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Abstract: The buckling behavior of rectangular thin plates, which are supported at their four corner
points with four edges free, is a matter of great concern in the field of plate and shell mechanics.
Nevertheless, the complexities arising from the boundary conditions and governing equations
present a formidable obstacle to the attainment of analytical solutions for these problems. Despite
the availability of various approximate/numerical methods for addressing these challenges, the
literature lacks accurate analytic solutions. In this study, we employ the symplectic superposition
method, a recently developed method, to effectively analyze the buckling problem of rectangular
thin plates analytically. These plates have four supported corners and four free edges. To achieve this,
the problem is divided into two sub-problems and solve them separately using variable separation
and symplectic eigen expansion, leading to analytical solutions. Finally, we obtain the resolution
to the initial issue by superposing the sub-problems. The current solution method can be regarded
as a logical, analytical, and rational approach as it begins with the basic governing equation and is
systematically derived without assuming the forms of the solutions. To examine various aspect ratios
and in-plane load ratios of rectangular thin plates, which are supported at their four corner points
with four edges free, we provide numerical examples that demonstrate the buckling loads and typical
buckling mode shapes.

Keywords: symplectic superposition method; rectangular thin plate; buckling; corner-point supports

MSC: 35E05; 74K20; 74G60

1. Introduction

The mechanics of plates and shells have been studied by many scholars [1,2]. Rect-
angular plates supported by corner point are commonly used in various engineering
applications, including building structures, mechanical components, and aerospace vehi-
cles. The buckling of plates is a significant mechanical failure that has received extensive
attention in recent decades. At present, many scholars have studied the buckling problem
of plates. Obtaining analytical solutions for such buckling problems is crucial for both
theoretical understanding and practical applications. The primary aim of conducting linear
buckling analysis on plates is to establish the buckling load and its associated buckling
mode. These parameters serve as crucial indicators for structural design, offering valuable
reference values. Obtaining analytical solutions is often challenging due to the intricate na-
ture of the mathematical equations and boundary conditions. Current analytical solutions
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for the buckling phenomenon in rectangular plates are primarily restricted to scenarios
featuring uncomplicated boundary conditions with two opposite sides simply supported,
commonly referred to as Lévy type plates. As for rectangular plates with non-opposite
side simple supported, most research has relied on similar/numerical methods [3–12]. For
rectangular plates under corner support conditions, finite difference method [13], differ-
ential quadrature method [14,15], discrete singular convolution method [16,17], meshless
method [18], generalized Galerkin method [19,20], etc., have been used to obtain the sim-
ilar/numerical solution of the buckling problem of such plates. Consequently, there is a
scarcity of reports on analytical methods and analytical solutions for these specific cases.

The introduction of symplectic mathematical concepts into elasticity by Academician
Zhong [21–23] has revolutionized the field of elastic mechanics solutions. This innovative
approach, known as symplectic elasticity, has been widely applied in various areas such as
structural folds [24], fractures [25], and elastic waves [26]. Over the years, researchers like Li
et al. [27] have further developed this concept and introduced the symplectic superposition
method for complex plate-shell mechanics. This novel analytical method has provided
solutions to bending, vibration, and stability problems in plate-shell structures. Instead
of utilizing the conventional Lagrange system rooted in Euclidean space, the symplectic
superposition method functions within the Hamiltonian system embedded in symplectic
space. The basic idea of symplectic superposition method is as follows: the problem to
be solved is introduced into Hamilton system to form the boundary value problem of
Hamilton dual equation; The original problem is divided into several sub-problems. For
these sub-problems, the corresponding eigenvalue problems are constructed by symplec-
tic mathematical method, and the eigenvalue solutions are obtained analytically. Then,
the control variables such as deflection (bending problem), mode (vibration problem) or
buckling mode (stability problem) are accurately characterized by means of symplectic
eigenvalue expansion. The solution of the original problem is obtained by solving the
superposition subproblem. The symplectic superposition method offers a significant benefit
in that it offers a direct solution approach devoid of any predetermined functions. This
approach demonstrates utmost rationality. It combines the advantages of the symplectic-
mathematical method, which does not need to assume the solution form in advance, and
the programmatic advantages of the Superposition method, which has a unified mathemat-
ical structure and is not limited by the specific type of problem. This method overcomes
the problems of separating variables and the failure of the semi-inverse method (such as
Rayleigh-Ritz method) encountered in the solution process of the other traditional methods,
and at the same time, circumvents the problems of failing to analytically solve eigenvalue
equations, which are caused by the use of the traditional symplectic-mathematical method.
This approach overcomes challenges associated with solving eigenequations and offers
distinct benefits in analyzing vibration and buckling problems in plates and shells with
complex boundaries. so that the method demonstrates a unique advantage in analytically
solving the problems of plate and shell dynamics, providing a fresh theoretical tool for
obtaining new analytic solutions in various plate-related problems such as static bending,
vibration, and buckling. Additionally, the technique offers efficient convergence, surpass-
ing some conventional methods. Through the utilization of this approach, the scientists
successfully obtained precise and comprehensive analytical solutions without making
any assumptions regarding the structure of the solution. This particular advantage distin-
guishes it from the traditional semi-inverse method. Notably, up until now, the utilization of
the symplectic superposition method has been exclusively focused on addressing vibration
issues associated with rectangular plates.

