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Abstract: Conventional OCT retinal disease classification methods primarily rely on fully supervised
learning, which requires a large number of labeled images. However, sometimes the number of
labeled images in a private domain is small but there exists a large annotated open dataset in the public
domain. In response to this scenario, a new transfer learning method based on sub-domain adaptation
(TLSDA), which involves a first sub-domain adaptation and then fine-tuning, was proposed in this
study. Firstly, a modified deep sub-domain adaptation network with pseudo-label (DSAN-PL) was
proposed to align the feature spaces of a public domain (labeled) and a private domain (unlabeled).
The DSAN-PL model was then fine-tuned using a small amount of labeled OCT data from the private
domain. We tested our method on three open OCT datasets, using one as the public domain and the
other two as the private domains. Remarkably, with only 10% labeled OCT images (~100 images per
category), TLSDA achieved classification accuracies of 93.63% and 96.59% on the two private datasets,
significantly outperforming conventional transfer learning approaches. With the Gradient-weighted
Class Activation Map (Grad-CAM) technique, it was observed that the proposed method could more
precisely localize the subtle lesion regions for OCT image classification. TLSDA could be a potential
technique for applications where only a small number of images is labeled in a private domain and
there exists a public database having a large number of labeled images with domain difference.

Keywords: optical coherence tomography; retinopathy classification; deep learning; transfer learning;
sub-domain adaptation

MSC: 68T07

1. Introduction

Optical coherence tomography (OCT) has become a de facto standard for guiding
the diagnosis and treatment of several leading diseases of blindness worldwide, such as
age-related macular degeneration (AMD) and diabetic macular edema (DME) [1]. However,
current manual diagnosis of retinopathies using OCT images are labor-intensive, time-
consuming and easily affected by the subjective experience of ophthalmologists.

Recently, with the fast development of hardware computing resources and the avail-
ability of a large amount of data, deep learning (DL) has achieved great success in various
tasks, including medical image processing and analysis [2–5]. For classification, popular
deep learning approaches firstly conduct feature extraction using convolutional neural
networks (CNN) and then build neural network classifiers using fully connected layers. In
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OCT retinopathy classification, a number of studies have focused on using fully supervised
DL method, which requires a large amount of labeled data. For example, Li et al. [6] trained
VGG-16 to classify OCT images with AMD and DME, which achieved a high accuracy of
98.6%, with a sensitivity of 97.8% and a specificity of 99.4%. Lu et al. [7] used the ResNet-101
network for multi-categorical retinopathy classification. In their study, the accuracies in
discriminating normal, cystoid macular edema, serous macular detachment, epiretinal
membrane and macular hole were 97.3%, 84.8%, 94.7%, 95.7% and 97.8%, respectively.
Alqudah et al. [8] proposed a CNN architecture which has fewer layers compared with
AlexNet to classify five classes of retinopathies. The overall accuracy in their study was
95.3%. These fully supervised DL models were normally trained with hundreds or thou-
sands of images for each class. Therefore, it is generally seen that satisfactory classification
can be achieved when training examples are sufficient.

Collecting and annotating large-scale datasets are time-consuming and expensive in
the real world. The deep learning model is prone to being overfit in a lack of annotated
data. To address this problem, semi-supervised and unsupervised learning methods have
recently attracted great attention. For semi-supervised deep learning, it intends to learn
visual features based on a small amount of labeled data. Sedai et al. [9] introduced a semi-
supervised uncertainty-guided student–teacher deep learning framework to improve the
segmentation of retinal structures in OCT images. For unsupervised learning, an effective
technique is the domain adaptation. It intends to overcome the difference between two
different but closely related domains with and without labeled data, i.e., the model trained
using the labeled dataset is able to work well on the unlabeled dataset. Wang et al. [10] pro-
posed a generative network-based domain adaptation model to address the cross-domain
OCT images classification task. They applied the model to OCT images obtained from
two different device manufacturers and achieved a cross-domain classification accuracy
of 95.53%. Luo et al. [11] proposed a novel domain alignment method with adversarial
learning and entropy minimization to train a model based on a labeled source domain and
then adapted it to the unlabeled target domain, which achieved retinopathy classification
accuracies of 91.5%, 95.9% and 99.0% in three cross-domain scenarios, respectively.

However, to our knowledge, there are few studies on testing whether an existing
public OCT dataset can be used to train a model that can work well on a private dataset
having a large domain difference but a small number of labeled data, which is critical to
clinical OCT applications lacking sufficiently labeled data from qualified ophthalmologists.
In this paper, we discuss this new scenario, i.e., assuming that we only have a private OCT
database named as the private domain, which has a few labeled but a large number of
unlabeled images, with another fully labeled public OCT database named as the public
domain. This situation exists commonly in a product development cycle, e.g., at the early
stage of commercializing a new medical imaging such as OCT device when only a small
amount of labeled data are collected at the beginning of its own clinical trial. Our purpose
is to train a network that is able to work well on the private domain with a small number
of labeled images. To achieve this objective, we propose a new transfer-learning approach
based on the sub-domain adaptation (TLSDA) method for the automatic classification of
retinopathy using OCT images. Specifically, the proposed TLSDA method consists of two
steps. The first step is to use a new sub-domain adaptation method to align the feature
spaces of the public domain and the private domain. The second step is to use a small
percentage, e.g., 10% labeled data, in the private domain to further fine-tune the domain
adapted model. Experiments showed that our method could obtain remarkable results for
OCT image classification even with very few labeled OCT images. Details of this study are
described as follows.

