level, and 0.05 µS
in overall terms [2]. As these parameters depend on the tonic component, major variations
may appear from the previously described conditions.

Another case of concern occurs when the inter-stimulus interval (ISI) is shorter than
the recovery time of the first response, and then two SCRs overlap. This occurrence is
observed in many experimental paradigms, particularly in cognitive neuroscience where
common values of ISI (1–2 s) are generally shorter than the recommended minimum ISI to
avoid such an overlap, which is around 10–20 s [25,27]. In general, SC decomposition to
phasic and tonic is limited by the presence of overlapping SCRs and artifacts.

2.1.2. Normalization and Analysis

Current EDA applications rely on EDA as a time series or feature-based approaches.
In this respect, artifact removal and data transformation, like normalization, have shown
to improve the overall quality and ease of analysis through signal-to-noise increase and
achieving less sparse statistical properties and reduced variance.

One valid approach for EDA response extraction consists in estimating and subtracting
the SCL component. SCL Score Averaging [2,28] and low-pass signal-filtering techniques
have shown acceptable SCL scores [29]. Nevertheless, these approaches tend to overes-
timate the SCL score under high-arousal scenarios with overlapping Ns.SCR [28] and
movement-induced artifacts. When internal external stimuli are not ascertained, any ob-
served spontaneous fluctuations are regarded as part of tonic EDA, which may impact the
statistical distribution of the amplitude and frequency of SC. Both the Ns.SCR frequency
and SCL score play an important role for arousal, emotional and stress research [4,30,31].

Range correction procedures adjust values to intraindividual ranges for the SCL and
SCR through the determination of lower and upper boundaries for each component [32].
However, the extended periods of time required to acquire the minimum SCL and the
maximum SCR [2] reduce its feasibility. Alternatively, z-scoring [2] has shown to provide a
more accurate depiction of the interindividual variance in the response, achieving different
normal distributions. Nevertheless, this approach is not reliable for small datasets and
uncontrolled acquisition conditions.

Artifact removal can be easily achieved in most cases using band-pass filters or
spike detection algorithms at the expense of losing some of the response properties in
exchange [2,4,31]. Recent computer-based techniques like cvxEDA [25] are able to accu-
rately extract the tonic and phasic components separately. These approaches do not require
high computational resources but are restricted to properties like the sampling frequency
or sensitivity of the sensor.

When it comes to analyzing EDA, time and frequency domains are the historically
recurrent options for EDA feature extraction. The time domain focuses on the extraction of
SCL, SCR and Ns.SCR properties (e.g., heights, times, and area under the curve) previously
cited, as well as the overall signal information. In the case of the frequency domain, Fourier
Transform (FT) and Power Spectral Density (PSD) analyses are common approaches [33].
Alternatively, wavelet coefficients have been proposed due to their robustness and merging
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of time and frequency properties, especially for non-stationary signals like EDA [30,34].
Windowing is applied to split the data for the extraction of statistical and transform features,
like the ones described in Table 1. The window length, which is typically in the range of 10 to
60 s, determines the observed feature distribution. Feature value normalization is typically
applied on a database scope, as environmental and acquisition condition differences may
lead to different values and ranges among the EDA properties. Overall, frequency-domain
features demand higher computational costs and requirements compare to time-domain
features but displayed greater inter-user consistency and stability among different types of
induced-stress scenarios [13]. This suggests that time-domain features may benefit from
better normalization approaches.

Table 1. List of typically used EDA features in analysis from the time and frequency domains.

Domain Component Variable Description Range

Time

SCR

Peak Amplitude SCRs peak amplitude µS
AUC Area under the SCRs -

Amplitude Signal amplitude in SCRs -
Rise Time SCR rise times s

Recovery Time SCR recovery times s
Number of Peaks Number of SCRs detected in the window -

SCL
Amplitude Signal amplitude of the tonic component µS

1º and 2º derivative Slope and magnitude of the tonic component -
AUC Area under the tonic component -

Ns.SCR

Peak Amplitude Ns.SCR peak Amplitudes µS
AUC Area under the Ns.SCRs -

Number of Peaks Number of Ns.SCRs detected in the window -
Peak distance Distance between consecutive Ns.SCRs -

Frequency

FT FFT Frequency Band coefficients through Fast Fourier Transform -
STFT Frequency Band coefficients through Short Time Fourier Transform -