The primary objective of this research is to address the problem of buckling of a
rectangular thin plate, which are supported at their four corner points with four edges free,
which is notorious for its complex boundary conditions. To assess the effectiveness of the
proposed method, this study examines the buckling behavior of rectangular plates with
different aspect ratios and load ratios. The obtained results consistently exhibit a significant
level of concurrence with the findings derived from an extensive finite element analysis.
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This verification effectively verifies both the precision of the proposed method and the
analytical solution.

If the edge boundary condition is changing, for instance, FSFS, or SSSS, CCCC, the
analytical solution will change. Different superposition systems need to be constructed for
plate buckling problems with different boundaries. The buckling problem of plates with
different boundary conditions has been studied by Li et al. [27]. It is worth mentioning
that although the primary focus of this study revolves around linear problems, there is
potential for tackling nonlinear problems concerning plates with significant deformation
by employing the symplectic superposition method in conjunction with the perturbation
method [28–30]. Such attempts will be made in the follow-up studies.

The main novelty of the SSM lies in the Hamiltonian framework to solve higher-order
partial differential equations. This method distinguishes itself by decomposing the problem
into two subproblems and utilizing advanced techniques in symplectic space, such as
variable separation and symplectic eigen expansion, to derive analytical solutions. Unlike
traditional semi-inverse methods, the SSM does not rely on predetermined assumptions,
enhancing its robustness and applicability. Furthermore, our work addresses new analytical
solutions under non-Lévy-type boundary conditions (BCs), a complex issue in previous
research. This breakthrough demonstrates the SSM’s capability to tackle challenging
mathematical characteristics, thereby presenting a significant advancement in the field and
offering a valuable benchmark for comparing and evaluating other methods.

The symplectic superposition method can be applied to other geometric plates, e.g.,
triangular, circular, polygonal. If the geometries of the plate are changing, we need to
construct different symplectic superposition systems and derive new formulas. The exact
solution procedure can be seen in “On the symplectic superposition method for analytic
free vibration solutions of right triangular plates” [31] Circular plates have been studied
using the symplectic method, the details can be found at “Natural vibration of circular
and annular thin plates by Hamiltonian approach” [32] and “The dynamic behavior of
circular plates under impact loads” [33]. We are currently conducting some research on
the use of symplectic superposition for irregularly shaped plates (plates with a rectangular
central cutout and L-shaped plates) “New analytic free vibration solutions of plates with
a rectangular central cutout by symplectic superposition” “New analytic free vibration
solutions of L-shaped moderately thick plates by symplectic superposition” which are
being submitted for publication.

