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Abstract: In this study, we introduce an innovative approach for the identification of vehicle sus-
pension parameters, employing a methodology that utilizes synthetic and experimental data for
non-invasive analysis. Central to our approach is the application of a basic local optimization al-
gorithm, chosen to establish a baseline for parameter identification in increasingly complex vehicle
models, ranging from quarter-vehicle to half-vehicle (bicycle) models. This methodology enables
the accurate simulation of the vehicle dynamics and the identification of suspension parameters
under various conditions, including road perturbations such as speed bumps and curbs, as well as
in the presence of noise. A significant aspect of our work is the ability to process real-world data,
making it applicable in practical scenarios where data are obtained from onboard sensor equipment.
The methodology was developed in MatLab, ensuring portability across platforms that support this
software. Furthermore, the study explores the application of this methodology as a tool for denoising,
enhancing its utility in real-world data analysis and predictive maintenance. The findings of this
research provide valuable insights for vehicle suspension design, offering a cost-effective and efficient
solution for dynamic parameter identification without the need for physical disassembly.

Keywords: suspension parameter identification; vehicle dynamics simulation; basic local
optimization; predictive vehicle analysis; non-invasive suspension testing

MSC: 65K99

1. Introduction

The (human user) comfort and optimal use of energy are two elements that must be
considered for the design of any vehicle. Optimal energy use is especially relevant as there
is a wide consensus that unnecessary thermal contamination degrades the environment and
that for any electrical vehicle, the use of energy should be optimal. To optimize both of these
aspects, suitable suspension elements must be used. Vehicle suspensions are characterized
by a set of parameters such as the relevant masses, stiffness of the springs, and the damping
of the shock absorbers, all of which characterize a vehicle’s dynamic behavior.

The accurate identification of these dynamic parameters in vehicle suspension systems
is of paramount importance in the automotive industry, serving not only for design and
optimization but also as a critical factor in ensuring vehicle safety and operational efficiency.
Data acquisition availability and analysis techniques have fostered new methodologies for
parameter identification, utilizing synthetic or experimental data. This approach circum-
vents the traditionally invasive and time-consuming process of physical disassembly of
suspension parameters when a dynamic suspension model is needed, presenting several
compelling advantages.
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Avoiding the labor-intensive process of physical testing significantly reduces both the
time and financial resources required for suspension analysis and optimization. It enables
the evaluation of suspension performance under actual driving conditions, providing
a more accurate reflection of in-service vehicle behavior. Such capabilities facilitate the
fine-tuning of suspension systems for improved ride comfort, vehicle stability, and energy
efficiency without reliance on extensive physical prototyping.

Streamlining the maintenance process and diagnosis of suspension issues leads to
more effective and timely interventions. It also contributes to the creation of more precise
models for vehicle dynamics simulation and analysis, essential for ongoing research and de-
velopment. This approach supports the development and implementation of sophisticated
suspension control systems, including adaptive and semi-active suspensions.

Moreover, a quick method to monitor the condition of suspension parameters over
time offers the potential for predicting failures, ensuring that vehicles remain within the
safety standards set by manufacturers. It also provides a method for quick testing in vehicle
inspection stations to verify if the vehicle dynamics meet the required standards or to
identify any deficiencies.

This manuscript presents an easy-to-implement methodology to identify a vehicle’s
suspension parameters from the dynamic behavior of the vehicle when it faces different
external actions. Based on this dynamic data (coming from mathematical, synthetic data,
or from experimental data), the proposed methodology studies the kinematic behavior of
the suspension to extract and identify the dynamic data (masses, rigidity, and damping)
from such suspension. Therefore, this study focuses on rapid parameter identification from
non-destructive and non-invasive data sources, which is not just an academic pursuit, but
also addresses a practical necessity in the automotive industry. It underscores the need for
efficient, accurate, and cost-effective methods to ensure vehicle safety, performance, and
compliance with evolving standards.

To compare this approach, an analysis of the state-of-the-art in vehicle suspension
parameter identification is presented, integrating both experimental and theoretical ap-
proaches. It encompasses a diversity of methodologies, ranging from basic local optimiza-
tion to advanced techniques like Kalman filters, adaptive observers, and neural networks.
It highlights works that utilize models from quarter-vehicle to half-vehicle (bicycle) models,
including research on active and semi-active suspensions, adaptive control systems, and
driver and passenger comfort analysis. The relevance of parameter variability, such as
stiffness and damping, response to road perturbations like speed bumps and curbs, and
the inclusion of noise in the data, are common themes in the reviewed studies.

Parameter identification is, thus, one topic of special interest for any mobility-related
engineering task. Far from being a closed subject, new research is being carried out
in this area. In Ref. [1], for instance, Vyasarayani et al. recognized that the essential
nature of parameter identification was an optimization problem, and they proposed a new
method based on homotopy aimed at finding the global minima, pointing out that some
deterministic methods usually find the local minima.

In Ref. [2], a method based on a mutual information metric was proposed by Sujan
and Dubowsky, where the core of the mathematical model is a Newton–Euler one and
the solving of the dynamic parameters is carried out via a Kalman filter. In Ref. [3],
Weispfenning used a procedure based on neural networks.

In Ref. [4], Imine and Madani developed a method for a heavy vehicle based on the
sliding mode observer coupled with a Lagrangian formulation of the dynamical problem,
whereas in Ref. [5], Hong et al. developed a method based on a Dual Unscented Kalman
Filter for a four-wheel vehicle model.

