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Abstract: Integrated circuits (ICs) are critical components in the semiconductor industry, and precise
wafer defect inspection is essential for maintaining product quality and yield. This study addresses
the challenge of insufficient sample patterns in wafer defect datasets by using the denoising diffusion
probabilistic model (DDPM) to produce generated defects that elevate the performance of wafer
defect inspection. The quality of the generated defects was evaluated using the Fréchet Inception
Distance (FID) score, which was then synthesized with real defect-free backgrounds to create an
augmented defect dataset. Experimental results demonstrated that the augmented defect dataset
significantly boosted performance, achieving 98.7% accuracy for YOLOv8-cls, 95.8% box mAP for
YOLOVS-det, and 95.7% mask mAP for YOLOvS8-seg. These results indicate that the generated
defects produced by the DDPM can effectively enrich wafer defect datasets and enhance wafer defect
inspection performance in real-world applications.

Keywords: wafer defect inspection; generative model; denoising diffusion probabilistic model; You
Only Look Once Version 8

MSC: 68U10

1. Introduction

In the semiconductor industry, wafers play an indispensable role in development
and assembly operations. During the manufacturing process, various factors, such as
environmental conditions and process parameters, can affect product quality, leading to
defects on the wafer surface. These defects can significantly impact the overall yield of the
final production. As the electronics industry’s demand for innovation escalates, wafers have
tended to increase in size. With this continuous growth, wafer defects have become smaller
and more complex, increasing the demand for accurate and real-time quality monitoring
and control. Accurately inspecting wafer surface defects can expedite the identification
of abnormalities in the production process [1]. Therefore, defect inspection during wafer
production is crucial for promoting high yield, cost efficiency, and optimal performance.
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In most semiconductor assembly operations, assessing wafer surface quality primarily
relies on experienced inspectors conducting manual visual inspections. However, this
task demands intense concentration, limiting the duration an inspector can remain pro-
ductive. With increasing pressure to meet these demands, the human visual inspection
process becomes prone to subjectivity, slowness, and inaccuracies, increasing the likeli-
hood of process-based defects on the wafer surface and potentially decreasing yield [2].
Additionally, rising labor shortages, time consumption, and low consistency may result in
inadequate defect labeling. As integrated circuit (IC) feature sizes continue to shrink and
semiconductor processes grow more complex, new wafer defect classes emerge, further
limiting yield. Consequently, the defect datasets often lack sufficient diversity, preventing
them from revealing the full range of defects [3]. Given that human visual inspection
increasingly fails to meet the demands of modern industrialized production [4], the scarcity
of diverse defect datasets and the high cost of labeling during wafer production present
significant challenges. It is difficult to obtain adequate samples of defect patterns with
high diversity through manual visual inspection, which seriously affects the accuracy of
identifying various defect types on the wafer surface.

Machine vision inspection has become a highly efficient and promising method for
inspecting surface defects in wafer dies and has gradually replaced traditional human
visual inspection. For such inspection, optical imaging charge-coupled devices (CCDs)
are primarily employed. While integrating machine vision into wafer defect inspection
increases efficiency and reduces time consumption, defect inspection algorithms cannot
be directly applied. They need to be highly customized, require accurate alignments,
and often rely heavily on expert knowledge to set up hand-crafted features [5], which
can lead to inaccuracies, subjectivity, and inconsistency in defect inspection. Even deep
learning models like convolutional neural networks (CNNs), which have shown remarkable
performance in image classification, object detection, and object segmentation [6], while
effective, require large and diverse datasets to achieve high performance. However, the
wafer die images are collected from multiple customers in which the background patterns
are totally different. The ongoing inspection machines even only capture the defective
patches, resulting in a more diverse background. Furthermore, the defective images should
encompass a wide range of patterns and be thoroughly annotated by professional inspectors
with extensive training and experience in quality control.

To address the aforementioned issues, the denoising diffusion probabilistic models
(DDPMs) [7] combine with proposed image preprocessing and image synthesis processes
to synthesize realistic and high-quality wafer defects, even with diverse background pat-
terns. The DDPM is able to model complex defect distributions and produce high-quality
generated defective region images, even in the presence of noise or when the dataset is
small. Additionally, for real images, the developed mechanism automatically annotates
defect bounding boxes or defect contours through database similarity comparisons and
image subtraction. For generated images, defects are automatically annotated based on
the characteristics of their white background. The only task left for the users is to label the
defect class, greatly reducing the burden of annotation. By generating diverse and realistic
defect images, the DDPM augments the training dataset for YOLOVS, improving its ability
to accurately inspect wafer defects.

The remainder of this paper is organized as follows: Section 2 focuses on related
research on the surface defect inspection with the aid of generated images. Section 3 de-
scribes the methodology and implementation process. Section 4 presents the experimental
results of generated images produced by generative models. Finally, Section 5 concludes
this research.