Since The elastic stiffness D is used as a constant parameter in my solution, this method
is still valid if it is discretized and used as a variable stiffness matrix in my solution. It is
only necessary to combine the region decomposition method to dis-perse the plate into
multiple regions, assign different stiffness to different sub-regions, and meet the continuity
conditions at the joints of each sub-region, and combine the boundary conditions of the
plate to obtain the solution of the mechanical problem of the plate.

2. Governing Equations and Eigenproblems of Hamilton System for Rectangular Thin
Plate Buckling Problem

By utilizing the variational principle associated with Hellinger-Reissner variables and
the Lagrange multiplier technique [34], the buckling phenomenon of thin plates can be
characterized within the specified domain through the ensuing variational principle [27]:

δΠH = δ
s

Ω

{
D
2

(
∂2w
∂x2

)2
+ D

2

(
∂θ
∂y

)2
+ T

(
θ − ∂w

∂y

)
+ Dν ∂2w

∂x2
∂θ
∂y + D(1 − ν)

(
∂θ
∂x

)2

− D
2(1−ν2)

(
My
D + ∂θ

∂y + ν ∂2w
∂x2

)2
+ 1

2

[
Px

(
∂w
∂x

)2
+ Pyθ2

]}
dxdy

= 0

(1)

where ΠH is the Hamiltonian functional, Ω denotes the plate domain, w is the trans-
verse displacement of the plate midplane, T is the Lagrangian multiplier, θ is an intro-
duced quantity, D is the flexural rigidity (D = Eh3/

[
12

(
1 − ν2)]), h is the plate thick-
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ness, E is the elastic modulus, ν is the Poisson’s ratio, My is the bending moments
(My = −D

(
∂2w/∂y2 + ν∂2w/∂x2)), Px and Py is normal membrane forces.

Assuming the independence of w, θ, T, and My, and the arbitrariness of their variation,
Equation (1) yields:

∂w
∂y = θ

∂θ
∂y = −ν ∂2w

∂x2 − My
D

∂T
∂y = −D

(
1 − ν2) ∂4w

∂x4 + ν
∂2 My
∂x2 + Px

∂2w
∂x2

∂My
∂y = −T + 2D(1 − ν) ∂2θ

∂x2 − Pyθ

(2)

It is noted from first and the last equation of Equation (2) that θ = ∂w/∂y, and
T = −Vy, where Vy is the equivalent shear force, which could be expressed as:

Vy = Qy +
∂Mxy

∂x
+ Py

∂w
∂y

(3)

Therefore, the matrix equation that represents the homogeneous governing equation
for the expansion of a thin plate can be formulated as:

∂Z
∂y

= HZ (4)

where Z = [w, θ, T, My]
T, H=

[
F G
Q −FT

]
, F =

[
0 1

−ν∂2/∂x2 0

]
,

G =

[
0 0
0 −1/D

]
, Q =

[
−D

(
1 − ν2) ∂4

∂x4 + Px
∂2

∂x2 0

0 2D(1−ν)∂2

∂x2 − Py

]
.

H is the Hamiltonian operator matrix, which satisfy HT = JHJ, where J =
[

0 I2
−I2 0

]
is the symplectic matrix [21] where I2 is the 2 × 2 unit matrix.

Equation (4) is solved by the method of separating variables

Z = X(x)Y(y) (5)

where X(x) =
[
w(x), θ(x), T(x), My (x)

]T is a unary vector of x and Y(y) is a unary
function of y. By substituting Equation (5) into Equation (4), we can get:

dY(y)/dy = µY(y) (6)

HX(x) = µX(x) (7)

in which X(x) and µ are the eigenvector and eigenvalue of the Hamiltonian matrix H,
respectively. The characteristic equation corresponding to Equation (7):∣∣∣∣∣∣∣∣

−µ 1 0 0
−νλ2 −µ 0 − 1

D
Pxλ2 − Dλ4(1 − ν2) 0 −µ νλ2

0 −Py + 2Dλ2(1 − ν) −1 −µ

∣∣∣∣∣∣∣∣ = 0 (8)

Expanding Equation (8), we get

D
(

λ2 + µ2
)2

= Pxλ2 + Pyµ2 (9)
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The solution to this equation is

λ1,2 = ±a1i
λ3,4 = ±a2i

(10)

where a1 =

√
µ2 − Px/(2D) +

√
P2

x + 4Dµ2
(

Py − Px
)
/(2D),

a2 =

√
µ2 − Px/(2D)−

√
P2

x + 4Dµ2
(

Py − Px
)
/(2D).