2. Materials and Methods
2.1. Datasets and Processing Method

In this paper, three publicly open OCT retinopathy datasets are utilized to demonstrate
the effectiveness of the proposed algorithm. The first dataset (denoted as Dataset A) was
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acquired from 45 subjects in different locations of the USA, which includes 723 AMD,
1101 DME and 1407 normal images [12]. The second dataset (denoted as Dataset B) was
obtained at Noor Eye Hospital in Tehran, Iran [13]. Specifically, Dataset B was acquired
from 148 subjects, which includes 1565 AMD, 1104 DME and 1585 normal images. The third
dataset was collected from six different hospitals in the USA and China [1], which includes
37,206 CNV, 11,349 DME, 8617 drusen and 51,140 normal images from 4686 subjects.

Since Dataset A and Dataset B only consider “dry” AMD and drusen usually present
in early AMD, to keep consistency, we discarded the category of CNV (“wet” AMD) and
treated drusen as AMD in the third dataset. Furthermore, to balance the total numbers in
each dataset, we randomly selected 1000 AMD images, 1000 DME images and 1000 normal
images in the third dataset and named it as Dataset C for experiment in this study. Al-
though those three datasets were all imaged using the same brand of OCT imaging system
(Spectralis, Heidelberg Engineering GmbH., Heidelberg, Germany), subject characteristics
were found to be quite different. For instance, subjects in Dataset A and Dataset C were
predominantly Caucasian and those in Dataset B were predominantly Asian. In addition,
Dataset A, Dataset B and Dataset C were collected in 2014, 2017 and 2013~2017, respectively.
This indicated different datasets might come from different versions of the same brand of
OCT machine, which might bring variations to the acquired OCT images. Figure 1 shows
some typical examples of different retinopathies in the three datasets.
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Figure 1. Some typical OCT images of AMD, DME and normal eyes in (a) Dataset A, (b) Dataset B
and (c) Dataset C.

The proposed TLSDA method is shown in Figure 2. It is assumed that we have a
public (source) domain and a private (target) domain. The data in the public domain
are fully labeled, while only 10% of the private domain data (~100 images per category)
are labeled. Although the two domain datasets include the same type of cross-sectional
B-mode OCT retinal images, their data distribution is significantly different. The proposed
TLSDA method consists of two steps. In Step 1, we assume all the data in the private
domain are not labeled and a new sub-domain adaptation algorithm is used to reduce the
discrepancy of feature distribution between the public domain Dpublic =

{
xpublic, ypublic

}
and the private domain Dprivate =

{
xprivate

}
. In Step 2, we fine-tune the Step 1 pretrained

network using 10% of the labeled data in the private domain. More details are provided in
the following sections.
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Figure 2. An overview of the proposed transfer learning method based on sub-domain adaptation
(TLSDA).

2.1.1. Deep Sub-Domain Adaptation with Pseudo-Label

In this step, we propose a new deep sub-domain adaptation network with pseudo-label
(DSAN-PL) to train a neural network, which consists of a feature extractor and a classifier.
The basic feature extractor is ResNet-50 with all the fully connected layers removed, which
aims at domain-invariant feature extraction. The classifier is a fully connected layer with
three output neurons for classifying three types of retinopathies. The structure of the
sub-domain adaptation method is presented in Figure 3. The overall loss function contains
three types of loss functions, which is defined as:
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Figure 3. The proposed sub-domain adaptation method used for cross-domain retinopathy classifi-
cation of OCT images. xpublic and xprivate are image samples from the public and private domains,
respectively. fs and ft are the extracted features for the public and private domains, respectively.

L = Ltc + λLda + α(t)Lpc (1)

where Ltc is the true label classification loss, Lda is the sub-domain adaptation loss, Lpc is
the pseudo-label classification loss, λ and α(t) are weighting coefficients, and t indicates
the epoch number in training. The pseudo-label is used for labeling the unlabeled data,
which indicates the predicted class with the condition that the classification probability for
the unlabeled image is greater than a confidence threshold, e.g., 96% used in this study.
The detailed information of the three sub-loss functions is presented as follows.
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Sub-domain adaptation loss: The sub-domain adaptation loss is designed for reducing
the discrepancy in sub-domain features distribution between the public and the private
domain. We adopted the local maximum mean discrepancy (LMMD) loss [14], which is
specifically used to quantitatively evaluate the sub-domain feature distance and calculated
as follows:

Lda =
1
C

C
∑

c=1
[

ns
∑

i=1

ns
∑

j=1
ωi

1−cω
j
1−ck( f i

s , f j
s )

+
nt
∑

i=1

nt
∑

j=1
ωi

2−cω
j
2−ck( f i

t , f j
t )− 2

ns
∑

i=1

nt
∑

j=1
ωi

1−cω
j
2−ck( f i

s , f j
t )]

(2)

where fs and ft are image feature vectors generated by the feature extractor, k is a kernel
function to compute the dot product of two image feature vectors, ωi

1−c and ω
j
2−c are the

weight of xi
public and xj

private belonging to class c, C is the numbers of total classes, and ns

and nt are the sample size for the public and private domains, respectively. The kernel
function is used in association with transforming features into sparse spaces so that the
chances of linear separability become higher. Readers can find more details of LMMD
in [14]. According to [14], the true label yi

public can be used as a one-hot vector to compute

ωi
1−c in the public domain:

ωi
1−c =

yi
public−c

∑
(xj

public ,yj
public)∈Dpublic

yj
public−c

(3)

Since the data in the private domain are unlabeled, the classification output can be set
as the probability of assigning xj

private to each of the C classes. Then, ω
j
2−c can be computed

similarly for each target sample in the private domain.
True and pseudo-label classification losses: The discrepancy in feature distributions

across different domains is evaluated using the sub-domain adaptation loss. The classifier
in [14] was only trained using a loss function in the labeled domain with true labels, which
is defined as follows:

Ltc = − 1
N

N

∑
i=1

C

∑
c=1

yic
publiclog ŷic

public (4)

where yic
public represents the corresponding true probability of the instance i for class c

(either 0 or 1), ŷic
public represents the output probability of the classifier in the public domain,

N is the total number of instances and C is the number of classes. However, training
the classifier using the labeled image data in the public domain may lead to reduced
classification performance in the private domain. To solve this problem, we adopted the
idea of pseudo-label, a typical semi-supervised learning skill [15]. Specifically, we also used
the representations with pseudo-labels in the private domain to train the classifier, which
can be defined as follows:

Lpc = − 1
M

M

∑
i=1

C

∑
c=1

yic
pseudolog ŷic

pseudo (5)

where ŷic
pseudo represents the predicted probability of the classifier, yic

pseudo represents the
corresponding pseudo-probability of the instance i for class c (either 0 or 1) in the private
domain, M is the total number of instances and C is the number of classes.