PSD
Signal Energy Energy signal -

Spectral Power Spectral power in the [0.05–0.5 Hz] bands -
Ns.SCR Frequency spectrum associated to the Ns.SCRs -

Wavelets CWT Amplitude Amplitude of the Wavelet Transform -
Morlet coeffs Amplitude of Morlet WT coefficients between 0.5 and 50 Hz. -

DWT Haar WT Coefficients at 4, 2 and 1 Hz. -

2.2. Proposed Normalization and Feature Extraction Framework

This section presents the details of the normalization and feature extraction modules
involved in our framework. The signal is first smoothed with a band-pass filter before being
transformed using the adaptive normalization of non-stationary heteroscedatic time series.
The feature extraction module processes the normalized signal in windows to generate the
proposed set of features. The pipeline described in Figure 2 illustrates the connections and
outputs from each module.

Along with the Adaptive Normalization (AN) parameters described in the work
by Ogasawara et al. [21], we incorporate the interval and feature extraction window
parameters. Two stress databases with EDA data were used for parameter tuning across
the framework and the analysis of feature distributions.

2.2.1. Databases

The EDA data used to adjust the normalization parameters come from acute stress-
inducing experiments recorded with the Empatica E4 wearable wristband. This device
possesses a 4 Hz sampling frequency for the EDA sensor with a precision of 0.9 nS and
range of sensitivity between 0.01 µS and 100 µS.

First, the Wearable Exam Stress Dataset [35–37] provides 60 h of data from 10 different
anonymous young students. The experiment was divided into two midterm exams of
90 min and a final test of 180 min long with additional test performance results to address
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the effects of stress. Differences among students are observed in exam duration and
response to the induced conditions. For this reason, we discarded recording sections with
inactivity from the user when detecting low or null amplitude over several minutes.

Figure 2. Pipeline of the proposed method for the normalization and extraction of EDA features.

Secondly, a stress induction dataset was acquired at GB2S-UPM [38] with inference
through the psychological Stroop test, Anagram and Arithmetic tests preceded by 120 s
resting phases and a final recovery phase. A total amount of 45 healthy individuals
(males and females) aged between 25 and 50 with technical and administrative profiles
were employed. Each participant provided 20 min of EDA recording in addition to test
performance metrics. The main observed differences relate to the induced user responses
for each test, especially under Stroop.

The acquisition protocol consisted of the sitting-down position and free hand move-
ments for both datasets. As shown in Table 2, there are significant intra and intersubject
differences in the variability and ranges of EDA, which is desirable for the purpose of
this analysis.

Table 2. Dataset participants, durations and EDA recorded variation for each user (intraindividual)
and between users (interindividual). Shown EDA values and ranges only with user activity detected.

Database Property Max Min Median

GB2S-45 Users-4 Hz

EDA (µS) 20 0.7 1.5

Recording (min) 23 18 21

Intraindividual EDA variation 20.77 0.20 1.0

Interindividual EDA variation 24.07 0.06 12.19

Exams-10 Users-4 Hz

EDA (µS) 7.14 0.00 0.01

Recording (min) 23 18 21

Intraindividual EDA variation 7.40 2.10 3.86

Interindividual EDA variation 6.48 0.00 0.12
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2.2.2. Filtering and Adaptive Normalization

The 4 Hz sampling frequency used in both databases restricts the maximum upper
cut frequency for the high-pass or band-pass filters to 2 Hz maximum as defined by the
Nyquist theorem. In order to achieve a short and abrupt slope at this cutoff frequency,
complex high-order filters are required. Alternatively, a median filter with a kernel size of
five samples (approximately 2 s) was chosen as the smoothing and high-frequency removal
approach due to its lessened complexity and cost of implementation. The median filter acts
as a band-pass filter focused on the central value of the kernel to achieve noise reduction
while preserving some higher-frequency properties.