2. Surface Defect Inspection Using Generated Images

Goodfellow proposed the generative adversarial network (GAN) [8]. The GAN is an
unsupervised learning model where the generator, a neural network, takes random noise
as input and produces synthetic images. Meanwhile, the discriminator, another neural
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network, determines whether the input is real or generated. GANs can generate numerous
patterns in a short time and have shown better performance than other algorithms, par-
ticularly in generating diverse images. Recently, the DDPM, a newly emerging paradigm,
has gained widespread attention in deep generative models, alongside the GANs. Both
the GAN and DDPM use noise for image generation. The key difference between these
models is that the GAN relies on adversarial training with two competing neural networks
based on random noise, while the DDPM randomly samples two-dimensional noise maps
using a probabilistic model and diffusion process to generate images. Yang et al. reviewed
the DDPM’s record-breaking performance in various generation tasks, including image
synthesis and video generation [9]. Compared with state-of-the-art GAN-based methods,
the DDPM achieves better sample quality in image synthesis by training on a stationary
objective, although it is slower than GANs during sampling due to multiple denoising
steps [10]. For these reasons, this research aims to adapt GANs and the DDPM to generate
synthetic wafer defect datasets accurately. By using these methods to construct synthetic
wafer defective images, this research aims to generate images of wafer datasets for defect
inspection. The following sections detail the implementation and results of using these
models for producing generated images and improving defect inspection performance.

2.1. Surface Defect Inspection Using GAN-Generated Images

CNN-based methods have achieved significant success in surface defect inspection.
However, when the dataset is limited in size or suffers from noise, these methods face
considerable challenges. The primary obstacle is the limited ability to extract effective
features. To address this issue, generative models like GANs have been employed to enrich
the training data with synthesized samples, which in turn enhance performance.

Several studies have demonstrated the success of GAN variants in generating images
for defect inspection. For instance, Chen et al. successfully applied GANSs to generate
synthetic wafer defect images, which were then used to enhance the training dataset for
YOLOv3-based detection, resulting in a performance boost of 7.33% in average precision
(AP) [5]. Similarly, Guo et al. proposed ISU-GAN, which integrates a skip connection and
attention mechanism to improve feature extraction [11]. This model demonstrated high
accuracy (98.43%) and a strong F1 score (97.92%), proving effective in defect detection
and segmentation tasks. Moreover, advanced GAN architectures such as DGGAN [12]
and CycleGAN [13] have shown considerable improvements in specific industrial defect
detection scenarios. DGGAN, which incorporates data augmentation and self-attention
mechanisms, demonstrated a notable improvement in YOLOX detection accuracy by 6.1%
to 20.4%. CycleGAN, applied to generate pineapple surface defects, enhanced the realism
of generated images while maintaining the original image characteristics, resulting in an
AP of 84.86%. These examples illustrate the diverse applications and effectiveness of GANs
in generating high-quality defect images for training, thereby overcoming data scarcity and
enhancing defect inspection systems. In the field of steel defect detection, models such as
MAS-GAN [14] and NAM-DCGAN [15] have also demonstrated significant advances. MAS-
GAN improved defect detection accuracy by focusing on data augmentation combined
with a self-attention mechanism, while NAM-DCGAN enhanced feature extraction in
solar cell defect detection through the use of normalization-based attention modules and
MobileNet-V3 for final detection tasks. These models highlight the effectiveness of GANs
in improving defect classification accuracy and generating synthetic datasets with a high
degree of realism and diversity.

Despite long-standing exploration in the field of machine vision, GAN variants con-
tinue to enhance defect inspection by enabling feature control in cases with limited defect
categories and regions.



Mathematics 2024, 12, 3164

4of 15

2.2. Surface Defect Inspection Using DDPM-Generated Images

The DDPMs represent a novel and powerful approach to synthetic image generation.
Unlike GANs, which rely on adversarial training between a generator and discriminator,
DDPMs employ a diffusion process that gradually adds noise to images and then reverses
the process to generate new images. This technique allows DDPMs to produce highly
diverse and accurate synthetic images, making them a valuable tool for defect inspection,
particularly when high fidelity and complexity are required.

Several studies have demonstrated the advantages of DDPMs over GANs in defect
detection tasks. Tang et al. introduced the SN-DDPM, which adapts DDPM for fabric
defect inspection [16]. By focusing on key features of the defect-free region, SN-DDPM
was able to reconstruct defective images with high fidelity, significantly outperforming
other unsupervised reconstruction methods in F1 and intersection of union (IoU) metrics.
Similarly, Liu et al. applied the DDPM to the MURA dataset and showed impressive
results in generating defective images with improved reasoning for both backgrounds and
defects, evaluated through Inception score (IS), Fréchet Inception Distance (FID) score,
and YOLOV5 metrics [17]. In the industrial sector, Semchyshyn applied DDPMs for high-
resolution defect defective generation, focusing on poorly reconstructed areas [18]. By
combining the DDPM with U-Net for segmentation, this approach achieved a superior
area under curve (AUC) compared with GAN-based models, demonstrating its effective-
ness in accurately reconstructing defects and inpainting defect-free regions. Huang et al.
also demonstrated the power of DDPMs in detecting micro-defects in composite plates,
outperforming other generative methods in terms of FID score, accuracy, and recall [19].
DeRidder et al. combined the DDPM with Mask R-CNN and ResNet for wafer defect
detection and segmentation, showcasing the method’s versatility in handling both object
detection and instance segmentation tasks within a single model [20]. This integrated
approach achieved superior performance in AP and mean average precision (mAP) com-
pared with other models, making it a robust solution for defect detection in complex
industrial environments.