2.1.2. Model Fine-Tuning Based on Deep Sub-Domain Adaptation (TLSDA)

We employed the fine-tuning technique to further train the neural network following
the pseudo-label-based sub-domain adaptation. Specifically, we initialized the network
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parameters from Step 1, which was trained with the deep sub-domain adaptation with
pseudo-label, and fine-tuned it using a few labeled OCT data in the private domain. To
preserve the knowledge previously acquired by the model, we used a smaller learning rate
during fine-tuning, which prevented significant weight changes.

2.2. Evaluation Metrics and Model Implementation

To quantify the performance of different methods, we used six classification evaluation
metrics, including Accuracy (ACC), Precision, Recall, Specificity, Areas Under the Receiver
Operating Characteristic (ROC) Curve (AUC) and Matthews correlation coefficient (MCC),
which are broadly used in machine learning for classification applications. Precision,
Recall and Specificity are calculated separately for each class being treated as positive and
regarding other classes as negative and then averaged for all the classes in a multi-category
classification. We trained the network using the stochastic gradient decent (SGD) with a
momentum of 0.9, a batch size of 32, a weight decay of 0.0005, a learning rate of 0.01 in
Step 1 and 0.0001 in Step 2. The kernel adopted in Equation (2) was the Gaussian kernel.
λ in Equation (1) is set to be 0.5 and α(t) in Equation (1) is set as shown in Equation (6),
where α0 = 0.3. The code was written using PyTorch 1.5.0 with Python 3.7 and run on a
personal computer with an NVIDIA GeForce GTX 1080 GPU. For each method, we run it
for 100 epochs in training.

α(t) =


0 t < 20
t−20

40 α0 20 ≤ t < 60
α0 t ≥ 60

(6)

2.3. Experiments
2.3.1. Domain Bias Experiment

In order to illustrate the domain difference existing in the three datasets, three basic DL
models using ResNet50 with randomized initial parameters were trained. Specifically, we
trained the model with 90% labeled OCT images on Dataset A, which was named as Model
A, and then tested and compared the performance of Model A on the rest of Dataset A, full
Dataset B and full Dataset C, respectively. This domain bias experiment was repeated for
models trained on 90% Dataset B and 90% Dataset C, which were named as Model B and
Model C, respectively.

2.3.2. Unsupervised DSAN-PL Experiment

A neural network was trained using the proposed DSAN-PL algorithm. To demon-
strate the superior performance of the proposed domain adaptation method, we compared
it with some popular and state-of-the-art domain adaptation methods, including DAN [16],
DANN [17], DeepCoral [18] and DSAN [14]. Specifically, DAN, DeepCoral and DSAN are
statistic moment-matching-based methods, and DANN is an adversarial-based method.
For fair comparison, we have performed three domain adaptation tasks, i.e., A to B, A to
C and B to C. For A to B, the labeled domain is Dataset A, while the unlabeled domain is
Dataset B. The scenarios of A to C and B to C are similarly defined.

2.3.3. Semi-Supervised TLSDA Experiment

We further tested the scenario where there was a small percentage (10%) of data
with true labels existing in the private domain and how sub-domain adaptation could
help improve the classification performance. Following the previous experiment, four
different types of experiments were conducted on Dataset B and Dataset C as the private
domain where 10% data were labeled. The first method is the basic one without transfer
learning (No-TL), i.e., the model trained using 10% of the private OCT dataset first and
then tested on the remaining 90% data, with random network parameter initialization.
The second one is the transfer learning with ImageNet (TL-ImageNet). This model was
obtained by fine-tuning the basic ResNet-50 model pretrained on the ImageNet dataset
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using 10% of the private OCT dataset. The third one is similar to the TL-ImageNet, with the
difference that the model was fine-tuned using a whole public OCT dataset (here indicating
Dataset A) and it was named TL-OCT. The last one is the transfer learning with the sub-
domain adaptation model (TLSDA) proposed in this study, which was trained using the
100% source domain data from Dataset A. Our codes for the above three experiments are
available at: https://github.com/tzc123456/OCT-retinopathy-classification (accessed on
25 December 2023).

3. Results
3.1. Domain Bias Experiment Results

Raw results of domain bias experiment using various evaluation metrics and ROC
curves are shown in Table 1 and Figure 4, respectively. Figure 5 further shows a comparison
of the mean results for the same and different domains. The results clearly show that the
model trained on one domain could not be well generalized to another domain directly.
The average accuracy was 91.62 ± 3.20% for models trained and tested in the same domain,
while it was only 65.34 ± 11.00% for those trained in one domain and tested in another
domain. It clearly indicates the problem of domain bias, which is a well-known problem in
computer vision [19]. Based on these results, it could also be found that the generalization
result seemed to be the best for C→A as there was only an 8% decrease for this domain
change, while the decrease almost approached ~30% for other cross-domain cases. Similar
trends of results were found for other evaluation metrics, including Precision, Specificity,
Recall, AUC and MCC in all results of this study in comparison with Accuracy (ACC).
Therefore, typical results were described using Accuracy here and in all the following text.