In Ref. [6], Wang et al. developed a system focused on the truck driver and seating
system whose parameters were identified. This kind of research is of the utmost importance
because the human driver and passengers can feel comfortable under a restricted frequency
interval. Likewise, in Ref. [7], Sun et al. applied parameter identification when they
developed a variable stiffness and damping shock absorber—thus, we are talking about a
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semi-active vehicle suspension—where both damping and stiffness variability are tested,
the frequency response is analyzed, and the parameters are identified.

In Ref. [8], in a work by Lauß et al., the discrete adjoint method was presented and
applied to an engine mount, where the focus, again, was on the particular approach for
solving the set of differential equations—now enlarged—and thus, obtaining the parameters
under consideration. The use of the Levenberg–Marquardt parameter estimation algorithm
was applied to a four-degrees-of-freedom (DOF), non-linear motorcycle model in Ref. [9],
by Fouka et al.

Sun et al. studied a non-linear ball-screw inerter. Here, the influence of the non-
linearities of the ball-screw inerter were analyzed and compared with those of a linear
inerter [10]. The model used was a three-passive-suspension layout half-car one, where the
parameters are found via the recursive least-squares algorithm based on test data.

Active suspension models were studied in [11] where a Local Linear Model tree
(LOLIMOT), a special neural network architecture was used to ascertain the suspension
parameters by Fischer et al. Buggaveeti, in her master’s thesis [12], using the concept of
Model-Based-Design (MBD), developed a validated vehicle dynamics model for a Toyota
Prius Plug-in hybrid vehicle. Both a local optimization algorithm and homotopy, which is
a global optimization technique were used and compared.

Rajamani and Hedrick developed an adaptive observer [13], for an active suspension
system. Kogut, in turn, used a grey-box model identification technique for a semi-active
suspension system composed of a non-linear two-DOF mass-coupled system with a mag-
netorheological (MR) rotary damper [14].

In the book [15], in the Parallel Strand II Virtual Development Methods, further
analysis can be seen using Artificial Neural Networks such as in [16], using virtual proto-
types [17], and analyzing passive vehicle dynamics concentrating the research in active
safety and, quite importantly, in autonomous driving [18].

The research carried out by Sarmah and Tiwari in which a cracked rotor system
equipped with active magnetic bearings was studied, starting from a physical model, is
also noteworthy [19].

Callejo and de Jalón delved into theoretical considerations focusing on the sensitivity
of the system of interest. This paper is more general in nature than the previous ones [20].

Akar and Dere developed a real-time adaptive switching controller whose purpose
was to mitigate rollover accidents without reducing the performance of the vehicle. The
core of the system relies on “adaptive identification of vehicle lateral and vertical dynamics
parameters, including the center-of-gravity height that has a major role in rollover”. The
least-squares and the Kalman filtering techniques were used from a computational point of
view [21].

However, Best M.C. concentrated on the modelling requirements if one is to implement
in a practical way an advanced vehicle suspension control system [22], while Serban
and Freeman delved into parameter estimation for multibody dynamic systems using
Levenberg-Marquardt methods. Again, in this article, the dichotomy between global and
local methods is raised [23].

In Metallidis et al.’s work, a methodology for ascertaining the optimal sensor location
and configuration was proposed, starting with the classic two-DOF, quarter-car model, and
finally raising the complexity to four-wheel vehicles with flexible bodies [24].

Hahn et al., using a differential global positioning system, succeeded in the estimation
of the road–tire friction coefficient, showing that these types of sensors can provide enough
information for estimating these parameters [25], whereas Elsawaf et al. developed a
method for identifying the parameters of a magnetorheological damper using the particle
swarm optimization [26]. Alfi and Fateh used a modified particle swarm optimization for a
non-linear system, namely, a hydraulic suspension system [27].

Zhao et al. modeled a heavy truck with a three-DOF cabin linear system model
using a bench test [28], while Roy and Liu [29] analyzed the road vehicle suspension and
performance evaluation using an eight-DOF, two-dimensional vehicle model simulating
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and animating the response of a vehicle under “different road, traction, braking and wind
conditions”.

Ma et al.’s work is of special interest to this paper due to them using an inverse
model to improve the performance of vehicle suspension, proposing a semi-active vehicle
suspension with a magnetorheological fluid (MRF) damper [30].

Finally, Rodríguez et al., using a dual Kalman filter composed by an errorEKF and an
unscented Kalman filter following the multibody dynamics approach, obtained a model
with a high level of detail including non-linear dynamics [31].

In contrast to the diverse methodologies outlined in the state-of-the-art, this paper in-
troduces a novel approach for vehicle suspension parameter identification that concentrates
on the analysis of the position and the velocity signals from both the suspended and the
unsuspended masses of a vehicle’s suspension system. These position and velocity signals
can be obtained from the suspension dynamic’s mathematical equations (see the different
suspension models and equations in Section 2) and from data acquisition in sensorized
vehicle suspensions. In the latter, acquisition errors and deviations can be present. This
is why the proposed methodology includes an analysis of errors (externally added) even
in the case of the mathematical synthetic (clean) data from the equations. While existing
research predominantly focuses on a variety of optimization and estimation techniques,
such as Kalman filters, neural networks, and adaptive control systems, the methodology
proposed here uniquely advances the suspension dynamics analysis by not only developing
a methodology and a mathematical tool for parameter identification but also through a
detailed exploration of the global approach.

