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Abstract: We consider an irreducible positive-recurrent discrete-time Markov process on the state
space X = ZM

+ × J, where Z+ is the set of non-negative integers and J = {1, 2, . . . , n}. The number of
states in J may be either finite or infinite. We assume that the process is a homogeneous quasi-birth-
and-death process (QBD). It means that the one-step transition probability between non-boundary
states (k, i) and (n, j) may depend on i, j, and n − k but not on the specific values of k and n. It is
shown that the stationary probability vector of the process is expressed through square matrices of
order n, which are the minimal non-negative solutions to nonlinear matrix equations.
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1. Introduction

The processes of birth and death [1,2] represent a basic model that explains the tempo-
ral evolution of population size. In recent decades, various useful generalizations of this
simple model have emerged.

The framework of interacting particle systems (IPS) introduced independently by
Spitzer [3] and Dobrushin [4,5] makes it possible to describe not only the dynamics of
population size but also spatio-temporal information about all individuals in the population.
Members of the population are located on the set of vertices of a graph, typically the d-
dimensional integer lattice. Each particle has a state selected from a finite set of possible
states. The dynamics are described via local interactions indicating the rate at which a
vertex changes its state based on the states of its neighbors. Lyapunov functions [6] are
commonly employed to investigate IPS stability conditions. Contact processes [7], spatial
birth and death processes [8], lattice birth and death processes [9], and spatial birth–death–
move processes [10]—this is not a complete list of systems of interacting particles that
generalize simple birth and death processes. For details, see, e.g., [11–14].

Other generalizations of the simple birth-and-death process are birth and death pro-
cesses in random environments [15–18]. The birth and death process in a random envi-
ronment is a two-component process, one component of which describes the dynamics of
population size, and the other represents the state (phase) of the external environment. If
such a process is a Markov chain, it is called a quasi-birth-and-death process (QBD).

The state space of a QBD can be partitioned into non-empty disjoint subsets called
levels, such that one-step state transitions are restricted to states at the same level or two
adjacent levels. The transition matrix of a QBD is block-tridiagonal. If all blocks along
the main diagonal, except the boundary ones, are identical, then the QBD is said to be
level-independent.
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Let the stationary probability vector p of an irreducible and positive recurrent level-
independent QBD process be partitioned into subvectors p = [π0,π1,π2, . . .], correspond-
ing to the state space partition into levels. Then, the vector is such that.

πn = πn−1R, n ≥ 1,

where the matrix R, called the rate matrix, is the minimal non-negative solution of a
quadratic matrix equation [19,20] and Chapter 6 in [21]. In general, there is no explicit
solution for the quadratic matrix equations. However, the iterative logarithmic reduction
algorithm [22] has proven to be an efficient way to compute its minimal non-negative
solution R [23–25].

The matrix geometric method proposed in [19] led to the rapid development of new
matrix–analytic methods for stochastic modeling. These methods initiated by Neuts [19,26]
provide a powerful framework for the unified analysis of large classes of Markov processes
and, more importantly, for their numerical solution. Matrix–analytic methods have found
applications in a wide range of fields, including supply chains [27], retrial systems [28],
cognitive radio [29], and more. Matrix analysis methods and their applications as it stands
today are outlined in [22,30–38].

The multi-dimensional quasi-birth-and-death process (Md-QBD) is a Markov chain
x(t) = (α(t), β(t)) on the state space X = ZM

+ × J, where Z+ is the set of non-negative
integers and J = {1, 2, . . . , n} is the environmental space. The first component of the
process x(t) is a multiclass birth-and-death process α(t) = (α1(t), α2(t), . . . , αM(t)). The
second component β(t), called the phase process, takes values from the set J = {1, 2, . . . n}.
The number n of phases may be either finite or infinite. One-step transitions of x(t) from a
state (k, i) are restricted to states (n, j) such that k − n ∈ {−1, 0, 1}M.