Table 1. Results using various evaluation metrics for the domain bias experiment.

Models Test ACC (%) Precision (%) Recall (%) Specificity (%) AUC MCC

Model A
A 93.79 93.01 94.00 97.13 0.998 0.909
B 60.06 62.88 61.44 79.43 0.790 0.436
C 64.37 66.69 64.37 82.18 0.808 0.470

Model B
A 57.91 66.62 61.55 80.99 0.772 0.439
B 87.74 89.72 86.14 93.53 0.960 0.816
C 56.20 63.22 56.20 78.10 0.759 0.363

Model C
A 85.58 88.87 84.92 91.90 0.975 0.788
B 67.89 69.42 69.64 84.46 0.881 0.537
C 93.33 93.41 93.33 96.67 0.984 0.900

Bold indicates the best result among all tests. Model X means the DL model trained using Dataset X, and Test Y
means the trained model is tested on Dataset Y.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 16 
 

 

Bold indicates the best result among all tests. Model X means the DL model trained using Dataset 

X, and Test Y means the trained model is tested on Dataset Y. 

   
(a) (b) (c) 

Figure 4. ROC curves for testing the domain bias using a model trained using one specific dataset 

and tested on all the three datasets. (a) ROC curves for Model A; (b) ROC curves for Model B; (c) 

ROC curves for Model C. See text for the details of different models. 

 

Figure 5. Averaged domain bias evaluation results for ACC, Precision, Recall, Specificity, AUC and 

MCC. Results tested on the same and different domain with respect to training and testing dataset 

difference are shown in two bars. Error bars indicate the standard deviations of results. 

3.2. Unsupervised DSAN-PL Results 

Table 2 and Figure 6 show the results of the domain adaptation experiment using 

various evaluation metrics and ROC curves, respectively. It could be found that the basic 

model ResNet-50 [20] without domain adaptation had the poorest performance. ACCs 

were 60.06%, 64.37% and 56.20% for the scenarios of A to B, A to C and B to C, respectively, 

demonstrating the above-mentioned problem of domain differences. With domain adap-

tation methods, the classification performance in the unlabeled domain was significantly 

improved. Among various domain adaptation methods, the performance of DANN, 

which is based on adversarial domain adaptation, outperformed domain adaptation 

methods based on statistical feature transformation such as DeepCoral and DAN. This 

indicates that adversarial domain adaptation has a strong domain alignment ability. How-

ever, adversarial domain adaptation methods did not consider fine-grained information, 

so their performance was still inferior to sub-domain adaptation methods such as DSAN 

Figure 4. ROC curves for testing the domain bias using a model trained using one specific dataset and
tested on all the three datasets. (a) ROC curves for Model A; (b) ROC curves for Model B; (c) ROC
curves for Model C. See text for the details of different models.

https://github.com/tzc123456/OCT-retinopathy-classification


Mathematics 2024, 12, 347 8 of 16

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 16 
 

 

Bold indicates the best result among all tests. Model X means the DL model trained using Dataset 

X, and Test Y means the trained model is tested on Dataset Y. 

   
(a) (b) (c) 

Figure 4. ROC curves for testing the domain bias using a model trained using one specific dataset 

and tested on all the three datasets. (a) ROC curves for Model A; (b) ROC curves for Model B; (c) 

ROC curves for Model C. See text for the details of different models. 

 

Figure 5. Averaged domain bias evaluation results for ACC, Precision, Recall, Specificity, AUC and 

MCC. Results tested on the same and different domain with respect to training and testing dataset 

difference are shown in two bars. Error bars indicate the standard deviations of results. 

3.2. Unsupervised DSAN-PL Results 

Table 2 and Figure 6 show the results of the domain adaptation experiment using 

various evaluation metrics and ROC curves, respectively. It could be found that the basic 

model ResNet-50 [20] without domain adaptation had the poorest performance. ACCs 

were 60.06%, 64.37% and 56.20% for the scenarios of A to B, A to C and B to C, respectively, 

demonstrating the above-mentioned problem of domain differences. With domain adap-

tation methods, the classification performance in the unlabeled domain was significantly 

improved. Among various domain adaptation methods, the performance of DANN, 

which is based on adversarial domain adaptation, outperformed domain adaptation 

methods based on statistical feature transformation such as DeepCoral and DAN. This 

indicates that adversarial domain adaptation has a strong domain alignment ability. How-

ever, adversarial domain adaptation methods did not consider fine-grained information, 

so their performance was still inferior to sub-domain adaptation methods such as DSAN 

Figure 5. Averaged domain bias evaluation results for ACC, Precision, Recall, Specificity, AUC and
MCC. Results tested on the same and different domain with respect to training and testing dataset
difference are shown in two bars. Error bars indicate the standard deviations of results.

3.2. Unsupervised DSAN-PL Results

Table 2 and Figure 6 show the results of the domain adaptation experiment using
various evaluation metrics and ROC curves, respectively. It could be found that the basic
model ResNet-50 [20] without domain adaptation had the poorest performance. ACCs
were 60.06%, 64.37% and 56.20% for the scenarios of A to B, A to C and B to C, respectively,
demonstrating the above-mentioned problem of domain differences. With domain adap-
tation methods, the classification performance in the unlabeled domain was significantly
improved. Among various domain adaptation methods, the performance of DANN, which
is based on adversarial domain adaptation, outperformed domain adaptation methods
based on statistical feature transformation such as DeepCoral and DAN. This indicates
that adversarial domain adaptation has a strong domain alignment ability. However, ad-
versarial domain adaptation methods did not consider fine-grained information, so their
performance was still inferior to sub-domain adaptation methods such as DSAN [14] and
the proposed DSAN-PL. Compared with DSAN, the proposed DSAN-PL further consid-
ered the benefit of high-quality pseudo-labels in serving as effective training samples and
intrinsically increasing the number of training data, thus improving the model performance.
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Table 2. Comparison results of three scenarios using various domain adaptation methods.