At the core of the methodology is the application of dynamic equations of vehicle sus-
pension. Beginning with initially unknown parameters, we iteratively modify the dynamic
curves of the suspension, tracking deviations at fixed time intervals against the baseline sig-
nals. A fundamental element of this approach is the use of a basic optimization algorithm,
the Nelder–Mead algorithm (NM algorithm), aimed at predicting the optimal parameters
that minimize the overall signal errors. This algorithm is famed for its derivative-free
approach and is adept at handling complex, non-linear functions like those involved in
vehicle suspension dynamics. Its simplicity in implementation is a significant advantage,
especially when dealing with intricate systems. While it does have limitations, such as
potential slow convergence and sensitivity to initial parameters, its robustness in dealing
with functions that may exhibit noise (such as the ones obtained from vehicle sensorization)
or discontinuities makes it a compelling option for this specific application. This method,
with its flexibility and ease of use, can effectively be integrated into the challenges of this
parameter identification problem.

The selection of the Nelder–Mead algorithm for this study is primarily motivated by its
fundamental properties and limitations. As a local optimization algorithm, Nelder–Mead
is adept at finding local minima of mathematical functions, but it does not guarantee global
convergence as the more comprehensive global optimization algorithms do. This character-
istic presents a unique opportunity for this investigation. The aim is to ascertain whether
such a basic, local optimization algorithm is sufficient for accurately identifying vehicle
suspension parameters from synthetic data. By testing the efficacy of the Nelder–Mead
algorithm in this constrained setting, it is possible to establish a foundational understand-
ing of the parameter identification process. This approach serves as an initial step before
considering more complex and globally convergent algorithms. Such a progression is
crucial for determining the necessary computational complexity and robustness required
for effective suspension parameter identification in various scenarios.

The main contribution of this study lies in the introduction of a straightforward and
scalable methodology for suspension parameter identification within complex simultane-
ous dynamic equations, considering the use of position and velocity signals from both
suspended and unsuspended masses across various suspension models. This methodology
is designed to encompass parameter identification from both mathematically synthetic sig-
nals and from signals with inherent noise in sensorized suspensions. The chosen algorithm
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for this purpose is based on Nelder–Mead, facilitating the discretization of signals while
providing a simple yet robust method for multi-parameter optimization. This algorithm is
used for iteratively adjusting dynamic suspension curves against baseline signals, allowing
for the more focused and precise identification of optimal suspension parameters. Our
approach represents a significant advancement in suspension dynamics analysis, offering a
comprehensive and innovative tool for minimizing signal errors in suspension parameter
identification, even under noisy data.

This study methodically tests the proposed methodology across theoretical vehicle
models of increasing complexity. It starts with a quarter-vehicle suspension model with one
degree of freedom, advances to a two-degrees-of-freedom model, and ultimately applies the
methodology to a half-vehicle (motorcycle) model. For each of these models, the results are
obtained and analyzed to evaluate the effectiveness, limitations, and scope of the proposed
methodology. Furthermore, potential improvements are discussed, and the application of
this methodology to a future, highly non-linear full-vehicle model, integrating the insights
and enhancements identified in this article is envisioned.

2. Framework

The main objective of the present research is centered on the characteristic suspension
parameters at a theoretical level. Specifically, of special interest are the conditions under
which accurate suspension parameter identification may be obtained. Also of interest is
the possibility of using the intrinsic dynamics of the system for measurement denoise. The
starting point is the equations of vertical movement of an increasing level of complexity
in the framework of the quarter-vehicle model. Thus, suspension will be excited, and its
evolution will be registered (i.e., the position of the suspended mass and the unsprung mass
as a function of time). Afterwards, the model complexity will be furthermore increased,
addressing the half-vehicle (bicycle) model.

Consequently, we set up a methodology that implies:

• Simulation of the vertical movement of a quarter-vehicle model in different external
excitation situations;

• Optimization: a process that allows, after a finite number of iterations, us to determine
the characteristic suspension parameters;

• By increasing the versatility of the underlying software, we can implement modifi-
cations that allow for half-vehicle analysis (bicycle model). Thus, not only vertical
oscillation can be analyzed, but pitching as well. This requires the development of a
mathematical model that represents the suspension of the half-vehicle as well as an
exhaustive previous study of the different suspension systems and their mathematical
representation;

• Theoretical validation of the underlying software in different settings. This way, the
inner processes of the parameter identification using the half-vehicle suspension model
are known.

In the present work, the quarter-vehicle, both the one-DOF and the two-DOF models
are considered in Sections 4 and 5. The half-vehicle is considered in Section 6.

Section 4 shows an example of a two-DOF quarter-vehicle model that shows the
capabilities of simulation and optimization, which lies at the core of the methodology.

Section 5 is concerned with the validation of the underlying software in different
settings for the quarter-vehicle model in one-DOF and two-DOF models. By a careful
analysis of the results, we can observe that we are dealing with an inverse problem with
a non-unique solution. Thus, we analyze the requirements that must be imposed in the
solution space to obtain the correct suspension parameters.

Section 6 is concerned with the half-vehicle model. We validate the methodology,
and we analyze the requirements for a successful parameter identification. We find that
the increased complexity of the underlying model translates into slower convergence
rates, and in some cases, the need for nearer initial parameters, even when restricting the
solution space.
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This methodology will be tested in different initial conditions and starting points,
with noiseless and noisy measurements, so it is possible to analyze the prerequisites for
adequate parameter suspension identification.