By choosing any of the coordinates of the process α(t), say coordinate k, Md-QBD
x(t) = ((α1(t), α2(t), . . . , αM(t)), β(t)) with the phase space J can be transformed into one-
dimensional level-dependent QBD (LD-QBD) processes xk(t) = (αk(t), (α1(t), . . . , αk−1(t),
αk+1(t), . . . αM(t), β(t))) with the phase space ZM−1

+ × J [39]. We obtain another one-
dimensional LD-QBD process if each level l is obtained by merging all state subsets
{(k1, . . . , kM)} × J with maxki = l [40].

The explicit analytical representation for the stationary distribution of Md-QBDs
is unknown, and most work has been devoted to deriving asymptotic formulas of the
stationary distribution. Asymptotic properties of the stationary distribution of 2d-QBD
processes were studied in [41–44]. The conditions ensuring a positive-recurrent or transient
2d-QBD process were analyzed in [45].

For general Md-QBD, several process components can change their values simultane-
ously. In simple Md-QBD, no more than one component of α(t) may be changed at a time.
One-step transitions of simple Md-QBD from any state ((k1, k2, . . . , kM), i) are restricted
to states ((n1, n2, . . . , nM), j) such as |k1 − n1|+|k2 − n2|+ . . .+|kM − nM|≤ 1 . Simple Md-
QBD may be analyzed using an iterative power series algorithm, as was introduced in [46].
The review article [47] and Chapter 4 in [48] describe the application of the PSA for the
analysis of simple Md-QBD.

The state space of a Md-QBD can be partitioned into the levels Xl = Zl × J, l ≥ 0,
where Z0 = {n ∈ Z|n ≥ 1}, and Zl = {n ∈ Z|n ≥ 1, min(ni) = l}, l ≥ 1. Due to the
process’s homogeneity, it can be considered as the one-dimensional level-independent QBD
with an infinite rate matrix R in which the elements of the set X1 index entries.

This work aims to show that the stationary distribution of a simple Md-QBD has
a matrix-multiplicative solution expressed in terms of square matrices of order n and
propose iterative algorithms for computing these matrices. This may serve as a basis for
creating efficient algorithms for computing stationary distributions of the Md-QBDs in
the future. In Section 2, we study some systems of nonlinear matrix equations for sub-
stochastic matrices and propose several iterative algorithms for computing their minimal
non-negative solutions. In Section 3, for simple irreducible and positive-recurrent discrete-
time Md-QBD, we derive the matrix of the expected sojourn times in the states of the
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sets X(w) = {(k, i) ∈ X|k ≥ w}, w ≥ 1, before the first visit to any state outside X(w).
The matrix-multiplicative solution for the stationary distribution of the process in terms
of square matrices of order n is obtained in Section 4. We finally give some concluding
remarks in Section 5.

We use bold capital letters to denote matrices and bold lowercase letters to denote
vectors. For vectors x = (x1, x2, . . . , xM) and y = (y1, y2, . . . , yM), x ≥ y means that xj ≥ yj
for all j, and x ≥ y means that xj < yj for at least one value of j. Notations x ≤ y and x ≤ y
are defined similarly. Vector 1 represents the vector of all 1 s, and the vector em indicates
the vector with zero entries except the mth entry, which equals one.

2. Preliminaries

In what follows, Qm, −M ≤ m ≤ M, are non-negative square matrices of finite or infi-

nite order such that Q =
M
∑

r=−M
Qr is a stochastic matrix, and monotonicity and convergence

of a sequence of matrices mean their entry-wise monotonicity and convergence.

Theorem 1. The sequence of M-tuples {(Gm(k), 1 ≤ m ≤ M), k ≥ 0}, recursively defined by

Gm(0) = O f or 1 ≤ m ≤ M, and

Gm(k + 1) = Q−m + (Q0 +
M

∑
s=1

QsGs(k))Gm(k) f or 1 ≤ m ≤ M and k ≥ 0, (1)

is monotonically increasing and converges to the M-tuple (Gm, 1 ≤ m ≤ M), which is the
minimal solution of the system

Ym = Q−m + (Q0 +
M

∑
s=1

QsYs)Ym f or 1 ≤ m ≤ M, (2)

in the set of M-tuples (Ym, 1 ≤ m ≤ M) of non-negative matrices. Matrix G =
M
∑

r=1
Gr

is substochastic.