Scenarios Methods ACC (%) Precision (%) Recall (%) Specificity (%) AUC MCC

A to B

ResNet-50 60.06 62.88 61.44 79.43 0.790 0.436
DAN 75.04 78.05 77.19 88.05 0.881 0.651

DANN 82.86 84.90 84.21 91.67 0.869 0.762
DeepCoral 70.29 73.46 73.10 85.88 0.895 0.590

DSAN 83.69 84.22 85.06 92.14 0.896 0.764
DSAN-PL 84.20 84.60 85.52 92.42 0.899 0.771

A to C

ResNet-50 64.37 66.69 64.37 82.18 0.808 0.470
DAN 82.83 84.49 82.83 91.42 0.936 0.750

DANN 87.30 89.02 87.30 93.65 0.958 0.818
DeepCoral 80.27 81.71 80.27 90.13 0.929 0.711

DSAN 95.17 95.18 95.17 97.58 0.970 0.928
DSAN-PL 95.35 95.33 95.33 97.67 0.973 0.930

B to C

ResNet-50 56.20 63.22 56.20 78.10 0.759 0.363
DAN 81.50 84.85 81.50 90.75 0.929 0.741

DANN 89.77 90.96 89.77 94.88 0.954 0.854
DeepCoral 80.83 84.14 80.83 90.42 0.959 0.729

DSAN 95.43 95.71 95.43 97.72 0.980 0.933
DSAN-PL 96.20 96.36 96.20 98.10 0.984 0.944

Bold indicates the best results.

To further demonstrate the effectiveness of the domain adaptation method, we also
plot its learnt features by using the t-distributed stochastic neighbor embedding (T-SNE)
technique [21] with some typical examples before and after the sub-domain adaptation
shown in Figure 7. The T-SNE is a nonlinear dimensionality reduction method to lower the
rank of high-dimensional data to two dimensions for visualization. It could be found that
the features in different domains were not aligned well without domain adaptation method.
In contrast, the features were aligned quite well after the application of our sub-domain
adaptation method.

3.3. Semi-Supervised TLSDA Results

Table 3 and Figure 8 show the evaluation results for the transfer learning experiment
using various evaluation metrics and ROC curves, respectively. It could be found that No-
TL, a model trained with random parameter initialization, had the poorest performance in
the private domain. ACCs were 43.19% and 39.15% for Dataset B and Dataset C, respectively.
This clearly indicated the probable over-fitting problem in lack of sufficient annotated data
for training. Using transfer learning techniques, the model classification performance could
be significantly improved. For TL-ImageNet and TL-OCT, ACC increased to 83.63% and
88.90% for Dataset B and to 82.37% and 88.56% for Dataset C, respectively. In other words,
transfer learning can be a highly effective technique for a private domain with limited
annotated data. Among the four different experiments, the proposed TLSDA method
significantly outperformed other methods. It achieved classification accuracies of 93.63%
and 96.59% for Dataset B and Dataset C, respectively. It clearly indicates fine-tuning the
network with sub-domain adaptation can achieve remarkably improved classification
results. For TLSDA, we also conducted a further experiment with different training sample
ratios increasing from 5% to 30% in fine-tuning and the experiment results are included in
Supplementary Figure S1 and Table S1. The results showed that classification performance
generally increased as the training sample ratio increased up to 30%.
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Figure 7. T-SNE plots for features of the source and target domain datasets. (a,c,e) are the visual-
izations of the learned representations for ResNet-50 without domain adaptation on tasks of A→B,
A→C and B→C, respectively. (b,d,f) are the visualizations for the proposed domain adaptation on
tasks A→B, A→C and B→C, respectively, where better sub-domain feature alignments are clearly
seen. S and T stand for the public and private domains, respectively.

Table 3. Results using various evaluation metrics for various transfer learning methods.

Dataset Test ACC (%) Precision (%) Recall (%) Specificity (%) AUC MCC

No-TL 43.19 52.00 38.74 69.83 0.550 0.156

B TL-ImageNet 83.63 83.75 82.05 91.60 0.952 0.752
TL-OCT 88.90 89.47 89.15 94.31 0.952 0.834
TLSDA 93.63 93.73 93.74 96.74 0.990 0.903

No-TL 39.15 30.73 39.15 69.57 0.550 0.103

C
TL-ImageNet 82.37 83.12 82.37 91.19 0.933 0.739

TL-OCT 88.56 89.08 88.56 94.28 0.972 0.831
TLSDA 96.59 96.61 96.59 98.30 0.995 0.949

Bold indicates the best results.
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To further demonstrate the effectiveness of the proposed TLSDA method, we visual-
ized the important regions in the OCT image that were vital in classification of various dis-
eases using the Gradient-weighted Class Activation Mapping (Grad-CAM) technique [22].
Grad-CAM is a technique utilizing the weighted average of features and their gradients in
the form of a heatmap to visualize the key region of an image in the decision of category
classification. Three typical results for classification of two cases of AMD and one case
of DME where the lesions are still subtle are shown in Figure 9. In these three examples
where the lesion features were not obvious, No-TL, TL-ImageNet and TL-OCT methods
did not find the lesion regions well, while the proposed TLSDA could localize these regions
accurately. The highlighted regions in TLSDA well include typical lesions of small drusen
and edema, which are important symptoms for diagnosis of AMD (Figure 9a,b) and DME
(Figure 9c), respectively.
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Figure 9. Grad-CAM results for three typical examples of (a) AMD Case 1; (b) AMD Case 2; (c) DME
Case. The first column shows the original images, while the other three columns show the results of
No-TL, TL-ImageNet, TL-OCT and TLSDA, respectively. Red blocks in the first column represent the
manually marked key image regions of drusen or cysts for disease prediction.
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4. Discussion

Currently, supervised deep learning has achieved remarkable success in OCT retinopa-
thy classification. However, to our knowledge, there are scarce studies focusing on disease
classification with a small amount of training data. In this study, we proposed a novel
method to solve this problem by firstly utilizing a public dataset through an improved
sub-domain adaptation method and then fine-tuning (TLSDA) method. Experimental
results showed that the proposed TLSDA method outperformed other popular transfer
learning algorithms. TLSDA could be potentially recommended as an effective solution in
the application scenario of semi-supervised learning with a small amount of training data
for the task of OCT retinopathy classification or other similar applications.