The present work has been carried out with MatLab R2022a Update 1 (9.12.0.1927505)
64-bit win64 version (The MathWorks, Inc., Natick, MA, USA), Microsoft R Open 4.0.2
(22 June 2020) from Microsoft (Redmond, WA, USA) and RStudio (version 1.3.1093) from
Posit (Boston, MA, USA).

It starts by stating the equations of movement that describe the system under study,
that is, corresponding to the model whose suspension parameters we are going to iden-
tify. By providing the initial conditions and the parameters of our model, the differential
equation solver of our choice can simulate the movement of the masses. By providing the
NM algorithm implementation with the initial parameters of our choice, the suspension
parameter identification process can start. The suspension parameters are obtained as those
that minimize the cost function of our choice. The equations of movement shall be imple-
mented for both the simulation process and the parameter identification process, which is
carried out by using the fminsearch MatLab function, if we are dealing with synthetic data.
If we are dealing with real world scenarios, the equations must be implemented so they
can be used by the aforementioned function, as the solving of these equations of motion is
a prerequisite for establishing a cost function in either of these cases.

The one-DOF model is shown in Figure 1 and its corresponding governing equation
is given as Equation (1). The two-DOF model is shown in Figure 2 and its corresponding
governing equations are given as Equations (2) and (3). Lastly, the bicycle model is shown
in Figure 3 and its governing equations are shown in Equations (4)–(7).
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Then, we present the optimization and parameter identification tool (Figures 4–6), with
an example of a two-DOF model, when the vehicle starts from a position of equilibrium
(Figures 7 and 8), when passing over a curb (Figures 9–11), and when passing over a speed
bump (Figures 12–14). The purpose of these examples is to ascertain if the tool has been
correctly implemented by comparing these results with the expected behavior.

Afterward, we analyze our methodology with a set of experiments drawn from the
Design of Experiments theory, in particular the Taguchi designs, whose use here is to
provide a map of repeatability for all the experiments carried out. At this moment we
concentrate on the one-DOF and two-DOF models. We understand here that we are facing
an inverse problem with non-unique solutions, and we find that by restricting the space
solution adequately we can find the exact suspension parameters in all cases.

Finally, we extend our methodology to the bicycle model (4-DOF), where it is shown
that it is possible to retrieve the exact suspension parameters, but the initial parameter from
which the NM algorithm starts must be modified in some cases. Also, for the bicycle model,
we present the use of this optimization process for the denoising of measurements.

3. Vertical Behavior of Suspension

The suspension system is studied via different models of increasing complexity that
allow for analysis, both as a whole as well as in its distinct components, of the different
movements of the suspended mass and the unsprung mass of the vehicle (vertical move-
ment, pitching, and swinging) and the associated phenomena to them. Equations (1)–(7),
are to be implemented in the MatLab solver, according to their respective models, that is,
Equation (1) for the one-degree-of-freedom (one DOF) model, Equations (2) and (3) for the
two-DOF model, and Equations (4)–(7) for the bicycle model.

3.1. Model with One Degree of Freedom

The simplest suspension model used for representing vertical movement of a vehicle
suspension is based on a one-degree-of-freedom dynamic mathematical model. It is the
simplest of models and it represents the independent suspension of a quarter-vehicle
assuming the unsprung mass and the tire rigidity is negligible (Figure 1).

The governing equation is given in Equation (1), where, in the most generic case, y is
the road profile.

m
..
x + c(

.
x − .

y) + k(x − y) = 0. (1)
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The motion in Equation (1) is based on Newton’s second law and represents the model
of a suspension with one GDL.

3.2. Model with Two Degrees of Freedom

One of the simplest systems for the representation of the independent suspension
of a quarter-vehicle model is the model with two degrees of freedom (Figure 2). In this
model, two masses are considered. One that is suspended and corresponds to the vehicle’s
bodywork (m1) and another one for the unsprung mass, which simulates the tire and part
of the suspension elements (m2). Moreover, the rigidity and the damping coefficient of
the suspension system appear as, (k1) and (c1), respectively. The unsprung mass rigidity
(k2) and its damping (c2) are considered, which simulates the tire behavior. These are,
therefore, the parameters of the model, the mases m1 and m2, the damping coefficients of
the suspension system and the unsprung mass, c1 and c2, and their corresponding rigidities,
k1 and k2. This model allows for the study of the movements of the suspended mass as a
function of the unsprung mass, the tire rigidity, the rigidity of the suspension spring, and
the characteristic of the damping element.

In this case, the equations of movement are the following, if we consider the excitation
forces to be the terrain irregularities.

m1
..

x1 + c1
( .
x1 −

.
x2
)
+ k1(x1 − x2) = 0. (2)

m2
..

x2 + c1
( .
x2 −

.
x1
)
+ k1(x2 − x1) = −c2

.( .
x2 −

.
r
)
− k2(x2 − r). (3)

Equations of motion representing the two-degrees-of-freedom model, derived from
Newton’s second law and grouped into an inertial force component, damping force from
changes in velocity, and stiffness forces from changes in position.

3.3. Half-Vehicle Model with Four Degrees of Freedom

The quarter-vehicle model is perfect for examination and optimization of the vertical
movement of the masses. However, this model can be extended to half of the vehicle
including a wheel on each axis (known as the bicycle model). Thanks to this representation,
the pitching of the suspended mass can be analyzed (Figure 3).

The parameters of this model are the masses m, m1, and m2, the damping coefficients
c1 and c2, the rigidities k1, k2, k3, and k4, the moment of inertia I, and the distances from the
front and rear ends of the mass m to the pitching axis a1 and a2.