Proof of Theorem 1. We first show that the sequence {(Gm(k), 1 ≤ m ≤ M), k ≥ 0}

is monotonically increasing and satisfies
M
∑

m=1
Gm(k)1 ≤ 1 for all k ≥ 0. We proceed

using induction.

Since Gm(0) = O, we know that Gm(1) = Q−m ≥ Gm(0) and
M
∑

m=1
Gm(1)1 ≤ 1. Let us

assume that Gm(k) ≥ Gm(k − 1) and
M
∑

m=1
Gm(k)1 ≤ 1 for some k and all 1 ≤ m ≤ M. Then,

Gm(k + 1) = Q−m + (Q0 +
M
∑

s=1
QsGs(k))Gm(k)

≥ Q−m + (Q0 +
M
∑

s=1
QsGs(k − 1))Gm(k − 1) = Gm(k),

and

M
∑

m=1
Gm(k + 1)1 =

M
∑

m=1
Q−m1 + (Q0 +

M
∑

s=1
QsGs(k))

M
∑

m=1
Gm(k)1

≤
M
∑

m=1
Q−l1 + (Q0 +

M
∑

s=1
QsGs(k))1 ≤

M
∑

m=−M
Qm1 ≤ 1,

which proves the induction step. Thus, for every 1 ≤ m ≤ M, the sequence Gm(k),
k = 0, 1, 2, . . . is bounded and monotonically increasing. This implies the existence of
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the limits Gm = lim
k→∞

Gm(k), 1 ≤ m ≤ M, which satisfy the system (2) and the inequality

G1 =
M
∑

m=1
Gm1 ≤ 1.

Assume that (Y∗
m, 1 ≤ m ≤ M) is another non-negative solution of (2). We show via

induction that Gm(k) ≤ Y∗
m for all 1 ≤ m ≤ M and all k. Since Y∗

m ≥ O, we know that
Gm(0) = O ≤ Y∗

m for all 1 ≤ m ≤ M. Now, let us assume that Gm(k) ≤ Y∗
m for some k and

all 1 ≤ m ≤ M. Then,

Gm(k + 1) = Q−m + (Q0 +
M

∑
s=1

QsGs(k))Gm(k) ≤ Q−m + (Q0 +
M

∑
s=1

QsY
∗
s )Y

∗
m = Y∗

m

which proves the induction step and the minimal property of the M−tuple (Gm, 1 ≤ m ≤ M). □

Substochastic matrices Gm satisfy the system

Gm = Q−m + (Q0 +
M

∑
s=1

QsGs)Gm, 1 ≤ m ≤ M. (3)

Therefore, we have
(I − U)Gm = Q−m, 1 ≤ m ≤ M, (4)

where the matrix U is defined using

U = Q0 +
M

∑
s=1

QsGs. (5)

The following theorem describes some properties of the matrix U.

Theorem 2. Let the M-tuple (Gm, 1 ≤ m ≤ M) be the minimal non-negative solution of
the system (2). Then, the matrix U defined in (5) is substochastic. It is the minimal solution of
the equation

X = Q0 +
∞

∑
n=0

M

∑
m=1

QmXn Q−m (6)

in the set of non-negative matrices X such that the series converges.
The sequences

{
U

′
(k), k ≥ 1

}
and

{
U

′′
(k), k ≥ 1

}
defined using

U
′
(1) = Q0, U

′
(k + 1) = Q0 +

k

∑
n=0

M

∑
m=1

QmU
′
(k)n Q−m f or k ≥ 1, (7)

U
′′
(1) = Q0, U

′′
(k + 1) = Q0 +

∞

∑
n=0

M

∑
m=1

QmU
′′
(k)n Q−m f or k ≥ 1, (8)

are monotonically increasing and converging to U.

Proof of Theorem 2. The matrix is substochastic since the matrix Q =
M
∑

m=−M
Qm is

stochastic and Gm1 ≤ 1 for all 1 ≤ m ≤ M.
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From (3) and (5) it follows that

U = Q0 +
M
∑

m=1
QmGm = Q0 +

M
∑

m=1
Qm(Q−m + UGm) = Q0 +

M
∑

m=1
QmQ−m +

M
∑

m=1
QmUGm = . . .