Overall, DDPMs have proven to be a highly effective alternative to GANSs for generat-
ing high-quality generated defect images, especially when the emphasis is on maintaining
fine details and achieving diversity in image generation. Their ability to model complex
distributions and recover fine features from noisy data makes them a valuable tool for
improving surface defect inspection in various industries.

3. Research Methods

In this study, we aim to enhance the capability of YOLOvVS8 for wafer defect inspection,
building upon the defect inspection process based on the augmented dataset generated by
generative models. The overall flowchart is shown in Figure 1. First of all, wafer defective
patches were combined with corresponding defect masks for two goals: one is to extract
the defect region from the background, and the other is to pair up defective patches and
masks for a further defect inspection stage. After image preprocessing, the real defective
region images were used as input for the DDPM to produce the generated defective
regions. Subsequently, the golden templates were served as defect-free backgrounds
that were synthesized from the generated defective regions. Both the real and generated
defective patches constructed a defect dataset. This dataset was auto-annotated with
defect masks and can be used for the tasks of defect classification, defect detection, and
defect segmentation using YOLOVS. Finally, the results were evaluated to demonstrate the
performance of this method.
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Figure 1. Overall flowchart of the proposed method.

3.1. Image Preprocessing

The wafer dataset used in this experiment was provided by a semiconductor manufac-
turer in Taiwan. Wafer defect images were captured using a machine vision system under
clean room conditions. During production, defects on the wafer surface may occur due to
workers or machinery, such as holes, particles, corrosion, metal poor, passivation, discol-
oration, and other imperfections. This dataset contains six types of defects categorized by
texture, shape, strength, and size, with each image containing only one type of defect.

The underlying machine vision machine performs an S-shaped motion across the
surface of each wafer and captures images using a CCD. Each field of view of the CCD
covers a partial patch of the wafer die [21]. For each patch, we search and match the
database for the corresponding selected golden template, then perform image subtraction
with the patch to obtain a residual image. Moreover, connected component analysis,
binarization, and feature analysis are performed, and a defect mask is produced based
on the remaining blobs. The underlying machine vision machine outputs a quadruplet
for each sample, including the defective patch, the selected golden template, the residual
image, and the defect mask, as shown in Figure 1. In this study, the colored defective patch
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represents the input image, the binarized mask image corresponds to the label file for the
input image, and the colored golden template represents the defect-free background image.
The residual image, however, was not used in this study. Due to confidentiality agreements,
the images have been modified through techniques such as discoloration and flipping to
protect their original features. As the causes and characteristics of defects and background
vary, human experts categorize the defects manually.

Given that the defective region occupies only a small portion of the overall wafer
patch, it can be challenging to accurately recognize and generate defect features in high
resolution. To improve generative model performance, we focused solely on generating
the defective region by separating it from the background [5,13]. To do so, we utilized
real defect masks to isolate and crop the central defective region, as shown in Figure 1,
effectively reducing the collapse phenomenon in generative models during training.

The generative models produce generated defective regions at the same resolution
as the real ones, but these regions remain similarly small after cropping. We hypothesize
that generating the defect in its original form after preprocessing steps, such as resizing,
generation, and transformation, is challenging, especially due to the small size of the
defects. To address this issue, we cropped the real defective region to 96 x 96 x 3 pixels for
model input, ensuring that the generated defect dataset match this size, thereby mitigating
any loss in resolution.

3.2. Image Generation

The DDPM [7] is a generative model that restores input images based on a sequential
process of adding noise to the images and then performs the inverse transformation of
the additional diffusion process. While the GAN performs image generation, based on a
generator and a discriminator, the DDPM restores the image by noising (diffusion process)
and denoising (inverse process), as shown in Figure 1.