This model is much more complex than the former, as it has four degrees of freedom;
therefore, the same number of equations are needed to completely define the movement of
the system [32–34]:

m
..
x + c1

( .
x − .

x1 − a1
.
δ
)
+ c2

( .
x − .

x2 + a2
.
δ
)
+ k1(x − x1 − a1δ) + k2(x − x2 + a2δ) = 0. (4)

I
..
δ − a1c1

( .
x − .

x1 − a1
.
δ
)
+ a2c2

( .
x − .

x2 + a2
.
δ
)
− a1k1(x − x1 − a1δ) + a2k2(x − x2 + a2δ) = 0. (5)

m1
..

x1 − c1

( .
x − .

x1 − a1
.
δ
)
+ k3(x1 − r1)− k1(x − x1 − a1δ) = 0. (6)

m2
..

x2 − c2

( .
x − .

x2 + a2
.
δ
)
+ k4(x2 − r2)− k2(x − x2 + a2δ) = 0. (7)

Equations of motion representing the four-degrees-of-freedom model (vertical dis-
placement of the unsprung mass, vertical displacement of the sprung mass, twist, and
pitch—δ of the sprung mass), obtained from Newton’s second law and grouped into an
inertial force component, damping force from changes in velocity, and stiffness forces from
changes in position.
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4. Optimization and Parameter Identification Tool

With the tool developed in MatLab, the vertical behavior of a quarter-vehicle may be
simulated, knowing the displacements and velocities of the masses for different excitation
conditions: initial parameters, a curb, or a speed bump. In addition, it also allows for the
importing of empirical data proceeding from real measurements.

After the last upgrade, the tool was able to simulate the vertical behavior as well as
the pitching of the half-vehicle suspension, knowing the displacements, velocities, and
accelerations of the masses for different excitation conditions: initial conditions outside
equilibrium, after passing through a curb or a speed bump.

This simulation is carried out by providing the ode45 ordinary differential equations
Solver from MatLab function with the set of differential equations that describe the dynam-
ics of the system, which were discussed before. As they are a set of second-order differential
equations, they must be provided as a set of first-order ones to be treated by the solver.
Thus, for each coordinate of the masses (which also includes the angular dimension δ in
the case of the bicycle model), we will also obtain its first derivative.

The most outstanding feature of this tool, besides simulation, is the parameter iden-
tification. Through this process, it is possible to obtain the characteristic parameters of
the suspension system, unknown a priori, via an automatic finite number of iterations.
It is enough to know the displacements or accelerations of the masses after sensorizing
the movements of the vehicle suspension. An optimization process lies at the core of
this feature.

This tool has the following behavior and requires the following entries:

(1) Target parameters that allow for the vertical movement simulation of the quarter- or
half-vehicle (Procedure 1 or theoretical) or data coming from the sensorization of the
vehicle (Procedure 2 or practical);

(2) User-defined initial parameters from which the identification process will take place.

As outputs of this process, the identified parameters are obtained as well as a graphic
comparison between the initial curve and the identified one.

The place of the parameter identification tool in the methodology proposed is de-
scribed in Figure 4.
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Whatever the procedure, the optimization process undergoes three main phases,
detailed in Figure 5:
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Therefore, the process is the following:
Whether from a simulated target curve or from an experimental one, we obtain an

actual curve. We provide a set of initial parameters, which, from the corresponding model,
a test curve will be obtained. By providing a cost function—and in this work two cost
functions are considered—the actual and the test curves can then be compared. If we reach
convergence, the process stops, and we obtain a set of parameters that we compare with the
actual ones. If we do not reach convergence, the Nelder–Mead algorithm selects a new set
of parameters, which in turn generates a test curve to be compared with the actual curve
via the cost function of our choice; this process is repeated until convergence.

4.1. Generation of the Target Curve

We can obtain the “target curve” via two different methods. The first of them is by
importing empirical data coming from the sensorization of the suspension of a vehicle, or
by defining the following parameters, which, in the example we show here for a quarter-
vehicle model are (Table 1):

Table 1. Empirical data from the sensorization of the suspension vehicle.

Symbol Description Value

m1 suspended mass 275 kg

k1 suspension spring rigidity 150,000 N/m

c1 suspension damping coefficient 1120 Ns/m

m2 unsprung mass 27 kg

k2 tire rigidity 310,000 N/m

c2 tire damping coefficient 3100 Ns/m



Mathematics 2024, 12, 397 11 of 31

These data apply to the schema shown in Figure 2. These values were drawn from
work by Sharma and Saluja [35].

Moreover, the way the system is excited must be chosen. In this case (Table 2):

Table 2. Position and velocity of the masses, different to those in equilibrium.

Symbol Description Value

x01 initial position of the suspended mass 0.20 m

v01 initial velocity of the suspended mass 0.50 m/s

x02 initial position of the unsprung mass 0.10 m

v02 initial velocity of the unsprung mass 0.05 m/s

Thus, the schema for the generation of the target curve is as described in Figure 6:
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By setting the target parameters and the initial values—and a possible road profile that
must be set programmatically in the model—the target curve via the ode45 MatLab function
can be generated. In the case of a two-DOF model, we must set the suspended mass m1,
the suspension spring rigidity k1, the suspension damping coefficient c1, the unsprung
mass m2, the tire rigidity k2, and the tire damping coefficient c2. Also, the initial positions
and velocities of the suspended—x01 and v01—and unsprung masses—x02 and v02—must
be set.