For the normalization module, we propose a variation of the AN in the works by
Ogasawara et al. [21] based on the sliding window technique normalization. The raw
recorded EDA time series is split into intervals of size n, then transformed and processed
before finally being normalized. The original signal properties are carried in each of the
Disjoint Sliding Windows (DSWs) created, which represent various levels of volatility in
the data. Two main parameters govern the transformation: the order k of the EMA and the
length ω for the DSW. Being that S is the interval of data with length n from the original
time series of length N, and S(k) is the EMA of order k (α = 2/(k+1)), the sequence R is
defined as:

R[i] =
S[d i

ω e(i− 1)]modω

S(k)[d i
ω e]

(1)

where 1≤ i ≤ (n-ω +1)·ω. The new sequence R described in (1) is composed of (n – ω + 1)
different DSWs. The EMA factor in the denominator is important to preserve the original
trend of the time series and to bring the same inertia to all the values in a DSW. The applied
EMA performs overall data smoothing, thus reducing the small variations caused by the
sensor’s sensitivity while retaining high-frequency changes as shown by Figure 3. As a
result, artifacts are preserved in the resulting sequence R but are expected to represent
boundary or outlier values inside the interval data.

Our proposal incorporates the additional parameter n for the interval size and normal-
ization. The n ≤ N interval size parameter aims to preserve the localized seasonality in the
non-stochastic time series. As previously shown, the time-related parameters of the SCR
(rise, recovery, and ISI) are delimited to a well-known range between 1 and 10 s. In general,
these regularization parameters aim to achieve regularization and standardization of the
resulting data and features.

Processing is composed of outlier removal in the resulting sequence R based on
box plots and data normalization in order to reduce the presence of artifacts in the final
data. The original approach in the work by Ogasawara et al. treats values outside of the
[Q1−1.5IQR, Q3 + 1.5IQR] range as outliers, with Q1, Q3 and IQR representing the first,
third quartiles and interquartile range values, respectively. In our case, the proposed range
needs to be addressed after observing the EDA values, artifact properties, device sensitivity
and range of precision. Finally, a min-max normalization of sequence R in the range of
[0, 1] is applied adequately to the resulting distribution.
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Figure 3. On the left, original signal after median filtering. On the right, the transformed signal after
min-max normalization (n = 20, ω = 5 s) shows abrupt rising sections in the DSWs within 0 and 2 s.
After the minima at 2 s, the DSWs present less variability due to the increase in the original signal.

2.2.3. Feature Extraction

Several conventional EDA-related features are extracted from the normalized signal:
first, the signal amplitude from the normalized time series R; second, the local maxima
and minima properties, like height and width; and the difference in time (distance) and
amplitude between consecutive peaks of the same type. The volatility sharpness and
frequency properties can be described through the analysis of consecutive minima and
maxima separately. These critical points are detected using peak detection algorithms with
configurable peak height and width thresholds. Therefore, it is possible to separate true
response changes from small swifts caused by the sensitivity limitations by peak parameter
configuration. Figure 4 displays the step-by-step process of the feature extraction module.

The extraction of shape-related features from the resulting normalized time series aims
to enhance the information typically present in amplitude and critical point properties. Ten-
dency features focus on describing rising or descending sections composed by consecutive
local maxima or minima. The duration, height, and length properties are extracted from
the tendencies like the ones present in Figure 5.

Figure 4. Pseudocode for the proposed feature extraction. First, the local maxima and minima (peaks)
are detected. After that, the location and height of these peaks are used to determine the variables
(height, duration and length) of the rising and falling sections for each type of peak.

Max, Min, Median, Std. deviation and IQR are the statistical properties calculated for
the features in each of the extraction windows. Additionally, count features aim to provide
a complementary and comparative background to the statistical features. The window size
for feature extraction is expected to capture multiple DSWs so that the statistics from the
features reflect the transformation properties. For example, selecting 5 s feature extraction
and ω window sizes are a sufficient time range to capture the effects of volatility through
multiple DSWs. The usage of width and height thresholds reduces the number of peaks like
small fluctuations caused by sensor sensitivity. For this reason, the extraction of tendency
features from Table 3 require prior peak filtering to reduce noise and improve results.
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Figure 5. Example of tendency features. Section height and duration values can be interpreted as the
absolute value of the difference between the first and last peak that compose the section. Highlighted
in red are two rise sections composed by consecutive rising local minima. The one to the left has
0.4 height, two peaks and 0.15 s of duration. The second rising section highlighted is shorter in height
but longer. The two purple highlighted falling sections from left to right are composed by the local
minima and maxima, respectively.

Table 3. List of proposed features extracted from the transformed and normalized signal R. Tendency
features are used for rising and falling sections separately. Min, max, median, std. deviation and IQR
extracted from all feature types except the count cases.