During the training process of the DDPM, the real defective region xy undergoes a
progressive noising process, where noise with variance f3; is added incrementally from
time t = 0 until t = T. At each step, the previous sample x; 1 is scaled by (1 — ;)%°. This
noising process is defined by Equation (1), which represents the forward nosing process as
a product of conditional distributions q(x; | x;_1). Each subsequent sample x; depends on
the previous sample x;_; with noise added at each step:

g(xirlxo) = [,y a(xelxi1) (1)

Equation (2) further specifies that q(x: | x;_1) follows a Gaussian distribution, with
a mean of (1 — ﬁt)0'5 «Xt_1 and variance (3; scaled by the identity matrix I. As the time
steps increase, the image x; becomes progressively noisier until, at t = T, xt follows a
Gaussian distribution:

g(xt|xe—q) :== N<Xt; v1-— ,tht—l/,BtI) )

The reverse of the noising process is the denoising stage p, which starts from a Gaussian
sample xT and attempts to recover xp. This process is modeled by the function pg(x;_1 | x¢),
as shown in Equation (3), where 0 represents the parameters of a neural network estimating
p. The purpose of the DDPM is to learn this inverse process, so the parameters of the
Gaussian Markov chain are learned through parameterization:

po(xor) = plxr)[ 1, po(xi-1]xt) 3)

The conditional distribution pg(x;_1 | x¢) in the reverse denoising process is defined in
Equation (4). It assumes a Gaussian distribution with a mean py(x;, t), which is a function
of the current noisy sample x; and the time step ¢, and a variance a?; scaled by I. The mean
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Uy is predicted by the neural network, allowing the model to gradually denoise the image
as it moves backward through the time steps, eventually recovering the original image x:

po(xi1xe) == N (xi1; po(xe 1), o 1) @

These two processes aim to minimize the discrepancy between the real image and
the output, producing an image that closely resembles the input. The deep model used
for the DDPM is a U-Net. The U-Net is trained to predict the noise added to the input
image during the forward diffusion process. The input to the U-Net is the noisy image x;,
obtained by gradually adding Gaussian noise to the original image x( over time steps .
The ground truth is the actual noise € applied to the image at that specific time step. The
U-Net learns to predict this noise by minimizing the mean squared error (MSE) between
the predicted noise and the real noise, helping the model denoise images step by step.

3.3. Image Synthesis

The process of image synthesis is shown in Figure 1. Inspired by the inpainting method,
we augment dataset diversity by reinserting the generated defective regions into defect-free
backgrounds, which are randomly sampled from the set of selected golden templates. By
placing generated defective regions at their original crop locations and blending them with
defect-free backgrounds, this technique not only increases the variety of generated samples
but also retains some of the original image information, leading to more realistic results.
This method enables the model to generate defective samples that better simulate real-
world conditions, where defects may occur against various backgrounds. Moreover, since
the surrounding pixels of the generated defective regions are white, their corresponding
generated masks can be easily produced through automatic binarization.

The FID score is a widely used metric for evaluating generative quality of generated
defective images [22]. The FID score measures the distance between the distributions
of generated and real images by extracting features from the Inception neural network,
reflecting discrepancies in their sample distributions:

FID(r,8) = [|ur — pg|* + Tr(Cr+ Y g-2(Xr Y9) %) (5)

where N(ji;, ) and N (jig, Y- g) are the Gaussian respectively fitted to the real image and

the generated image. Tr(yr+ Y g —2(_rY, g)l/ %) denotes the trace of a matrix, capturing
the difference between the covariances of the feature vectors of the real and generated
images. The reliability of this metric is based on how informative the features provided by
the Inception network are regarding image quality and the appropriateness of assuming a
Gaussian distribution. A lower FID score indicates a smaller difference between the real
and generated image distributions, signifying the higher quality of the generative model.
Typically, FID scores below 10 are considered unbiased and indicative of strong generative
capabilities [23].

3.4. Defect Inspection

As shown in Figure 1, the structure of the YOLOvS8 generally incorporates several
key components, each with a specific function in the process of making predictions from
input images.

The YOLOVS8 backbone uses a series of convolutional layers and cross-stage partial
bottleneck (C2f) blocks to progressively extract features from input images. Each C2f block
splits the input feature map, processes one part through a bottleneck of convolutions and
activations, and then concatenates it with the bypassed features. This structure allows the
model to retain detailed information while improving computational efficiency. Addition-
ally, the spatial pyramid pooling-fast (SPPF) layer is at the end of the backbone, helping to
capture multi-scale features by pooling information at different levels, which enhances the
model’s ability to detect objects of various sizes. As the backbone processes the image, it
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reduces its resolution and increases the number of feature channels, capturing both fine
and abstract features for accurate predictions.

Next, the neck of YOLOVS takes the extracted features from the backbone and further
processes them. The neck is designed to refine these features and may include specialized
mechanisms such as feature pyramid networks (FPN) or path aggregation networks (PAN).
These structures are particularly adept at merging features from multiple scales, ensuring
that the model is able to utilize both fine and coarse information for accurate predictions.