Thus, the results obtained (Figures 7 and 8) are:
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Going over a curb is shown in Figure 9. The curb’s height must be defined (h).
The results may be found in Figures 10 and 11, and they show an accord with the
expected behavior:

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 33 
 

 

 
Figure 9. Curb profile used for simulation as input function for system response. 

 
Figure 10. Displacement and velocity of the suspended mass for a step input. 

 
Figure 11. Displacement and velocity of the unsprung mass for a step input. 

Figure 9. Curb profile used for simulation as input function for system response.

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 33 
 

 

 
Figure 9. Curb profile used for simulation as input function for system response. 

 
Figure 10. Displacement and velocity of the suspended mass for a step input. 

 
Figure 11. Displacement and velocity of the unsprung mass for a step input. 

Figure 10. Displacement and velocity of the suspended mass for a step input.



Mathematics 2024, 12, 397 13 of 31

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 33 
 

 

 
Figure 9. Curb profile used for simulation as input function for system response. 

 
Figure 10. Displacement and velocity of the suspended mass for a step input. 

 
Figure 11. Displacement and velocity of the unsprung mass for a step input. Figure 11. Displacement and velocity of the unsprung mass for a step input.

Here, both initial positions and velocities are set to zero.
Going over a speed bump is shown in Figure 12. The speed bump’s height can be

configured (h = 0.1 m), its length (l = 3 m), and the velocity the vehicle crosses it with
(v = 20 km/h). The results can be found in Figures 13 and 14:
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Here, the initial positions and velocities are set to zero too.

4.2. Parameter Identification

The addition and innovation of this research is that it allows us to go in the opposite
direction. That is, based on the curves of the movement of the masses obtained via sen-
sorization of the vehicle suspension, the tool allows for the computation of the suspension
parameters, as shown in Figure 15.
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Figure 15. Parameter identification schema.

In this case, the input consists of the sensorization of the vehicle suspension that
allows for knowledge of the displacements or accelerations of the masses as a function
of time. Besides the empirical curve, this phase needs another input, namely the initial
parameters. These are the values from which the iterative process starts until it can identify
the unknown parameters.

In this phase, the identification parameter program is executed, using the fminsearch
included in the MatLab library that has as its aim at finding the minimum of a scalar
function of several variables, starting from an initial guess (initial parameters), using the
Nelder–Mead algorithm. This is known as unrestricted non-lineal optimization. This
function implements the simplex Nelder–Mead algorithm by Lagarias et al., as described
in [36].



Mathematics 2024, 12, 397 15 of 31

4.3. Results Comparison

Finally, a comparison between the target parameters and the identified parameters is
made. This allows for the assessment of the quality of the identification (Figure 16).
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One of the outputs of the fmisearch is the set of identified parameters. This set of pa-
rameters can be readily compared numerically with the target parameters. This comparison
can be made as an absolute value and/or as a percentual value. The percentual error value
was found to be homogeneous across the set of identified parameters. Successful parameter
identification means that the error was zero or negligibly small.

5. Experimental Recovery of Suspension Parameters with Nelder–Mead Optimization

To evaluate the effectiveness of the indicated optimization methodology in relation to
the sensitivity of parameters to be identified within the dynamic equations of motion, a
parameter analysis process is employed through the Design of Experiments (DoE). Among
the various analytical possibilities within DoE, we selected the Taguchi method for our
study for several reasons. Firstly, the Taguchi method is renowned for its efficiency in
examining a large number of variables with a relatively small number of experiments, which
is crucial in complex dynamic systems like vehicle suspensions (and even more important
when experimental runs need to be reduced to reduce the overall cost). This efficiency
stems from its orthogonal arrays, which ensure that all parameters are independently
evaluated, providing clear insight into their individual effects and interactions.

Secondly, the Taguchi method focuses not just on the mean performance character-
istics but also on the variability, which is essential when dealing with dynamic systems
where parameters may be sensitive and prone to fluctuation. This approach enables us
to understand not only which parameters are most influential, but also how robust the
system’s performance is in response to variations in these parameters.

Lastly, the method’s concept of the signal-to-noise (S/N) ratio is particularly useful
in this context. It helps in optimizing performance characteristics against the noise of
the system—in this case, the inherent uncertainties in dynamic suspension parameters.
By using the Taguchi method, we aim to identify the optimal set of parameters that not
only achieve the desired suspension dynamics but also ensure robust performance against
variations and uncertainties in the system.

As stated before, the fminsearch function is used for parameter identification. This
function uses the Nelder–Mead algorithm. At this point, it is pertinent to ask the question
of how accurate the set of identified parameters is. To analyze this, a battery of tests based
on the Taguchi theory was carried out, specifically the 16 factors with four levels for each
design (L16-4 design) for the one-DOF model and the 13 factors with three levels for each
design (L27-3 design) for the two-DOF model. The order of experiments was obtained via
the R qualityTools package (version 1.55) [37] with no randomization for ease of replication.
Also, for both cases, the starting point for the variables subject to optimization was set to
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half the true ones except for the mass, which is supposed to be known and was set initially
to its true value.

This means that, in the case of the one-DOF model, for each of the initial conditions
and suspension parameters x0, v0, m, c, k, labelled A, B, C, D, and E, sixteen experiments
varying their values according to four levels (values) were carried out. Different values for
each of the levels can be found in Table 3. The corresponding order of experiments with its
values can be found in Table 4.