The eigen-solution of w(x) could be obtained:

w(x) = A cos(a1x) + B sin(a1x) + C cos(a2x) + F sin(a2x) (11)

where the constants A, B, C and F are undetermined coefficients which could be obtained
by the boundary conditions

3. Analytic Buckling Solutions of Rectangular Thin Plates Supported by Four Corners
with Four Edges Free

In order to tackle the concern of buckling in a thin plate supported by four corners with
four edges free, we initially obtain the analytical solution for a fundamental subproblem
utilizing the symplectic method. Subsequently, we utilize the superposition method to
derive the analytical solution for the primary problem. As demonstrated in Figure 1, the
symplectic superposition diagram portrays the established coordinate system with the
origin positioned at one corner of the plate. The length and width of the plate are denoted
as ‘a’ and ‘b’ respectively. The left and upper edges of the plate determine the orientation
of the ox and oy axes, as illustrated in Figure 1a. In order to effectively tackle the initial
problem, it is divided into two subproblems, as shown in Figure 1b,c. Corner support is
represented by ‘P’, freedom by ‘F’, and simply supported by ‘S’.
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Figure 1. Symplectic superposition for buckling problem of rectangular thin plates supported by
four corners with four edges free (a) Symplectic superposition for the whole problem (b) Symplectic
superposition for the subproblem (1) (c) Symplectic superposition for the subproblem (2).

The boundary condition of the original problem is to satisfy the point-supported
boundary condition at the four corner points, i.e.,

w|(0,0),(0,b),(a,0),(a,b) = 0 (12)

On the four edges of the plate, the free boundary conditions need to be satisfied, i.e.:

Vy
∣∣
y=0,b = 0, My

∣∣
y=0,b = 0

Vx|x=0,a = 0, Mx|x=0,a = 0
(13)
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The plates in both subproblems have initial boundary conditions that are simply
supported on all four sides. These boundary conditions must be fulfilled:

w|y=0,b = 0, My
∣∣
y=0,b = 0

w|x=0,a = 0, Mx|x=0,a = 0
(14)

On this basis, displacements expressed in terms of ∑∞
m=1,2,3,··· κ1m sin(αmx) and

∑∞
m=1,2,3,··· κ2m sin(αmx) are applied to the y = 0 and y = b sides of the plate in sub-

problem (1), respectively; displacements expressed in terms of ∑∞
n=1,2,3,··· κ3n sin(βny) and

∑∞
n=1,2,3,··· κ4n sin(βny) are applied to the x = 0 and x = a sides of the plate in subprob-

lem (2), where αm = mπ/a, βn = nπ/b, κ1m, κ2m, κ3n and κ4n are the parameters to be
determined (m = 1, 2, 3, . . ., n = 1, 2, 3, . . .).

The subproblem (1) represented in Figure 1b is first solved as an example. For a
rectangular thin plate simply supported on x = 0 and x = a the boundary conditions on
those sides need require:

w(x)|x=0,a = w′′(x)
∣∣
x=0,a = 0 (15)

By plugging Equation (11) into Equation (15), we obtain a set of equations that contains
the coefficients that need to be determined. If we assume all constants are set to zero (to
eliminate the possibility of buckling), it is crucial for the determinant of the coefficient
matrix to be zero. As a result, the following equation can be derived:

sin(aa1) sin(aa2) = 0 (16)

Its roots are:
a1,2 = ±mπ

a
(17)

where m = 1, 2, 3, . . . ,
Thus, the eigenvalue can be solved:

µm1,m2 = ±

√
Py
2D + α2

m −
√

P2
y+4Dα2

m(Py−Px)
2D

µm3,m4 = ±

√
Py
2D + α2

m +

√
P2

y+4Dα2
m(Py−Px)

2D

(18)

and eigenvectors:

Xmi = sin(αmx)


1

µmi
−µmiγmi

D
(
να2

m − µ2
mi
)
 (19)

where γmi = Py − D
[
µ2

mi − α2
m(2 − ν)

]
(i = 1, 2, 3, 4).