= Q0 +
M
∑

m=1
QmQ−m +

M
∑

m=1
QmUGm +

M
∑

m=1
QmU2Q−m +

M
∑

m=1
QmU3Q−m + . . .

= Q0 +
∞
∑

n=0

M
∑

m=1
QmUn Q−m.

Therefore, the matrix U satisfies (6).
Let us show via induction that the sequence

{
U

′′
(k), k ≥ 1

}
is monotonically increas-

ing and satisfies U
′′
(k) ≤ U for all k ≥ 1. Since U

′′
(1) = Q0 ≤ U and

U
′′
(2) = Q0 +

∞

∑
n=0

M

∑
m=1

Qm(Q0)
n Q−m ≤ Q0 +

∞

∑
n=0

M

∑
m=1

QmUn Q−m = U,

we know that U
′′
(2) ≥ U

′′
(1) and U

′′
(2) ≤ U. Let us assume that U

′′
(k) ≥ U

′′
(k − 1) and

U
′′
(k) ≤ U for some k. Then,

U
′′
(k + 1) = Q0 +

∞

∑
n=0

M

∑
m=1

QmU
′′
(k)n Q−m ≥ Q0 +

∞

∑
n=0

M

∑
m=1

QmU
′′
(k − 1)n Q−m = U

′′
(k)

and

U
′′
(k + 1) = Q0 +

∞

∑
n=0

M

∑
m=1

QmU
′′
(k)n Q−m ≤ Q0 +

∞

∑
n=0

M

∑
m=1

QmUn Q−m = U.

Thus, the sequence U
′′
(k), k = 1, 2, . . ., is bounded and monotonically increasing. This

implies the existence of the limit U
′′
= lim

k→∞
U

′′
(k), which satisfies Equation (6) and the

inequality U
′′ ≤ U. Similarly, it can be proven that the sequence U

′
(k), k = 1, 2, . . ., is

monotonically increasing and bounded by U. The limit U
′
= lim

k→∞
U

′
(k) ≤ U exists and

satisfies Equation (6).
Consider the sequence {U(k), k ≥ 1} defined using

U(k) = Q0 +
M

∑
m=1

QmGm(k − 1) (9)

with Gm(k) defined in Theorem 1. Since

Gm(k) = Q−m + U(k)Gm(k − 1), (10)

we have

U(k + 1) = Q0 +
M
∑

m=1
QmGm(k) = Q0 +

M
∑

m=1
QmQ−m +

M
∑

m=1
QmU(k)Gm(k − 1))

= Q0 +
M
∑

m=1
QmQ−m +

M
∑

m=1
QmU(k)Q−m +

M
∑

m=1
QmU(k)U(k − 1)Gm(k − 2) = . . .

= Q0 +
k
∑

n=0

M
∑

m=1
QmU(n)U(n − 1) · · ·U(1)Q−m

. (11)

It follows that

U(k + 1) = U(k) +
M

∑
m=1

QmU(k)U(k − 1) · · ·U(1)Q−m,
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which implies that the sequence {U(k), k ≥ 1} is increasing. From this and (9), we obtain
the following inequality:

U(k + 1) ≤ Q0 +
k

∑
n=0

M

∑
m=1

QmU(k)nQ−m. (12)

We use this to show that U(k) ≤ U
′
(k) ≤ U

′′
(k) for all k ≥ 1. We then proceed using

induction. We have U(1) = U
′
(1) = U

′′
(1) = Q0; therefore, U(1) ≤ U

′
(1) ≤ U

′′
(1). Now

suppose that U(k) ≤ U
′
(k) ≤ U

′′
(k) for some k and we can show that

U(k + 1) ≤ U
′
(k + 1) ≤ U

′′
(k + 1). It follows from (12) that

U(k + 1) ≤ Q0 +
k
∑

n=0

M
∑

m=1
QmU(k)nQ−m≤ Q0 +

k
∑

n=0

M
∑

m=1
QmU

′
(k)nQ−m = U

′
(k + 1)

≤ Q0 +
k
∑

n=0

M
∑

m=1
QmU

′′
(k)nQ−m≤ Q0 +

∞
∑

n=0

M
∑

m=1
QmU

′′
(k)nQ−m = U

′′
(k + 1).