Table 3. Values for each level for theL16-4 design.

A B C D E

Value 1 0.05 0.05 250 100 100

Value 2 0.11 0.11 538.61 215.44 215.44

Value 3 0.23 0.23 1160.40 464.16 464.16

Value 4 0.5 0.5 2500 1000 1000

Name x0 v0 m c k

Unit m m/s kg Ns/m N/m

Type Numeric Numeric Numeric Numeric Numeric

Table 4. Order of experiments with their corresponding values for the L16-4 design.

N. Exp. A B C D E

1 1 1 1 1 1

2 1 2 2 2 2

3 1 3 3 3 3

4 1 4 4 4 4

5 2 1 2 3 4

6 2 2 1 4 3

7 2 3 4 1 2

8 2 4 3 2 1

9 3 1 3 4 2

10 3 2 4 3 1

11 3 3 1 2 4

12 3 4 2 1 3

13 4 1 4 2 3

14 4 2 3 1 4

15 4 3 2 4 1

16 4 4 1 3 2

In the case of the 2-DOF model, labels A through K stand for x01, v01, x02, v02, m1, c1,
k1, m2, c2, and k2. Labels L through N remain unused. Twenty-seven experiments were
carried out, varying their values according to three levels (values). Different values for
each of the levels can be found in Table 5 whereas the corresponding order of experiments
with its values can be found in Table 6.
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Table 5. Values for each level for the L27-3 design.

A B C D E F G H J K L M N

Val1 0.05 0.05 0.01 0.01 10 100 100 25 50 50 0 0 0

Val2 0.16 0.16 0.03 0.03 31.62 316.23 316.23 79.06 158.11 158.11 0 0 0

Val3 0.5 0.5 0.1 0.1 100 1000 1000 250 500 500 0 0 0

Name x01 v01 x02 v02 m1 c1 k1 m2 c2 k2 alt11 alt12 alt13

Unit m m/s m m/s kg Ns/m N/m kg Ns/m N/m . . .

Type Num Num Num Num Num Num Num Num Num Num - - -

Table 6. Order of experiments with their corresponding values for the L27-3 design.

Exp A B C D E F G H J K L M N

1 1 1 1 1 1 1 1 1 1 1 - - -

2 1 1 1 1 2 2 2 2 2 2 - - -

3 1 1 1 1 3 3 3 3 3 3 - - -

4 1 2 2 2 1 1 1 2 2 2 - - -

5 1 2 2 2 2 2 2 3 3 3 - - -

6 1 2 2 2 3 3 3 1 1 1 - - -

7 1 3 3 3 1 1 1 3 3 3 - - -

8 1 3 3 3 2 2 2 1 1 1 - - -

9 1 3 3 3 3 3 3 2 2 2 - - -

10 2 1 2 3 1 2 3 1 2 3 - - -

11 2 1 2 3 2 3 1 2 3 1 - - -

12 2 1 2 3 3 1 2 3 1 2 - - -

13 2 2 3 1 1 2 3 2 3 1 - - -

14 2 2 3 1 2 3 1 3 1 2 - - -

15 2 2 3 1 3 1 2 1 2 3 - - -

16 2 3 1 2 1 2 3 3 1 2 - - -

17 2 3 1 2 2 3 1 1 2 3 - - -

18 2 3 1 2 3 1 2 2 3 1 - - -

19 3 1 3 2 1 3 2 1 3 2 - - -

20 3 1 3 2 2 1 3 2 1 3 - - -

21 3 1 3 2 3 2 1 3 2 1 - - -

22 3 2 1 3 1 3 2 2 1 3 - - -

23 3 2 1 3 2 1 3 3 2 1 - - -

24 3 2 1 3 3 2 1 1 3 2 - - -

25 3 3 2 1 1 3 2 3 2 1 - - -

26 3 3 2 1 2 1 3 1 3 2 - - -

27 3 3 2 1 3 2 1 2 1 3 - - -

The fminsearch needs a cost function to be minimized, and two cost functions were
considered, adapted to the dimensionality of the problem.

• The first minimizes the sum of squares of the differences between the positions of
each of the masses in the system under consideration, where the difference is meant
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to be obtained between the simulated, theoretical solution, and the Nelder–Mead
tested (theoretical procedure) or the one obtained between the sensor curve and the
Nelder–Mead tested (practical procedure).

• The second is simply the Frobenius norm of the Ytheor-Ytest matrix in the case of the
theoretical procedure and the Ysensor-Ytest in the case of the practical procedure. Ytheor
is the matrix obtained via the simulation through the ode45 MatLab function, Ytest is
the matrix obtained through this same function in the optimization iterative process,
and Ysensor is the one obtained through the embarked sensorics.

5.1. One-Degree-of-Freedom Model

For all the tests detailed in Table 4 and for both cost functions, if no restrictions were
imposed, the obtained parameters presented errors of circa −40%. This could not be
readily seen from the graphics because perfect reconstruction of the curves themselves was
obtained in all the cases. This effect would also be seen in the remaining models under
consideration. For the first and second cost functions we obtained (Figures 17 and 18):
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At this point, it is clear that this is an inverse problem with a non-unique solution.
Therefore, the solution space had to be restricted. This can be carried out by setting a
parameter to a fixed value, and the most obvious parameter is the mass, which can be
readily measured and consequently was set to its true value. Then, for the first and second
cost functions (Figures 19 and 20):
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Figure 20. Restricted optimization (mass fixed). Second cost function. Perfect reconstruction is
obtained. Obtained suspension parameters are correct.