In this subproblem, the state vector can be expressed as:

Z =
∞

∑
m=1

4

∑
i=1

CmieµmiyXmi (20)

where the value of the constant “Cmi(m = 1, 2, 3, . . . , i = 1, 2, 3, 4)” can be determined
based on the boundary conditions of the given direction. As previously discussed, upon
dividing the original problem into subproblems, it is essential to enforce displacement in the
direction of subproblem (1). The appropriate boundary conditions for this are as follows:

w|y=0 =
∞
∑

m=1,2,3,...
κ1m sin(αmx), My

∣∣
y=0 = 0

w|y=b =
∞
∑

m=1,2,3,...
κ2m sin(αmx), My

∣∣
y=b = 0

(21)
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Substituting Equation (20) into Equation (21) yields the modal displacement expression
of subproblem (1)

w1(x, y) = a
∞
∑

m=1,2,3,...

sin(mπx)
ξ2

m−ς2
m

×
{

csc h(ϕςm)
(
ξ2

m − m2π2v
){

κ2msh(ϕςmy) + κ1msh[ϕςm(1 − y)]
}

−csc h(ϕξm)
(
ς2

m − m2π2v
){

κ2msh(ϕξmy) + κ1msh[ϕξm(1 − y)]
}} (22)

where y = y/b, x = x/a, κ1m = κ1m/a, κ2m = κ2m/a, ϕ = b/a, ξm = aµm1, ςm = aµm3.
For subproblem (2) represented in Figure 1c, the solution process is similar to that of

subproblem (1), and the modal displacement of the corresponding plate is:

w2(x, y) = b
∞
∑

n=1,2,3,...

sin(nπy)
ξ̃2

n−ς̃2
n

×
{

csc h
(
ϕ̃ς̃n

)(
ξ̃2

n − n2π2v
){

sh
(
ϕ̃ς̃nx

)
κ4n + sh

[
ϕ̃ς̃n(1 − x)

]
κ3n

}
−csc h

(
ϕ̃ξ̃n

)(
ς̃2

n − n2π2ν
){

sh
(

ϕ̃ξ̃nx
)

κ4n + sh
[
ϕ̃ξ̃n(1 − x)

]
κ3n

}} (23)

where κ3n = κ3n/b, κ4n = κ4n/b, ξ̃n = bµn1, ς̃n = bµn3, ϕ̃ = a/b,

µn1 =

√
Px/(2D) + β2

n −
√

P2
x + 4Dβ2

n
(

Px − Py
)
/(2D),

µn3 =

√
Px/(2D) + β2

n +
√

P2
x + 4Dβ2

n
(

Px − Py
)
/(2D).

Through the utilization of the derivation mentioned above, we are able to acquire
the modal displacement solutions for the two subproblems. This in turn allows for the
derivation of various other physical quantities, such as bending moments and angles, using
a similar approach. The establishment of the equivalence between the superposition of the
subproblems and the original problem is essential for determining the constant κ1m, κ2m,
κ3n and κ4n.

It is necessary to satisfy the boundary conditions at the four corner points of the
rectangular plate, such that the displacement of these corner points becomes zero after
the subproblems are superimposed. Irrespective of the values assumed by the pending
parameters κ1m, κ2m, κ3n and κ4n the displacement of the corner points is already satisfied.

Similarly, the requirement for the four free edges in terms of y = 0, y = b, x = 0 and
x = a adherence to zero bending moment and equivalent shear force is also fulfilled after
the subproblems are superimposed. Consequently, the zero bending moment condition
has been met, leaving only the need to fulfill the boundary conditions related to equivalent
shear force.