Therefore, U(k + 1) ≤ U
′
(k + 1) ≤ U

′′
(k + 1), which proves the induction step. This

implies that U(k) ≤ U
′
(k) ≤ U

′′
(k) for all k ≥ 1 and that U ≤ U

′ ≤ U
′′
. Since we have

already shown that U
′′ ≤ U, it means that the sequences {U(k), k ≥ 1},

{
U

′
(k), k ≥ 1

}
,

and
{

U
′′
(k), k ≥ 1

}
converge to the same solution U = U

′
= U

′′
of Equation (6).

Assume that X∗ is another non-negative solution of (6). We show that U
′′
(k) ≤ X∗ for

all k, such that U = lim
k

U
′′
(k) ≤ X∗. We prove this using induction. Since

X∗ = Q0 +
∞

∑
n=0

M

∑
m=1

Qm(X
∗)n Q−m ≥ Q0,

we have that U
′′
(1) = Q0 ≤ X∗. Now, suppose that U

′′
(k) ≤ X∗ for some k. Then,

U
′′
(k + 1) = Q0 +

∞

∑
n=0

M

∑
m=1

QmU
′′
(k)n Q−m≤ Q0 +

∞

∑
n=0

M

∑
m=1

Qm(X
∗)n Q−m = X∗,

which proves the induction step. Thus, U = lim
k

U(k) ≤ X∗, and U is the minimal solution

of (6). □

For any substochastic matrix M, we say that the series ∑
k≥0

Mk converges if it has finite

entries. In this case, we say that the matrix I−M is invertible and write ∑
k≥0

Mk = (I − M)−1,

even if the order of M is infinite. If the series
∞
∑

k=0
Uk converges, then the matrix U, defined

using (5), satisfies

U = Q0 +
M

∑
m=1

Qm(I − U)−1Q−m. (13)

We can use Equations (9) and (10) as the basis of the following algorithm for the
calculation of matrices Gm, 1 ≤ m ≤ M, and U:

Gm(0) = O, 1 ≤ m ≤ M; (14)

U(k) = Q0 +
M

∑
m=1

QmGm(k − 1), (15)

Gm(k) = Q−m + U(k)Gm(k − 1), 1 ≤ m ≤ M, k = 1, 2, . . . (16)
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The convergence of this iterative scheme was proven during the proof of Theorem 2. Al-
though the convergence of the sequence U(k) is slower than that of the sequences in
(7) and (8), the number of arithmetic operations per iteration is significantly less than in
(7) and (8). The algorithm (14)–(16) involves 2M matrix multiplications and 2M matrix
additions per iteration. For finite n, this requires 2Mn3 multiplications of scalars and
2M(n3 − n2) + 2Mn2 additions. Therefore, the worst-case computational complexity per
iteration is O(2Mn3).

3. Multi-Dimensional QBD Processes

Consider a discrete-time Md-QBD process x(t) = (α(t), β(t)) on the state space
X = ZM

+ × J, and denote Pk,n(i, j) the probability of a one-step transition from (k, i) to
(n, j). We assume that the transition probability matrix P = [Pk,n(i, j)] (k, n ∈ ZM

+ , i, j ∈ J)
partitioned into blocks Pk,n of order n, has the following form:

Pk,n = O if
M

∑
m=1

|km − nm| > 1, for k, n ≥ 0;

Pn,n = Q0, Pn−em ,n = Qm, Pn+em ,n = Q−m, for 1 ≤ m ≤ M and n ≥ 1, (17)

where Qm, −M ≤ m ≤ M, are non-negative square matrices such that Q =
M
∑

r=−M
Qr is a

stochastic matrix.
We denote using P(w) the block matrix with blocks Pk,n, k, n ≥ w. The following

theorem demonstrates how the minimal non-negative solution of Equation (2) can be used
for the decomposition of P(w) as a product of the two block matrices.