This was performed programmatically via setting the mass as a global variable.
Here, it must be stressed that adequate parameter identification cannot be ascer-

tained from the figures themselves—which are undistinguishable—and which are obtained
from the unrestricted optimization schema (Figures 17 and 18) and from the restricted
optimization schema (Figures 19 and 20). Likewise, by using different cost functions
(Figures 17 and 19 for the first cost function, and Figures 18 and 20 for the second cost
function), we cannot ascertain if successful parameter identification was obtained, as the
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target curve is perfectly recovered in all cases. Only the restricted optimization schema
successfully recovers the correct suspension parameters.

5.2. Two-Degrees-of-Freedom Model

For the full quarter-vehicle model, the same results were obtained, namely, the unre-
stricted optimization problem provided us with erroneous identified suspension parameters
(Figures 21–24), whereas the restricted problem (leaving the masses fixed), provided us
with perfectly identified ones, as shown in Figures 25–28. The error could not be detected
by looking at the curve comparison. Again, the restriction was performed by setting the
masses as global variables. Again, this happened with all the tests detailed in Table 6.
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6. Extension to the Half-Vehicle Model—Optimization-Based Denoising
6.1. Extension to the Half-Vehicle Model

The results of the previous analysis can be extended to the half-vehicle model. In this
case, the value of the masses and the moment of inertia have to remain fixed to achieve
perfect parameter identification. Unrestricted optimization does recover the shape of
the curve but is misleading in what is of concern regarding the suspension parameters
themselves (Figures 29–34).
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With the first cost function, in seven cases from the L27-3 bunch of experiments, the
parameters could be perfectly identified starting from initial parameters which are half
the true ones. In eighteen cases, the parameters could be exactly identified if we start
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from initial parameters, which are three quarters of the true ones, and in two cases the
solution obtained did not converge. Successful parameter identification can be seen in
Figures 35–37.
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With the second cost function, in twenty-two cases the parameters could be perfectly
identified starting from initial parameters half the true ones and in five cases starting from
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values three quarters of the true ones. An example of successful parameter identification
can be seen in Figures 38–40.

Mathematics 2024, 12, x FOR PEER REVIEW 28 of 33 
 

 

 
Figure 38. Restricted optimization. Mass m. Second cost function. Perfect parameter identification. 

 
Figure 39. Restricted optimization. Mass m1. Second cost function. Perfect parameter identification. 

 
Figure 40. Restricted optimization. Mass m2. Second cost function. Perfect parameter identification. 
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Target parameters a1, a2, k3, and k4 were not controlled in the frame of the Design
of Experiments theory, and they were set to 0.48 m, 0.52 m, 1000 N/m, and 500 N/m,
respectively. They were, however, subject to the parameter identification process. Also, in
all cases, xm,ini = 0.05 m, vm = 0.05 m/s, δ0 = 0.05 rad, and

.
δ0 = 0.05 rad/s.

6.2. Optimization-Based Denoising

To simulate an environment in which the measurements were afflicted by noise,
another set of tests was carried out. In this case, we left the suspension parameters fixed
and added a gaussian additive noise to each of the measurements with a standard deviation
proportional to each of the simulated magnitudes. The range of the test was between 0.1
and 0.5 times the standard deviation of the noiseless measurements. The graphics show the
case when we add 0.5 times the standard deviation.

When we use the restricted optimization, the percentual relative error is as detailed
in Figures 41–43 for the first cost function and as detailed in Figures 44–46 for the second
cost function.
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7. Conclusions

The primary aim of this research was to assess the feasibility and extent to which
key parameters of vehicle suspension systems can be identified through the observational
analysis of their movement. This objective was pursued by simulating the vertical dynamics
of increasingly complex vehicle models, ranging from a quarter-vehicle model to a bicycle
model. Our methodology successfully demonstrated its capability in accurately simulating
vertical behaviors and identifying characteristic suspension parameters under various
scenarios, including different initial conditions, and during interactions with curbs and
speed bumps.

Central to our study is the employment of a basic local optimization algorithm as
a starting point for parameter identification. This approach was strategically chosen to
establish a baseline for the least favorable conditions in parameter identification. Through
this methodology it was established that, with a priori knowledge of key factors such
as the masses in one-DOF and two-DOF models, as well as the masses and moment of
inertia in the bicycle model, the parameters could be accurately identified in noiseless
conditions. However, in the absence of such prior knowledge, the methodology might
yield less accurate results. Additionally, the application of our methodology to noisy data
demonstrated its effectiveness in denoising the measurements while still maintaining a
high degree of accuracy in parameter identification.

We acknowledge that the convergence rate of the Nelder–Mead algorithm is slower as
the dimensionality of the problem increases. Whereas in the one-DOF model and two-DOF
model we recovered the suspension parameters without error, providing the key factors
were known, some cases of the battery of experiments failed to recover the true suspension
parameters for the bicycle model; therefore, a different set of initial parameters had to be
chosen. In more complex systems, a careful study of the key factors that enable successful
parameter identification will have to be carried out.

The implications of this study are substantial, opening new avenues for predictive
maintenance, enhanced suspension design optimization, and efficient vehicle inspections.
However, the study also acknowledges certain limitations, particularly when considering
its application to highly non-linear full-vehicle models. Future research endeavors will
focus on overcoming these challenges, extending the methodology to more complex vehicle
dynamics scenarios, and further refining the approach for wider practical applications.
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