At the end of this process lies the head of YOLOvS, which is tasked with generating the
final predictions with three primary prediction targets: YOLOv8-cls for image classification,
YOLOv8-det for object detection, and YOLOv8-seg for instance segmentation. YOLOv8-cls,
the simplest of the three, focuses on classifying the defect embedding in an entire image
into one of several predefined classes. The output of this classifier is a single class label with
accuracy serving as the evaluation metric. YOLOvS8-det is used for defect detection, a more
complex task that involves identifying both the locations and classes of defects within an
image. The detector outputs bounding boxes that enclose the identified defects, along with
class labels and corresponding confidence scores for each box. Performance for this task
is commonly measured using the mean average precision for bounding boxes (box mAP).
YOLOVS-seg goes a step beyond defect detection by performing instance segmentation,
which not only identifies defects in an image but also segments them from the rest of the
image at the pixel level. The performance of YOLOvS8-seg is similarly evaluated using mAP,
but this time for segmentation masks, called mask mAP.

4. Experiment Results
4.1. Expanded Dataset Description

The dataset comprises 2060 samples, all standardized to a resolution of 720 x 720 x 3
pixels. Aiming to expand the wafer defect dataset, this research combines the generated
defect dataset produced by generative models with the real defect dataset to increase
the sample size of defect patterns for defect inspection models. The generated images,
produced by generated models, have defective regions with an image size of 96 x 96 x 3
pixels. After obtaining the generated defective regions from generative models, we need to
perform a synthesis image stage. The generated defective regions are combined with the
defect-free background. We then prepare the corresponding generated masks, which can
be used for the tasks of defect classification, defect detection, and defect segmentation.

For the defect classification task in YOLOv8-cls, we use only defective images as input
to the model, along with their corresponding class labels. For the defect detection task in
YOLOv8-det, we transform the real or generated masks into labels in YOLO format, which
include the coordinates of the center, as well as the width and height of the bounding box
for each defective region. The bounding box is derived by enclosing the mask with the
minimum and maximum coordinates that define its outer boundaries. The YOLOv8-det
uses paired images and labels to detect defects within bounding boxes. For the defect
segmentation task in YOLOv8-seg, we transform the real and generated masks into labels
in YOLO format. These labels contain multiple point coordinates that accurately represent
the shape of the defective region. The polygon points for these labels are extracted from
the mask by tracing its contours. The contour detection algorithm identifies the boundary
points that form a polygon around the mask, allowing for precise labeling of the defective
region. The YOLOvS8-seg uses paired images and labels to segment defects within masks.

For quality evaluation, the dataset is grouped by the ratio between real and generated
images to assess the enhancement capability of generated images for defect inspection
performance. We use four levels of data expansion for all the quality experiments in this
research. The first level of data augmentation uses a ratio of 1-0, with 150 real defective
images for most defect types, except for defect type “Passivation”, which has only 114 im-
ages due to the scarcity of defective patterns. The total number of images in the dataset
with a ratio of 1-0 is 864 images. The second level of data augmentation uses a ratio of 1-1,
where we maintain the real dataset quantity from the 1-0 ratio and add an equal number of
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generated images. For the third level of data augmentation, with a ratio of 1-2, we double
the quantity of generated images, and, for the fourth level, with a ratio of 1-3, we triple the
quantity of generated images. The ratio of training, validation, and testing in the dataset
will be distributed as 80-10-10 across all levels of data augmentation. We use two expanded
datasets generated from GANs and the DDPM in parallel to compare the performance
enhancement between the two models.

4.2. Quantitative and Qualitative Comparisons of Image Generation Quality among GANs and
the DDPM

To evaluate the quality of defect dataset generated by different generative models,
we use the FID score as the primary metric. Table 1 compares the FID scores among real,
vanilla GAN [8], DCGAN [24], ACGAN [25], BGAN [26], and the DDPM [7] for different
kinds of defects. The second column represents the baseline FID scores calculated from
the real defective images themselves, serving as a reference for comparison against the
FID scores of the generated images. The FID score for all kinds of real defects is close
to zero. Lower FID scores for the DDPM indicate that its generated images are closer in
quality to the real defects, whereas the GAN'’s higher FID scores reflect a greater deviation
from the real patterns. In our comparison, the DDPM consistently outperformed GANs
across all defect types, achieving significantly lower FID scores, with all values below
10, indicating superior image generation quality. This strong performance highlights the
DDPM'’s superior capability in generating defect patterns with higher fidelity. Moreover,
the DDPM’s consistent results across various defect types underscore its robustness and
effectiveness in generating realistic defect images.

Table 1. The FID score evaluation for real and generated images.