For the edges y = 0, superimpose the equivalent shear forces along the y = 0 edges of
the two subproblems so that the sum is 0, i.e., Vy

∣∣
y=0 = ∑2

i=1 Vi
y

∣∣∣
y=0

= 0, which simplifies

to the first set of equations:

1
ξ2

m−ς2
m

×
{

ςm
(
ξ2

m − m2π2ν
)
csc h(ϕςm)

[
κ2m − κ1mch(ϕςm)

][
R − ςm

2 + m2π2(2 − ν)
]

−ξm
(
ςm

2 − m2π2ν
)
csc h(ϕξm)

[
κ2m − κ1mch(ϕξm)

][
R − ξm

2 + m2π2(2 − ν)
]}

+
∞
∑

n=1,2,3,...

2mnπ2

ξ̃n2−ς̃n2

[
κ3n − cos(mπ)κ4n

]
×
{
(ξ̃n

2−n2π2ν)[n2π2+ϕ2R−ς̃n
2(2−ν)]

ς̃n2+m2π2ϕ2 − (ς̃n
2−n2π2ν)[n2π2+ϕ2R−ξ̃n

2(2−ν)]
ξ̃n2+m2π2ϕ2

}
= 0

(24)

where R = a2Py/D (m = 1, 2, 3, · · · ).
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For the edges y = b, superimpose the equivalent shear forces along the y = b edges of
the two subproblems so that the sum is 0, i.e., Vy

∣∣
y=b = ∑2

i=1 Vi
y

∣∣∣
y=b

= 0, which simplifies

to the second set of equations:

1
ξ2

m−ς2
m

×
{

ςm
(
ξ2

m − m2π2ν
)
csc h(ϕςm)

[
κ1m − κ2mch(ϕςm)

][
R − ςm

2 + m2π2(2 − ν)
]

−ξm
(
ςm

2 − m2π2ν
)
csc h(ϕξm)

[
κ1m − κ2mch(ϕξm)

][
R − ξm

2 + m2π2(2 − ν)
]}

−
∞
∑

n=1,2,3,...

2mnπ2

ξ̃n2−ς̃n2

[
κ3n − cos(mπ)κ4n

]
×
{
(ξ̃n

2−n2π2ν)[n2π2+ϕ2R−ς̃n
2(2−ν)]

ς̃n2+m2π2ϕ2 − (ς̃n
2−n2π2ν)[n2π2+ϕ2R−ξ̃n

2(2−ν)]
ξ̃n2+m2π2ϕ2

}
= 0

(25)

For the edges x = 0, superimpose the equivalent shear forces along the x = 0 edges of
the two subproblems so that the sum is 0, i.e., Vx|x=0 = ∑2

i=1 Vi
x

∣∣∣
x=0

= 0, which simplifies
to the third set of equations:

1
ξ̃2

n−ς̃n2

×
{

ς̃ncsc h
(
ϕ̃ς̃n

)(
ξ̃n

2 − n2π2v
)[

κ4n − κ3nch
(
ϕ̃ς̃n

)][
R̃ − ς̃n

2 + n2π2(2 − v)
]

−ξ̃ncsc h
(

ϕ̃ξ̃n

)(
ς̃2

n − n2π2ν
) [

κ4n − κ3nch
(

ϕ̃ξ̃n

)][
R̃ − ξ̃n

2 + n2π2(2 − ν)
]}

+
∞
∑

m=1,2,3,...

2nmπ2

ξ2
m−ς2

m

[
κ1m − cos(nπ)κ2m

]
×
{
(ξ2

m−m2π2v)[m2π2+ϕ̃2R̃−ς2
m(2−v)]

ς2
m+n2π2ϕ̃2 − (ς2

m−m2π2v)[m2π2+ϕ̃2R̃−ξ2
m(2−v)]

ξm2+n2π2ϕ̃2

}
= 0

(26)

For the edges x = a, superimpose the equivalent shear forces along the x = a edges of
the two subproblems so that the sum is 0, i.e., Vx|x=a = ∑2

i=1 Vi
x

∣∣∣
x=a

= 0, which simplifies
to the fourth set of equations:

1
ξ̃2

n−ς̃n2

×
{

ς̃ncsc h
(
ϕ̃ς̃n

)(
ξ̃n

2 − n2π2v
)[

κ3n − κ4nch
(
ϕ̃ς̃n

)][
R̃ − ς̃n

2 + n2π2(2 − v)
]

−ξ̃ncsc h
(

ϕ̃ξ̃n

)(
ς̃2

n − n2π2ν
) [

κ3n − κ4nch
(

ϕ̃ξ̃n

)][
R̃ − ξ̃n

2 + n2π2(2 − ν)
]}

−
∞
∑

m=1,2,3,...