Theorem 3. Let the M-tuple (Gm, 1 ≤ m ≤ M), be the minimal non-negative solution of Equation
(2), let the matrix U be defined using (5), and let a vector w ∈ ZM

+ satisfy w ≥ 1. Then, the
matrix I − P(w) can be decomposed as a product

I − P(w) = Θ(w)(I − Ψ(w)), (18)

where matrices Θ(w) = [Θk,n(w)]k,n≥w and Ψ(w) = [Ψk,n(w)]k,n≥w, partitioned into blocks
of the order n, are defined as follows,

Θk;k(w) = I − U, Θk;k+em(w) = −Qm, 1 ≤ m ≤ M; (19)

Θk,n(w) = O i f n ̸= k and n ̸= k + em f or all 1 ≤ m ≤ M; (20)

Ψk;k−em(w) = Gm, 1 ≤ m ≤ M; Ψk,n(w) = O i f n ̸= k − em f or all 1 ≤ m ≤ M. (21)

Proof of Theorem 3. For the matrix Θ(w)Ψ(w) block located in a block row k and a block
column n, we have

∑
r≥w

Θk,r(w)Ψr,n(w) = Θk,k(w)Ψk,n(w) +
M
∑

m=1
Θk,k+em(w)Ψk+em ,n(w)

= (I − U)Ψk,n(w)−
M
∑

m=1
QmΨk+em ,n(w)=


−

M
∑

m=1
QmGm if n = k,

(I − U)Gr if n = k − er for some 1 ≤ r ≤ M,
O otherwise.
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From this and (19) it follows that

Θk,n(w)− ∑
r≥w

Θk,r(w)Ψr,n(w) =


(I − U) +

M
∑

m=1
QmGm if n = k,

−(I − U)Gr if n = k − er for some 1 ≤ r ≤ M,
−Qr if n = k + er for some 1 ≤ r ≤ M,
O otherwise.

Finally, using (4) and (5), we obtain

Θk,n(w)− ∑
r≥w

Θk,r(w)Ψr,n(w) =


I − Q0 if n = k,
−Q−r if n = k − er for some 1 ≤ r ≤ M,
−Qr if n = k + er for some 1 ≤ r ≤ M,

O otherwise,

which proves Equality (22). □

The matrix Θ is the block upper triangular and Ψ is the block low triangular in the
following sense: Θk,n = O if k ≤ n; Ψk,n = O if n ≤ k. Thus, the decomposition in (18)
may be considered as the block UL decomposition of the matrix I − P(w).

Consider an irreducible and positively recurrent Markov chain with a state space S.
Let D be a proper subset of S, let PD be the submatrix of transition probabilities between
the states of D, and let ND denote the matrix of the expected sojourn times in the states of
D before the first visit to any state outside D. Lemma 5.1.2 from [22] describes the relation
between the matrices PD and ND.

Lemma 1. The matrix ND of the expected sojourn times in the subset D, before the first passage to
the complementary subset S\D, is given using ND = (I − PD)

−1, where (I − PD)
−1 = ∑

k≥0
Pk

D is

the minimal non-negative solution of the systems (I − PD)ND = I and ND(I − PD) = I.

We use this lemma to prove that, for the irreducible and positive-recurrent process
x(t), the matrix Θ(w) in the decomposition in (18) of the matrix I − P(w) is invertible.

Theorem 4. In addition to the conditions of Theorem 3, let the Md-QBD x(t) be irreducible and
positive-recurrent. Then, the matrix I−U is invertible, and the matrix I − P(w) can be decomposed
as a product

I − P(w) = (I − Φ(w))D(w)(I − Ψ(w)), (22)

where matrices D(w) = [Dk,n(w)]k,n≥w, Φ(w) = [Φk,n(w)]k,n≥w , and Ψ(w) = [Ψk,n(w)]k,n≥w,
partitioned into blocks of the order n, are defined as follows,

Dk;k(w) = I − U, Dk,n(w) = O i f n ̸= k; (23)

Φk;k+em(w) = Rm, 1 ≤ m ≤ M; (24)