Domain Property Feature Details

Height

R normalized Height Normalized height
Difference First difference of consecutive height values

Local Maxima
Height Height of the local maxima
Count Number of local maxima in the interval
Difference Height difference between consecutive local maxima

Local Minima
Height Height of the local minima
Count Number of local minima in the interval
Difference Height difference between consecutive local minima

Time
Local Maxima Position Position of the local maxima in interval

Difference Time difference between consecutive local maxima

Local Minima Position Position of the local maxima in interval
Difference Time difference between consecutive local minima

Tendency

Local Maxima

Height Section height from start to finish.
Duration Section length in time.
Length Section length in number of section elements.
Count Number of sections in the interval

Local Minima

Height Section height from start to finish.
Duration Section length in time.
Length Section length in number of section elements.
Count Number of sections in the interval

2.2.4. Feature Distribution

The statistical distributions from the list of features present in Table 3 are either normal
or multimodal, with the latter being the predominant one. A limited set of futures, such as
the height and first difference of the normalized signal, present a Gaussian distribution.
Null values are expected, as peak and tendency features are determined by the presence
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of peaks after the application of the height and width thresholds. For example, Figure 3
shows multiple intervals with no descending maxima tendencies.

One of the main challenges in feature creation is achieving a low percentage of nulls
and simplified filling. Filling values in the case of count features can be trivialized to a
0 value. On the other hand, duration features value selection may impact cases with a
short length. Moreover, features with a high probability of nulls are expected to present
multimodal distributions with one of these values set at the filling value.

All proposed feature distributions are impacted by the chosen parameter values.
For example, the smoothing factor k is expected to help detect more volatility after nor-
malization when set to relative higher values. Large values of n and ω may result in
excessive levels of normalization smoothing. On the other hand, increasing the number of
DSWs by setting the ω close to n is expected to cause dissimilarity, especially under high
volatility levels.

Ideally, these parameter values need to be set so that the volatility caused by regular
and overlapping SCRs as well as artifacts and sudden changes can be easily separated from
stable intervals. Reducing the number of peaks to more predominant or isolated cases can
help detect more volatility in median and IQR features. Peak detection threshold param-
eters can be set over the results of normalization to adjust the distributions. Multimodal
distributions may indicate the presence of multiple groups in the data. When combining
multiple multimodal or bimodal features from a dataset, it can lead to the discovery of
patterns in the data.

2.3. Application to Unsupervised Classification Scenario with Stress Data

The purpose of this scenario is to validate the proposed framework by aiding with
parameter value optimization, search patterns in data through feature distributions, and
identifying those features from Table 3 that are most proficient for future analysis and
classification applications. The main handicaps are the significant presence of noise, the
high dimensionality of the proposed features, and their probable correlation.

Adaptive normalization behaves similar to a convolution with a window size ω. In
cases where the number of maxima or minima are low or equivalent to the number of
DSWs, the peak and tendency features may present a high correlation between them. This
is due to tendency features originating from peak properties, like height or distance. High
correlation can be mitigated using feature selection approaches.

2.3.1. Feature Selection

For this scenario, we propose a feature selection approach based on feature impor-
tance and variability split in two phases. First, the identification of those features that
present high-correlation coefficient values to those in the proposed set can help reduce
information redundancy. The structure shown in Table 3 implies that the features grouped
under the same domain and/or property are expected to share some level of correlation.
Additionally, features with a high percentage of null cases are expected to show positive
correlation between each other. Correlation coefficients provide an intuitive reference on
the level of redundancy while allowing different filtering criteria, for example, selecting the
top 10 features that present lower absolute correlation coefficients underneath a threshold
value to at least 90% of the other proposed features.

Secondly, feature variability is measured to locate those features which may have more
predictive power. Principal Component Analysis (PCA) is a recurrent technique for insight
obtained through dimensionality reduction [39]. Additional normalization is applied over
the proposed set of features in order to achieve scaled variables and linearity for PCA. As
displayed in Table 4, different normalization approaches are proposed for each feature
type. Height-related features present already normalized values from the proposed AN
transformation. For example, the normalization factor for count features can be set to the ω
parameter value or the selected feature extraction window length.
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Table 4. Windowed Normalization approaches for the different types of proposed features after
AN transformation.