The first step of our proposed TLSDA is the utilization of domain adaption technique.
Domain bias generally exists among datasets, which can be caused by various factors
including but not limited to measurement bias and sampling bias [23]. In this study, the
measurement bias could be induced by the different versions of the image acquisition
device, although the same brand of OCT machine was used for the three datasets. The
sampling bias referred to the difference of subject populations, for which there might be
a significant difference among the three datasets, particularly the ethnicity. According to
the domain bias experiment results, the mean classification ACC was 91.62 ± 3.20% and
65.34 ± 11.00% when the model was applied to the test data of the same and different do-
mains, respectively. Obviously, the domain difference caused the classification performance
to be significantly degraded when the DL model was applied to a different domain dataset
in comparison with the one used for training. Therefore, our domain bias experiment
clearly showed that the model trained in the public domain could not be directly used in
the private domain due to domain bias. Further observation showed that the classification
model trained on Dataset C was generally more applicable to the other two datasets, which
might be due to a broader ethnic range for the tested subjects in Dataset C, which included
both Caucasian and Asians. Other factors, such as age and gender, might also play a role
in the domain bias but these were not specifically analyzed in this study, which warrants
further investigation.

In this study, a modified deep sub-domain adaptation network with pseudo-label
(DSAN-PL) was proposed to realize the domain adaptation for the classification task. Sub-
domain adaptation was adopted because this technique not only considers the overall
cross-domain alignment but also specifically takes account of the sub-domain feature
alignment, which is beneficial for improving the classification performance [14]. Our
DSAN-PL network further utilized pseudo-labels in training to update the weights of
models. Pseudo-labels with high confidence in class prediction should be used in loss
calculation; otherwise, low-quality ones may induce error and, therefore, bring adverse
rather than beneficial effect to model training. Pseudo-label became more and more reliable
along with training time. Therefore, a time-dependent coefficient α(t) which increases
from 0 and a plateau at a constant α0 with the training time t was used in the part of the
pseudo-label-related loss function to control this timing effect. Among various domain
adaptation methods, DSAN and our method performed much better than others. DSAN
and our method focused on sub-domain adaptation, which emphasized the objective of
learning a local sub-domain shift. Other domain adaptation methods including DAN [16]
and DeepCoral [18] mainly learned a global domain shift, i.e., they did not consider the
relationships among sub-domains of different classes, which might fail to extract fine-
grained features for each class. DANN [17] achieved the task of domain adaptation by
incorporating an adversarial structure which is one of the most important breakthroughs in
recent deep learning field [24]. With this advanced technique, DANN achieved significantly
better results than DAN and DeepCoral. However, its performance was still inferior to
DSAN and our method, showing the sub-domain feature alignment as an extraordinarily
important point to be considered in improving domain adaptation performance. Compared
with DSAN, our method further considered the benefit of high-quality pseudo-labels in
serving as effective training samples and intrinsically increasing the number of training
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data, thus improving the model performance [15]. It could be seen that the increase in
accuracy after using pseudo-labels compared to DSAN without pseudo-labels was 0.18%
and 0.77% for the cross-domain learning of A→C and B→C, respectively, which was
not so large. It should be noted that a fixed confidence threshold of 96% was used for
defining pseudo-labels associated with calculation of pseudo-label classification loss in this
study, which could be improved in further investigation using other strategies such as the
curriculum-labeling-based pseudo-labeling method [25].

Our transfer learning experiment showed that the proposed TLSDA method with
DSAN-PL as the first step for domain adaptation and a fine-tuning with 10% labeled data
as the second step for transfer learning was effective to achieve good performance for
OCT retinopathy classification. This method was much better than the deep learning
model which was pretrained on ImageNet or a public OCT Dataset. The feature heatmap
obtained using Grad-CAM also showed the TLSDA could well locate the critical lesion
parts such as drusen and cysts, which are also clinical symptoms used by doctors in
making a classification decision. Compared to our DSAN-PL, the second step of fine-tuning
significantly improved the classification performance, although the extent of improvement
was quite different on Dataset B (+9.43%) and Dataset C (+1.24%). The 10% labeled OCT
image seemed to be more important in providing new information in the transfer learning
of Dataset B than Dataset C in terms of improving classification accuracy, which might be
due to the different cross-domain distances in domain adaptation (A→B vs. A→C). Extra
experiments for the training sample ratio changing from 5% to 30% showed that, when 10%
labeled data were used, the model was not overfit yet, as the result constantly increased up
to 30% sample ratio. It is important to note that, while increasing the proportion of labeled
data can improve model accuracy, it does not necessarily mean that more labeled data is
always required. In practical applications, labeled data are often expensive and difficult to
obtain. The overall transfer learning results have demonstrated that our proposed TLSDA
method has the potential to be used in a real scenario where only a small number of labeled
images may exist in a private domain, e.g., at the beginning of commercializing a new
or new generation OCT or other medical diagnosis device, but there are open clinical
datasets regarded as the public domain from other brands of the same type of device or its
past generation. In this case, the public domain dataset can be fully utilized through our
proposed sub-domain adaptation method to accelerate the establishment of a performant
DL model in the private domain.