Φk,n(w) = O i f n ̸= k + em f or all 1 ≤ m ≤ M; (25)

Ψk;k−em(w) = Gm, 1 ≤ m ≤ M; Ψk,n(w) = O i f n ̸= k − em f or all 1 ≤ m ≤ M; (26)

with the matrix Rm given using

Rm = Qm(I − U)−1, 1 ≤ m ≤ M. (27)

Proof of Theorem 4. Firstly note that P(w) = PD, where the subset D is given using
D = {(k, j) ∈ X|k ≥ w}, and from Lemma 1, it follows that the matrix I− P(w) is invertible.
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Consider the rth power Ψ(w)r = [Ψ
(r)
k,n(w)]

k,n≥w
of the matrix Ψ(w), partitioned into

blocks of the order n. Diagonal blocks Ψ
(r)
k,k(w) of the matrix Ψ(w)r are zero for all r ≥ 1.

If k ≥ n ≥ w and
M
∑

m=1
(ki − wi) = l, a non-diagonal block Ψ

(r)
k,n(w) is only non-zero in the

case where r < l and
M
∑

m=1
(ni − wi) = l − r. It follows that the series

∞
∑

r=0
Ψ
(r)
k,n(w) is equal to

l
∑

r=0
Ψ
(r)
k,n(w). Therefore, the matrix I − Ψ(w) in (22) is invertible.

Post-multiplying both sides of (22) using (I − Ψ(w))−1 and pre-multiplying using
(I − P(w))−1, we find that

(I − Ψ(w))−1 = (I − P(w))−1
Θ(w). (28)

Let us partition the matrix (I − P(w))−1 into blocks Nk,n(w) (k, n ≥ w) of order n,
and partition the matrix (I − Ψ(w))−1 into blocks Wk,n(w) (k, n ≥ w) of order n. Then,
Equation (28) may be written in block form as

Wk,n(w) = ∑
r≥w

Nk,r(w)Θr,n(w).

From this, where k = n = w, we obtain

I = ∑
r≥w

Nw,r(w)Θr,w(w) = Nw,w(w)(I − U),

which means that Nw,w(w) = (I − U)−1 and proves the invertibility of the matrix I − U.
Now, the matrix Θ(w), defined in Theorem 3, can be decomposed as

Θ(w) = (I − Φ(w))D(w),

which implies (22), completing the proof. □

Note that the matrix Nw,w(w) = (I − U)−1 denotes the expected number of returns to
{w} × J before the first passage to the subset X0(w) = X\X(w), and the matrix U records
the return probabilities to {w} × J under the taboo of X0(w) (see Theorem 5.2.3 in [3]).

We define the function γ(k, n) as γ(k, n) =
M
∑

m=1
(nm − km) if k ≤ n, and γ(k, n) = 0

otherwise. We also denote using Θ(k, n) the set of sequences θ = (θ1, θ2, . . . , θγ) of
the length γ = γ(k, n) such that k + eθ1 + eθ2 + . . . + eθγ

= n. Theorem 4 has the
following consequence.

Corollary 1. Let the matrix (I − P(w))−1 be partitioned into blocks Nk,n(w), k, n ≥ w, related
to the division of the set X(w) into subsets {k} × J, k ≥ w. Then, we have

Nk,n(w) = ∑
r:

w≤r≤k
w≤r≤n

∑
σ∈Θ(r,k)

∑
θ∈Θ(r,n)

Gσ1Gσ2 · · ·Gσγ(r,k)NRθ1Rθ2 · · ·Rθγ(r,n)
, (29)

where N = (I − U)−1, and it is assumed that the matrix products are equal to the identity matrix
if γ(r, k) = 0 or γ(r, n) = 0.