Feature Type Window Normalization Example

Height No additional normalization required Maxima Height Median

Length Min-Max normalization over the windowed values Minima Fall interval duration

Number Normalized using the total number of samples in the window Maxima count

2.3.2. Interval Clustering

The previously described EDA feature selection approach aims to strengthen the
framework for classification scenarios. Emotion recognition, arousal and stress classification
with EDA have shown poor performance with probabilistic model classifiers like Naïve
Bayes [15] or Trees [40] because of low independent features. PCA has served as a reliable
approach for achieving independent variables and further cluster analysis [4].

Dimensionality reduction methods like PCA have demonstrated to successfully im-
prove the performance of SVM classifiers and K-means clustering [17,34] but could also be
applied to different NNs. Scenarios of application vary from emotion recognition to sleep
analysis studies, where different response properties are expected to be observed over time.
Wavelet coefficients, AUC and deviation of each EDA component have shown the best
results among the features shown in Table 1.

Unsupervised classification is a recurrent technique for decision support and data
understanding. The K-means algorithm serves as a reliable clustering approach for the
partition of data spaces. For example, it has been applied to cluster EDA responses and
users in groups [4]. Similarly, Self-Organizing Maps (SOMs) have been used for EDA feature
selection over arousal state discrimination with good overall performance results [41].

Due to its more intuitive approach for analysis, K-means was chosen as a baseline
clustering method to validate the proposed framework. The number of optimal clusters for
the K-means may contribute to determining the actual volatility groups present in the data
and the responsible key features from the obtained cluster centroids.

3. Results

The analysis provides insights into the different parts of the proposed framework:
parameterization of the normalization, feature analysis and clustering results. Parameter
and feature selection was performed using the main phases of activity from all users in the
datasets and validated with 1000 randomly chosen intervals previously excluded from the
selection stage.

3.1. Framework Parameters

The focus on parameter optimization is the preservation of volatility and reduction in
information present in the original signal. These can be analyzed through the morphology
of the transformed signal and the proposed feature distributions. First, the EMA regular-
ization parameter k shows lower influence in the preservation of volatility properties than
ω despite being the main parameter controlling the denominator in (1). Higher values
of k are especially relevant during volatile sections of data, causing greater variability in
the DSWs. This has some implications for the statistical features extracted too like std.
deviation and IQR.

The DSW size parameter ω is shown to influence the number of peaks and the con-
sistency in the distribution of values in R. Since volatility in EDA is caused by regular
and overlapping SCRs and artifacts, values of ω between 2 and 10 s can fit this purpose.
Nonetheless, higher values are more likely to ignore volatility. On the other hand, critical
points can be found where two different DSWs meet. Lower values of ω increase the
number of DSWs and the relative volatility observed in the samples. Ideally, we aim to
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preserve some level of variability in the volatility levels of each extraction window and, as
a result, the AN parameters were set to n = 20, ω = 5 and k = 2 s (Figure 6).

Under transformation with ω = 5, the resulting distribution for the test data presented
a tightly clustered shape with Q1 = 0.96 and Q3 = 1.09 over the test samples. When
comparing the IQR = 0.13 with the min = 0.81 and max = 1.54, it is clear that the proposed
upper outlier boundary of Q3 + 1.5IQR = 1.29 corresponds to the 97% percentile. In light
of these results, the outlier boundaries need to be redefined for our scenario. Distribution
analysis determined that the range [Q1 − 0.25IQR, Q3 + 0.75IQR] preserved 5% to 95%
percentiles of the values. This new boundary applies a more statistical reasonable outlier
removal over the transformed data.

Figure 6. Comparison between the transformed and normalized signal using different values of the
ω parameter with same n value.

The distortion in the actual distribution caused by threshold and excessive param-
eterization was analyzed for the proposed features. The number of samples after the
normalization module is increased as a result of the transformation, but the width of peaks
is preserved due to the creation of the different DSWs. In detail, inspection of the local
maxima and minima width during the main recording sections of both databases showed
a distribution with a Q1 of 4.2 and IQR of 7, with lower probability in the range of [1, 4]
for the maxima. Therefore, peaks under five samples of width were assumed to be small
sensitivity changes. As shown in Figure 7, the effects of increasing the DSW size and the
peak thresholds reduce the number of peaks and narrow the distribution range. In the case
of tendency-related features, bimodal distribution appears after applying higher thresholds.
Other peak properties, such as peak and interval heights, appear to center around one
specific value as the threshold value increases. As a result, a minimum peak width of four
samples was selected in order to preserve as much of the bimodal and multimodal feature
distributions as before thresholding while discarding small and localized volatility cases
for the feature extraction process.
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Figure 7. Effect of the peak threshold and ω parameters over different proposed features.