Image Sources

. Real Vanilla GAN [8] DCGAN [24] ACGAN [25] BGAN [26] DDPM [7]
Kinds of Defects
Passivation hole 0.38 23.10 14.25 22.16 22.85 8.21
Removable particle 0.57 31.66 18.61 29.33 31.89 8.91
Metal bump corrosion 0.35 23.00 11.68 21.03 18.05 7.61
Metal poor 0.44 24.86 15.29 23.71 22.99 9.05
Passivation 0.41 25.36 12.42 23.38 24.74 8.48
PAD discoloration 0.29 14.50 9.53 14.16 15.33 6.97

To evaluate the defect data augmentation of generative models, we also assess the
image generation ability visually. The description of the real defective region and the
generated defective regions produced by vanilla GAN, DCGAN, ACGAN, BGAN, and the
DDPM are shown in Figure 2a—f, respectively. We observed that both DCGAN and the
DDPM can generate defective regions with the signature features of each type of defect. We
believe that the generation performance of generative models is due to the preprocessing
step, which removes the background and concentrates on generating the defective region
only. This method effectively guides the generative models to focus on defect characteristics
such as shape, size, texture, location, and intensity.

However, upon closer examination, it becomes clear that the vanilla GAN and BGAN
still introduce noticeable noise in the generated images. While they capture some character-
istics of the defects, the results often suffer from unwanted artifacts and a lack of sharpness.
ACGAN, on the other hand, performs better but occasionally generates blurry images
with noise in specific defect types, particularly in complex patterns. Compared with the
vanilla GAN, ACGAN, and BGAN, DCGAN performs significantly better by producing
clearer images with fewer artifacts, especially when generating complex defect structures.
However, DCGAN mostly preserves the shape and size of the real defects, and many results
appear blurry and do not maintain the same degree of sharpness as the originals when
compared with the DDPM. The DDPM impressively generates the most natural-looking
features while properly maintaining the identity of the real defects.
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Figure 2. Defective regions for each class: (a) real images; (b) generated by vanilla GAN; (c) generated
by DCGAN; (d) generated by ACGAN; (e) generated by BGAN; (f) generated by DDPM.

We further counted the number of defective regions generated in each image. We found
that the DDPM outperforms DCGAN and other GANs in generation ability by generating
more than two defective regions in one generated image. Although the input images for
both DCGAN and the DDPM are the same, with each input image containing only one
defective region, the DDPM demonstrated an impressive ability in image generation. The
DDPM not only learns the features of defects from the input dataset but also estimates the
number of defects that can be generated for each type of defect. In contrast, DCGAN and
other GANs can generate only one defective region per image, similar to the real dataset.

4.3. Quantitative and Qualitative Comparisons of Defect Inspection Performance between DCGAN
and DDPM Associated with YOLOv8

To evaluate the inspection performance of the expanded datasets from DCGAN and
the DDPM, we chose to test with YOLOVS in three version classification, object detection,
and object segmentation and in all four expansion levels of datasets.

The overall result of YOLOVS on the expanded dataset is shown in Table 2. In summary,
the DDPM demonstrates superior overall performance in classification and competitive
performance in detection and segmentation tasks, making it a robust choice for defect
image analysis. DCGAN, while slightly less accurate in classification, excels in detection
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tasks, particularly with more augmented data. Both models significantly enhance defect
detection and segmentation over the original dataset.

Table 2. The inspection performance of YOLOvVS8 on dataset with different data augmentation ratio.

Data Augmentation Ratio 1-0 1-1 1-2 1-3
Method Original DCGAN DDPM DCGAN DDPM DCGAN DDPM
YOLOv8-cls (Accuracy) 0.960 0.975 0.958 0.979 0.985 0.985 0.987
YOLOv8-det (Box mAP) 0.923 0.902 0.955 0.561 0.958 0.615 0.925
YOLOVS8-seg (Mask mAP) 0911 0.937 0.945 0.939 0.957 0.597 0.938

The bolded values indicate the best performance for each method under varying data augmentation ratios.

For the defect classification task, the classification results of YOLOvS8-cls on the aug-
mented dataset generated by DCGAN and the DDPM are shown in Figures 3a and 3b,
respectively. As shown in Table 2, we observed that the classification performance was
clearly enhanced in both DCGAN and the DDPM when the level of generated images
was increased. This means generative models can improve inspection accuracy in the
classification task. Specially, the DDPM achieved a higher accuracy than DCGAN across
all ratios with the highest accuracy of 98.7% for ratio 1-3 (level 4), indicating its superior
performance in this task.

(b)

Figure 3. Defect classification results: (a) from DCGAN; (b) from DDPM.
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For the defect detection task, the detection results of YOLOvS-det on the augmented
dataset generated by DCGAN and the DDPM are shown in Figures 4a and 4b, respectively.
The box mAP result for the dataset augmented by DCGAN and the DDPM are shown in
Table 2. The DDPM demonstrates its superior performance with the highest box mAP
of 95.8%. In contrast, the DCGAN model exhibits a collapse phenomenon in the object
detection task, with a box mAP of 56.1% at a ratio of 1-2 and 61.5% at a ratio of 1-3. Although
the DDPM experiences a slight decrease in performance, its values of box mAP consistently
remain higher than those of the original dataset.

(b)

Figure 4. Defect detection results: (a) from DCGAN; (b) from DDPM.