There are some limitations in this study. First, we only considered the most common
retinal diseases including AMD and DME here. Other retinal diseases were overlooked
due to too few training samples and, therefore, whether the current conclusions could
be well generalized to other retinal diseases is of some concern. Second, ResNet-50 was
used as the basic feature extractor in this study. The performance of our method would
likely be enhanced when more advanced deep learning architectures such as attention
module [26,27] or dense block [28] are used. Third, the training time was still relatively
long, which was not particularly considered in this study. Light neural networks such
as MobileNet [29] or ShuffleNet [30] or specific model simplification techniques such as
knowledge distillation [31] could be considered if small deep learning or some conventional
machine learning models [32] are deployed in a mobile terminal or an embedded system
with limited computing resources. In general, the problem we tried to solve in this study
belongs to a field of meta-learning [33,34] where the specific question is to optimize model
parameter initialization in the case of transfer learning with a small sample number. The
objective is to adjust the model parameters to be nearer the center of solution before transfer
learning with a small amount of data for the target dataset. So, any technique which
focuses on solving the problem of small sample such as the few-shot learning [35,36]
could be applied to our problem, which will be investigated in future studies. Lastly, the
generalizability of our domain adaptation method to other OCT datasets still needs to be
evaluated due to different characteristics such as imaging conditions, imaging devices and
population demographics existing in different datasets. This domain difference may be
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defined using a quantitative index [37], the relationship of which with domain adaptation
technique generalizability may be investigated in future studies. Clinical validation studies
are also in planning for testing the clinical value of the current method, where various
cautions such as recording of imaging conditions, sample size, subject demographics and
manual annotation should be excised in close collaboration with doctors to obtain and
comprehend the final clinical results.

5. Conclusions

This study proposes a novel semi-supervised method using domain adaptation
and fine-tuning method to establish an effective deep learning model for classifying
retinopathies in OCT images. The superior performance of the proposed method was
demonstrated by comparison with state-of-the-art domain adaption methods and also pop-
ular transfer learning methods. The proposed method has the potential to be generalized
to similar application scenarios in a private domain where training data are insufficient but
there exists a public domain with sufficiently labeled data.
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//www.mdpi.com/article/10.3390/math12020347/s1, Figure S1. ROC curves for TLSDA using
different labeled training sample ratios (5%, 10%, 20% and 30%) for tests in (a) Dataset B and (b)
Dataset C. Table S1. Evaluation results of TLSDA with different training sample ratios.

Author Contributions: Conceptualization, Z.T., Q.Z., C.O. and Y.H.; Methodology, Z.T., Q.Z., C.O.
and Y.H.; Software, Z.T.; Validation, Z.T., Q.Z. and Y.H.; Formal analysis, all authors; Investigation,
Z.T., Q.Z. and Y.H.; Resources, Q.Z., L.A., J.Q. and Y.H.; Data curation, Z.T., Q.Z., C.O. and Y.H.;
Writing—original draft preparation, Z.T., Q.Z. and Y.H.; Writing—review and editing, all authors;
Visualization, Z.T., Q.Z. and Y.H.; Supervision, Q.Z. and Y.H.; Project administration, Q.Z. and Y.H.;
Funding acquisition, Q.Z., G.L., J.X., C.O., L.A., J.Q. and Y.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was partially supported by the National Natural Science Foundation of China
(62001114, 61871130), Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Tech-
nology Joint Laboratory (No. 2020B1212030010) and Innovation and Entrepreneurship Teams Project
of Guangdong Pearl River Talents Program (No. 2019ZT08Y105). The funding bodies provided some
financial support in conducting the research reported in this study but they had no role in the design
of the study and collection, analysis, and interpretation of data or in writing the manuscript.

Data Availability Statement: All data used in this article are available in public databases. Dataset A
is available at [12], Dataset B is available at [13], and Dataset C is available at [1].

Conflicts of Interest: G.L., J.X. and Y.H. are consultants at Weiren Meditech Co., Ltd. J.Q. and L.A.
are currently working at Weiren Meditech Co., Ltd. The remaining authors have no disclosure of
conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F. Identifying

medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [CrossRef]
2. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [CrossRef]
3. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
4. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
5. Gherardini, M.; Mazomenos, E.; Menciassi, A.; Stoyanov, D. Catheter segmentation in X-ray fluoroscopy using synthetic data and

transfer learning with light U-nets. Comput. Methods Programs Biomed. 2020, 192, 105420. [CrossRef] [PubMed]
6. Li, F.; Chen, H.; Liu, Z.; Zhang, X.; Wu, Z. Fully automated detection of retinal disorders by image-based deep learning. Graefe’s

Arch. Clin. Exp. 2019, 257, 495–505. [CrossRef] [PubMed]
7. Lu, W.; Tong, Y.; Yu, Y.; Xing, Y.; Chen, C.; Shen, Y. Deep learning-based automated classification of multi-categorical abnormalities

from optical coherence tomography images. Transl. Vis. Sci. Technol. 2018, 7, 41. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/math12020347/s1
https://www.mdpi.com/article/10.3390/math12020347/s1
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1109/TPAMI.2015.2437384
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.cmpb.2020.105420
https://www.ncbi.nlm.nih.gov/pubmed/32171151
https://doi.org/10.1007/s00417-018-04224-8
https://www.ncbi.nlm.nih.gov/pubmed/30610422
https://doi.org/10.1167/tvst.7.6.41
https://www.ncbi.nlm.nih.gov/pubmed/30619661


Mathematics 2024, 12, 347 15 of 16

8. Alqudah, A.M. AOCT-NET: A convolutional network automated classification of multiclass retinal diseases using spectral-domain
optical coherence tomography images. Med. Biol. Eng. Comput. 2020, 58, 41–53. [CrossRef]

9. Sedai, S.; Antony, B.; Rai, R.; Jones, K.; Ishikawa, H.; Schuman, J.; Gadi, W.; Garnavi, R. Uncertainty guided semi-supervised
segmentation of retinal layers in OCT images. In Proceedings of the Medical Image Computing and Computer Assisted
Intervention, Shenzhen, China, 13–17 October 2019; pp. 282–290.