3.2. Feature Selection

The proposed feature selection approach consisted in the minimization of feature corre-
lation and assuring variability among the final set. Additional feature engineering after the
feature normalization was applied to improve the PCA performance due to count property
features possessing upper values far from the desirable [0,1] range. The tendency count
feature distributions were transformed from continuous to discrete values to reflect the
presence (1) or absence (0) of these properties. Additionally, the PCA results are expected
to improve, as the previous distribution’s upper boundary n_cases/n_samples_window is far
from the desirable standardized and normalized value. The information on the number
of cases is expected to be captured by the properties in other features. Nevertheless, high
correlation values between the engineered tendency presence features and the remaining
ones are to be expected.

Selecting around 8 to 15 final features is a good dimensionality size. The optimal cor-
relation index limit was analyzed through iteration using a 0.03 step increase. Specifically,
nine features presented an absolute correlation coefficient below 0.7 with all the remaining
ones. Figure 8 displays the mutual correlation levels between them. Height and duration
features still present values close to the selected correlation boundary. Additionally, the
redefined tendency presence features showed high correlation with multiple other features,
but their usage is essential to differentiate low volatility.

The distribution on the selected features related to the count and first difference
properties showed bimodal distributions. Bimodal distributions predominate among the
count and first difference features. Furthermore, filling values were typically the most
probable value in the distribution of the multimodal distributed features. PCA achieved
around 95% of the explained variance with six components over the correlation-based
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feature selection as shown in Table 5. For reference, a 20% increase in variability was
captured when compared to two components. The previously cited tendency presence
distribution changes may be responsible for the increase in the number of components
required.

Figure 8. Correlation heatmap of the selected 9 features that presented less than 0.7 absolute correla-
tion with all of the features in the proposed list.

Table 5. Explained variance of the applied PCA by number of components used over the dataset
with the 9 selected features.

No. Components 1 2 3 4 5 6

Explained Variance 0.7 0.75 0.85 0.90 0.92 0.95

3.3. Clustering Analysis

Silhouette coefficients and elbow plots were used to determine the optimal number
of clusters for the K-means algorithm. In this scenario, ideal clustering should guarantee
highly differentiated signal shapes and uneven populations, as the response inference
phases are expected to be longer and continue through some resting states. Additionally,
the decision on the selected number of clusters was supported by visual observations of the
time-series labelling. The maximum number of clusters for this scenario was set to 10. As
shown in the silhouette coefficient graph in Figure 9, two points of emphasis at K = 4 and
K = 6 clusters were found. The elbow plot was used to determine that the optimal number
of clusters was four. Nevertheless, we analyzed the impact for these two cases.
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Figure 9. Silhouette coefficients and elbow graph for the K-means clustering over the PCA data with
6 components.

Using K = 6 clusters provided mixed SCR response clusters due to the Gaussian ball
behavior of K-means and its aim for distanced centroids. On the contrary, using four
clusters resulted in two of them (cluster 0 and 1) presenting opposite SCR responses, while
the remaining grouped cases of noise and irregular behaviors. Section presence and number
of minima proved to be the leading factors in separating the clusters for K = 4. Nevertheless,
both cases showed clusters with expected response outliers due to the issues regarding
the decision boundaries using K-means clustering. Moreover, visual validation over the
original signal revealed that the usage of K = 4 clusters achieved reliable identification of
no-response intervals or SCR recovery-time windows while grouping noisy or non-specific
responses together. Table 6 summarizes the cluster assignments in terms of the original
signal morphology and the percentage of samples with a test set of 1000 intervals.

Table 6. Cluster descriptions for the proposed K = 4 cluster extracted with K-means over the data
with PCA and 6 components.

Cluster Centroid Description % Samples

0 No Fall sections, only Rising sections Intervals where the original EDA signal tends to decrease
monotonously—no response 20.7

1 Fall and rise sections in window SCR with rise and recovery times (no overlap) 52.7

2 No minima, major height diff. features Stable sections (low volatility) with some eventual volatility
case but not SCR necessarily 17.0

3 Fall section, major fall height Volatility detected but no recovery phase (not finished SCR-
Overlapping) 10.6

As shown in Figure 10, an average silhouette coefficient of 0.59 was achieved, with
cluster 2 being the only case with negative difference values. Most outliers were assigned
to cluster 2. When applied to the original signal intervals, clusters 0 and 1 presented a clear
definition of cases, with cluster 0 capturing some of the recovery time intervals. Cluster 2
can be defined as regions with soft response and stable tonic levels. Finally, cluster 3
indicates the presence of volatility with no recovery.
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Figure 10. Silhouette plots for the 4 identified clusters in the test data.