For the defect segmentation task, the result of YOLOvS8-seg on the augmented dataset
generated by DCGAN and the DDPM are shown in Figures 5a and 5b, respectively. From
the mask mAP prediction results of augmented dataset generated by DCGAN and the
DDPM in Table 2, we observed that generative models significantly enhanced segmentation
performance compared with the original dataset. The DDPM consistently outperformed
DCGAN across all levels, achieving the highest mask mAP of 95.7% at a ratio of 1-2. This
indicates the DDPM'’s robustness and superior predictive performance in object segmenta-
tion tasks. Conversely, DCGAN experienced a collapse at a ratio of 1-3, with its mask mAP
dropping to 59.7%.



Mathematics 2024, 12, 3164

13 of 15

(b)
Figure 5. Defect segmentation results: (a) from DCGAN; (b) from DDPM.

5. Conclusions

Recognizing the unique challenges in the IC industry due to the scarcity of wafer
defect pattern samples, this research involves using a DDPM to generate defective images
of wafer datasets for defect inspection experiments. By utilizing an augmented dataset
of real and generated images, the inspection performance improved in the tasks of defect
classification, detection, and segmentation, tested with YOLOVS8. The augmented dataset
outperformed previous benchmarks when tested with YOLOVS, achieving an accuracy
of 98.7% for YOLOvVS8-cls, a box-mAP of 95.8% for YOLOvS8-det, and a mask-mAP of
95.7% for YOLOv8-seg. The results demonstrate that images generated by the DDPM can
effectively enrich wafer defect datasets and enhance wafer defect inspection performance
in the real world. The results also demonstrate that the GAN may experience collapse,
where the generator produces limited variations of samples, ignoring the full diversity of
the training data.

In this study, we used generative models for wafer defect inspection without hyper-
parameter tuning, relying on default settings. This property shows the DDPM’s ability to
generate realistic defect samples without major adjustments, making it practical for indus-
trial use. The model’s out-of-the-box performance is especially useful for quick deployment
or when resources are limited.

Author Contributions: Conceptualization, P.-H.W. and S.-H.C.; methodology, P.-HW.,, Y.-T.C,,
Y.-W.L., C-HK, Y.-C.C,,S.-Z.L. and A.PM,; software, Y.-T.C., Y.-W.L., C-HK,, Y.-C.C. and A.PM.;
validation, P.-H.W. and S.-H.C,; formal analysis, T.P.H., S.-Z.L. and S.-H.C.; data curation, P-H.W.;
writing—original draft preparation, T.P.H. and S.-H.C.; writing—review and editing, S.-Z.L., S.-H.C.
and A.P.M.; supervision, P.-H.W.; project administration, S.-H.C.; funding acquisition, S.-H.C. All
authors have read and agreed to the published version of the manuscript.



Mathematics 2024, 12, 3164 14 of 15

Funding: This research was funded by the National Science and Technology Council (NSTC), grant
number 113-2221-E-131-031-, and the APC was funded by Ming Chi University of Technology.

Data Availability Statement: The data used in this study contains commercial privacy and must not
be disclosed.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Kim, T.; Behdinan, K. Advances in machine learning and deep learning applications towards wafer map defect recognition and
classification: A review. J. Intell. Manuf. 2023, 34, 3215-3247. [CrossRef]

2. Chien, J.C; Wu, M.T;; Lee, ].D. Inspection and classification of semiconductor wafer surface defects using CNN deep learning
networks. Appl. Sci. 2020, 10, 5340. [CrossRef]

3. Niu, S;; Li, B,; Wang, X; Lin, H. Defect image sample generation with GAN for improving defect recognition. IEEE Trans. Autom.
Sci. Eng. 2020, 17, 1611-1622. [CrossRef]

4.  Ma,],; Zhang, T,; Yang, C.; Cao, Y.; Xie, L.; Tian, H.; Li, X. Review of wafer surface defect detection methods. Electronics 2023,
12,1787. [CrossRef]

5. Chen, S.H,; Kang, C.H.; Perng, D.B. Detecting and measuring defects in wafer die using gan and yolov3. Appl. Sci. 2020, 10, 8725.
[CrossRef]

6. Megahed, E; Camelio, J. Real-time fault detection in manufacturing environments using face recognition techniques. J. Intell.
Manuf. 2012, 23, 393-408. [CrossRef]

7. Ho, J.; Jain, A.; Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 2020, 33, 6840—-6851.

8. Goodfellow, I; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2014, 63, 139-144. [CrossRef]

9. Yang, L.; Zhang, Z.; Song, Y.; Hong, S.; Xu, R.; Zhao, Y.; Zhang, W.; Cui, B.; Yang, M.H. Diffusion models: A comprehensive
survey of methods and applications. ACM Comput. Surv. 2023, 56, 1-39. [CrossRef]

10. Dhariwal, P; Nichol, A. Diffusion models beat GANs on image synthesis. Adv. Neural Inf. Process. Syst. 2021, 11, 8780-8794.