10. Wang, J.; Chen, Y.; Li, W.; Kong, W.; He, Y.; Jiang, C.; Shi, G. Domain adaptation model for retinopathy detection from cross-
domain OCT images. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, Montreal, QC, Canada,
6–8 July 2020; pp. 795–810.

11. Luo, Y.; Xu, Q.; Hou, Y.; Liu, L.; Wu, M. Cross-domain retinopathy classification with optical coherence tomography images via a
novel deep domain adaptation method. J. Biophotonics 2021, 14, e202100096. [CrossRef]

12. Srinivasan, P.P.; Kim, L.A.; Mettu, P.S.; Cousins, S.W.; Comer, G.M.; Izatt, J.A.; Farsiu, S. Fully automated detection of diabetic
macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed. Opt. Express 2014,
5, 3568–3577. [CrossRef]

13. Rasti, R.; Rabbani, H.; Mehridehnavi, A.; Hajizadeh, F. Macular OCT classification using a multi-scale convolutional neural
network ensemble. IEEE Trans. Med. Imaging 2017, 37, 1024–1034. [CrossRef]

14. Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.; Xiong, H.; He, Q. Deep subdomain adaptation network for image
classification. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1713–1722. [CrossRef] [PubMed]

15. Lee, D.-H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proceedings of
the Workshop on Challenges in Representation Learning, ICML, Atlanta, GA, USA, 16–21 June 2013; p. 896.

16. Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd
International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 97–105.

17. Ganin, Y.; Lempitsky, V. Unsupervised Domain Adaptation by Backpropagation. In Proceedings of the 32nd International
Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 1180–1189.

18. Sun, B.; Saenko, K. Deep coral: Correlation alignment for deep domain adaptation. In Proceedings of the Computer Vision—ECCV
2016 Workshops, Amsterdam, The Netherlands, 8–10 October 2016; pp. 443–450.

19. Torralba, A.; Efros, A.A. Unbiased look at dataset bias. In Proceedings of the Conference on Computer Vision and Pattern
Recognition 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1521–1528.

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

21. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
22. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

23. Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; Galstyan, A. A survey on bias and fairness in machine learning. ACM Comput.
Surv. 2021, 54, 115. [CrossRef]

24. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

25. Cascante-Bonilla, P.; Tan, F.; Qi, Y.; Ordonez, V. Curriculum labeling: Revisiting pseudo-labeling for semi-supervised learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; pp. 6912–6920.

26. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

27. Manzari, O.N.; Ahmadabadi, H.; Kashiani, H.; Shokouhi, S.B.; Ayatollahi, A. MedViT: A robust vision transformer for generalized
medical image classification. Comput. Biol. Med. 2023, 157, 106791. [CrossRef] [PubMed]

28. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

29. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

30. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

31. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
32. Sundas, A.; Badotra, S.; Bharany, S.; Almogren, A.; Tag-ElDin, E.M.; Rehman, A.U. HealthGuard: An Intelligent Healthcare

System Security Framework Based on Machine Learning. Sustainability 2022, 14, 11934. [CrossRef]
33. Vanschoren, J. Meta-learning: A survey. arXiv 2018, arXiv:1810.03548.
34. Vettoruzzo, A.; Bouguelia, M.-R.; Vanschoren, J.; Rögnvaldsson, T.; Santosh, K. Advances and Challenges in Meta-Learning: A

Technical Review. arXiv 2023, arXiv:2307.04722.
35. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.

2020, 53, 63. [CrossRef]

https://doi.org/10.1007/s11517-019-02066-y
https://doi.org/10.1002/jbio.202100096
https://doi.org/10.1364/BOE.5.003568
https://doi.org/10.1109/TMI.2017.2780115
https://doi.org/10.1109/TNNLS.2020.2988928
https://www.ncbi.nlm.nih.gov/pubmed/32365037
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3422622
https://doi.org/10.1016/j.compbiomed.2023.106791
https://www.ncbi.nlm.nih.gov/pubmed/36958234
https://doi.org/10.3390/su141911934
https://doi.org/10.1145/3386252


Mathematics 2024, 12, 347 16 of 16

36. Song, Y.; Wang, T.; Cai, P.; Mondal, S.K.; Sahoo, J.P. A comprehensive survey of few-shot learning: Evolution, applications,
challenges, and opportunities. ACM Comput. Surv. 2023, 55, 271. [CrossRef]

37. Stacke, K.; Eilertsen, G.; Unger, J.; Lundström, C. Measuring domain shift for deep learning in histopathology. IEEE J. Biomed.
Health Inform. 2020, 25, 325–336. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3582688
https://doi.org/10.1109/JBHI.2020.3032060
https://www.ncbi.nlm.nih.gov/pubmed/33085623

	Introduction 
	Materials and Methods 
	Datasets and Processing Method 
	Deep Sub-Domain Adaptation with Pseudo-Label 
	Model Fine-Tuning Based on Deep Sub-Domain Adaptation (TLSDA) 

	Evaluation Metrics and Model Implementation 
	Experiments 
	Domain Bias Experiment 
	Unsupervised DSAN-PL Experiment 
	Semi-Supervised TLSDA Experiment 


	Results 
	Domain Bias Experiment Results 
	Unsupervised DSAN-PL Results 
	Semi-Supervised TLSDA Results 

	Discussion 
	Conclusions 
	References