Figure 11 shows the clustering method applied to each 5 s feature extraction window
using 20 s interval normalization throughout 120 s of recording during the midterm exam.
Clear descending sections are captured by cluster 0 (red), and SCR shaped sections are
tagged to cluster 1, which is the most predominant. The remaining two clusters are
represented in high- and low-volatility cases. Table 6 expands on the cluster centroid
information and description.

Figure 11. Cluster assignment to the 5-second feature extraction windows over 120 s of the raw
EDA signal after the first 20 min of an exam. Predominance from cluster 0 and 1 can be observed in
this case.

4. Discussion

This paper introduced a novel normalization and feature extraction framework for the
analysis of EDA signals. The aim of this study was to analyze the feasibility and impact
of using the exponential moving average (EMA) as the main standardization component
prior to data normalization. Two different stress-related datasets with non-equivalent
acquisition protocols and frameworks and considerable EDA variability among subjects
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were used for that purpose. In addition, we proposed a new set of morphology EDA
features based on peak tendencies over the normalized signal. The proposed framework
does not represent a complex and computationally costly approach for its development
across different environments.

EMA has shown able to smooth the signal and preserve sudden trend changes. The
observed signal volatility can be interpreted as response changes or artifacts. The main
regularization parameter ω showed the most impact over the transformed signal in terms
of trend and volatility preservation. Small values in the range of 2–5 s were able to preserve
these traits adequately enough for the study. Overall, the parameterization applied can
be susceptible to scenario changes, such as different acquisition sampling frequencies
or sensitivity. However, the ω parameter value is set to deal with the expected shape
of EDA under induced responses. Downsampling to 5–10 Hz may be required with
greater frequencies than the one used for this study. The other parameterization before the
final data normalization corresponds to the boundaries set for outlier data. The selected
[Q1 − 0.25IQR, Q3 + 0.75IQR] range should be reviewed and adapted to the observed
signal and study conditions accordingly. For the proposed scenario, it can be asserted
that not all artifacts were present outside the boundaries. Therefore, outlier boundaries
validation must be addressed prior to data normalization with the proposed framework.

In regards to the proposed features from the normalized signal, the observed bimodal
and multimodal distributions are caused by the previously chosen parameter values. The
applied peak threshold is key for the tendency features, as small and short peaks may
introduce noise to these values. Each of the modal values in the distributions imply the
existence of groups in the data. In parallel to the high dimensionality and correlation
levels, more than 30% of the proposed tendency features presented null values. Excessive
threshold values may be responsible as well as low information present in the feature
originally. The distribution observed on the peak distances, first difference values and
tendency properties showed reliability for their usage on response change detection.

The validation scenario using PCA for feature selection and K-means clustering over
stress data illustrated some key aspects. First, the approach was able to locate three main
clusters of intervals in the data: responses, relaxation and noisy/undetermined. These
clusters present very distant volatility levels between one another. Secondly, the selected
or most prevalent features came from tendency and peak properties in the normalized
signal, where filling values clearly specified absence, such as interval duration or height
differences. As evidenced by the K-means centroid feature values, tendency pattern
distributions were identified for the intervals with response and relaxation. The remaining
clusters presented higher numbers and variability in their peak properties. Therefore, we
can assure that tendency features could become useful, as well as reassuring that the shape
of the normalized signal can take a decisive part in future classification scenarios. Peak
width thresholds contributed to data grouping by establishing the boundaries for each state
or cluster in exchange for loss of the actual height, width and length information present
in features.

Further works can explore different classification approaches over the transformed
and normalized EDA signal and selected features from our validation scenario. As cited in
this study, the usage of neural networks can expand the areas of application of the proposed
normalization approach. On the one hand, self-organizing maps (SOMs) may contribute to
the identification of more volatility-related groups and a better understanding of feature
association to them. On the other hand, CNNs and deep neural networks (DNNs) over the
normalized signal R can be applied to supervised classification scenarios, thus solving the
previously cited issues of high-dimensionality and mutually correlated and null features.
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the manuscript.
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