11. Gao, H.; Zhang, Y,; Lv, W,; Yin, J.; Qasim, T.; Wang, D. A deep convolutional generative adversarial networks-based method for
defect detection in small sample industrial parts images. Appl. Sci. 2022, 12, 6569. [CrossRef]

12. He, X,; Luo, Z,; Li, Q.; Chen, H,; Li, E DG-GAN: A high quality defect image generation method for defect detection. Sensors 2023,
23,5922. [CrossRef] [PubMed]

13.  Chen, S.H.; Lai, YW.; Kuo, C.L,; Lo, C.Y,; Lin, Y.S,; Lin, Y.R.; Kang, C.H.; Tsai, C.C. A surface defect detection system for golden
diamond pineapple based on CycleGAN and YOLOVA4. |. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 8041-8053. [CrossRef]

14. Zhang, H.; Pan, D.; Liu, J.; Jiang, Z. A novel MAS-GAN-based data synthesis method for object surface defect detection.
Neurocomputing 2022, 499, 106-114. [CrossRef]

15. Hao, D.; Yaermaimaiti, Y. Improved DCGAN for solar cell defect enhancement. Distrib. Gener. Altern. Energy J. 2023, 38, 1383-1401.
[CrossRef]

16. Tang,S.;Jin, Z.; Zhang, Y,; Lu, J.; Li, H.; Yang, . A timestep-adaptive-diffusion-model-oriented unsupervised detection method
for fabric surface defects. Processes 2023, 11, 2615. [CrossRef]

17. Liu, W,; Liu, C;; Liu, Q.; Yu, D. Assigned MURA defect generation based on diffusion model. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, BC, Canada, 17-24 June 2023;
pp. 4395-4402.

18. Semchyshyn, P. Automated Visual Inspection in the Industrial Setup via Deep Learning. Bachelor’s Thesis, Department of
Computer Sciences and Information Technologies, Ukrainian Catholic University, Lviv, Ukraine, 2023.

19. Huang, T.; Gao, Y,; Li, Z.; Hu, Y.; Xuan, F. A hybrid deep learning framework based on diffusion model and deep residual neural
network for defect detection in composite plates. Appl. Sci. 2023, 13, 5843. [CrossRef]

20. DeRidder, V.; Dey, B.; Halder, S.; VanWaeyenberge, B. SEMI-DiffusionInst: A diffusion model based approach for semiconductor
defect classification and segmentation. In Proceedings of the 2023 International Symposium ELMAR, Zadar, Croatia, 11-13
September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 61-66.

21. Wu, PH,; Lin, S.Z,; Chang, Y.T.; Lai, YYW.; Chen, S.H. A self-training-based system for die defect classification. Mathematics 2024,
12,2415. [CrossRef]

22. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a
local Nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30.

23.  Chong, M.].; Forsyth, D. Effectively unbiased fid and inception score and where to find them. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13-19 June 2020; pp. 6070-6079.

24. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.

arXiv 2015, arXiv:1511.06434.


https://doi.org/10.1007/s10845-022-01994-1
https://doi.org/10.3390/app10155340
https://doi.org/10.1109/TASE.2020.2967415
https://doi.org/10.3390/electronics12081787
https://doi.org/10.3390/app10238725
https://doi.org/10.1007/s10845-010-0378-3
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3554729
https://doi.org/10.3390/app12136569
https://doi.org/10.3390/s23135922
https://www.ncbi.nlm.nih.gov/pubmed/37447771
https://doi.org/10.1016/j.jksuci.2022.07.018
https://doi.org/10.1016/j.neucom.2022.05.021
https://doi.org/10.13052/dgaej2156-3306.3852
https://doi.org/10.3390/pr11092615
https://doi.org/10.3390/app13105843
https://doi.org/10.3390/math12152415

Mathematics 2024, 12, 3164 15 of 15

25. Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier gans. In Proceedings of the International
Conference on Machine Learning, Sydney, Australia, 6-11 August 2017; pp. 2642-2651.

26. Ferdowsi, A.; Saad, W. Brainstorming generative adversarial network (BGAN): Towards multiagent generative models with
distributed data sets. IEEE Internet Things ]. 2024, 11, 7828-7840. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1109/JIOT.2023.3319630

	Introduction 
	Surface Defect Inspection Using Generated Images 
	Surface Defect Inspection Using GAN-Generated Images 
	Surface Defect Inspection Using DDPM-Generated Images 

	Research Methods 
	Image Preprocessing 
	Image Generation 
	Image Synthesis 
	Defect Inspection 

	Experiment Results 
	Expanded Dataset Description 
	Quantitative and Qualitative Comparisons of Image Generation Quality among GANs and the DDPM 
	Quantitative and Qualitative Comparisons of Defect Inspection Performance between DCGAN and DDPM Associated with YOLOv8 

	Conclusions 
	References