2nmπ2

ξ2
m−ς2

m

[
κ1m − cos(nπ)κ2m

]
×
{
(ξ2

m−m2π2v)[m2π2+ϕ̃2R̃−ς2
m(2−v)]

ς2
m+n2π2ϕ̃2 − (ς2

m−m2π2v)[m2π2+ϕ̃2R̃−ξ2
m(2−v)]

ξm2+n2π2ϕ̃2

}
= 0

(27)

Equations (24)–(27) represent an infinite set of coupled equations, yet they can be
reduced to a finite number of terms m = 1, 2, 3, · · · nt, n = 1, 2, 3, · · · nt when the plate expe-
riences buckling. In order for formula (24)–(27) to have a non-zero solution, it is necessary
for the coefficients κ1m, κ2m, κ3n and κ4n to not all be zero, thereby satisfying the condition
of the joint equation. The aforementioned condition results in the determination of the
coefficient matrix being zero in the system of equations, which ultimately establishes the
buckling load. By solving for the buckling load, the non-zero solution to the system of equa-
tions can be obtained, and by substituting these values back into Equations (22) and (23)
and summing up, the corresponding buckling mode can be determined. Mathematica, a
mathematical analysis tool developed by Wolfram, Inc. in the USA, is used to obtain the
free vibration solutions and the corresponding modal shapes during the analysis of the
symplectic superposition method.
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4. Comprehensive Buckling Loads and MS Results

In Figures 2 and 3, the buckling loads of rectangular thin plates supported by four
corners with four edges free are presented. These plates have aspect ratios of 1 and 2,
respectively. The load ratio ranges from 0 to 5, and a Poisson’s ratio of 0.3 is assumed.
Throughout the comparison process, we utilize the widely accepted FEM integrated in the
ABAQUS 2017 software package to compare with our analytical solutions. The thickness-
to-width ratio of the plates is fixed at 10−6 a. We employ the 4-node thin shell element
S4R and maintain a uniform mesh size equal to 1/100 a of the plate width through the
linear perturbation procedure. It is evident that the current results align closely with the
finite element results. In Figure 4, the first ten order buckling modes of the rectangular
thin plates supported by four corners with four edges free are displayed for the case where
b/a= 1 and Px/Py = 1. In Figure 5, the first ten order buckling modes of the rectangular
thin plates supported by four corners with four edges free are displayed for the case where
b/a= 2 and Px/Py = 1. By conducting comparisons, it is discovered that the symplectic
superposition method can accurately calculate the buckling modes as well. Overall, these
examples provide compelling evidence to support the validity of the proposed method
and the accuracy of the analytical results. The color indicates the current magnitude of the
modal displacement, red indicates the maximum value of the displacement, blue indicates
the minimum value of the displacement (absolute maximum).
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5. Conclusions

In this study, we propose a new analytical solution for analyzing the buckling behavior
of a rectangular thin plate that is supported at its four corner points with four edges free
and subjected to both unidirectional and bidirectional in-plane loads. The symplectic
superposition method is employed for this purpose. This solution provides comprehensive
information on the buckling load and buckling mode analysis, considering varying aspect
ratios and load ratios. These results can be used as a valuable reference for the comparison
and evaluation of other approximate or numerical methods. The symplectic superposition
method is advantageous as it does not make any assumptions about the form of the solution,
ensuring a rigorous analytical derivation from beginning to end. As a result, this method
has the potential to be extended further and apply to the derivation of new analytical
solutions for complex plate and shell problems.
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