Proof of Corollary 1. It follows from Theorem 3 that the matrix (I − P(w))−1 can be
decomposed as

(I − P(w))−1 = V(w)D(w)−1W(w) (30)
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with the matrices V(w) and W(w) defined using

V(w) = (I − Ψ(w))−1 =
∞

∑
k=0

Ψ(w)k, and W(w) = (I − Φ(w))−1 =
∞

∑
k=0

Φ(w)k, (31)

respectively. We partition these matrices as V(w) = [Vk,n]k,n≥w and W(w) = [Wk,n]k,n≥w
following the division of the set X(w) into subsets {k} × J, k ≥ w. It follows from (30) that

Vk,r = ∑
σ∈Θ(r,k)

Gσ1Gσ2 . . . Gσγ(r,k) , for r ≤ k, and (32)

Wr,n = ∑
θ∈Θ(r,n)

Rθ1Rθ2 . . . Rθγ(r,n)
, for r ≤ n. (33)

Combining (31)–(33), we find that the matrices Nk,n(w), k, n ≥ l1, have the form of
(30), which completes the proof. □

The submatrices Nk,n(w), k, n ≥ w, of the matrix (I − P(w))−1 satisfy the following
property:

Nk,n(w) = Nk−w+1,n−w+1,

where Nk,n = Nk,n(1), k, n ≥ 1. Therefore, the matrices Nk,n, k, n ≥ 1, uniquely define the
matrices Nk,n(w), k, n ≥ w, for all w ≥ 1. In particular, we have that

Nk,n(l1) = Nk−(l−1)1,n−(l−1)1 for k, n ≥ l1. (34)

The matrices Rm, 1 ≤ m ≤ M, defined using (27), satisfy Rm = Qm +RmU, 1 ≤ m ≤ M,
and the matrix U may be written as

U = Q0 +
M

∑
m=1

RmQ−m. (35)

Therefore, the matrices Rm, 1 ≤ m ≤ M, satisfy the following system:

Rm = Qm + Rm(Q0 +
M

∑
s=1

RsQ−s), for 1 ≤ m ≤ M. (36)

Note, if any of the matrix U, the M-tuple (Gm, 1 ≤ m ≤ M), or the M-tuple
(Rm, 1 ≤ m ≤ M) is known, then we may determine the other two by applying some
of the following equations:

Rm = Qm(I − U)−1, Gm = (I − U)−1Q−m, QmGm = RmQ−m, (37)

U = Q0 +
M

∑
m=1

RmQ−m, U = Q0 +
M

∑
m=1

QmGm. (38)

4. Stationary Distribution

Let a vector w ∈ ZM
+ satisfy w ≥ 1. We partition the stationary probability vector p

of x(t) into subvectors πi(w), (i ≥ 0), related to the partition of the state set X into the
subsets Xl(w), l ≥ 0, and partition each vector πi(w) into subvectors pn (n ∈ Zi(w)).
The following theorem gives an expression for the vectors pn, n ∈ Z1(w), in terms of the
vectors pk, k ∈ Z0(w).
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Theorem 5. Let Md-QBD x(t) be irreducible and positive-recurrent, let the matrix U be the
minimal non-negative solution of (6), and let the matrices Rm, 1 ≤ m ≤ M, be defined using (27).
If vectors w, n ∈ ZM

+ satisfy w ≥ 1 and n ∈ Z1(w), then we have

pn = ∑
k∈Z1(w)

M

∑
m=1

km=wm

pk−em
QmNk,n(w). (39)

Proof of Theorem 5. Let us partition the matrix (I − P(w))−1 into blocks Hi,j(w) (i, j ≥ 1),
related to partitioning the set X(w) into the subsets Xl(w), l ≥ 0. It is known (see Theorem
6.2.1 in [3]) that the stationary probability vector p = [π0(w),π1(w),π2(w), . . .] satisfies
the equation

π1(w) = π0(w)A(w)H1,1(w), (40)

where A(w) is the matrix of the transition probabilities from states into states in Z1(w)× J.
Let us partition the matrices A(w) = [Pk,n]k∈Z0(w),n∈Z1(w) and H1,1(w) = [Nk,n(w)]k,n∈Z1(w)

into blocks of the order n and partition the vectors π0(w) = (pk)k∈Z0(w) and π1(w) = (pk)k∈Z1(w)

into subvectors of length n.
For blocks Pk,n, r ∈ Z0(w), and k ∈ Z1(w) of the matrix A(w) we have Pr,k = Qm if

r = k − em for some 1 ≤ m ≤ M; otherwise, we have Pr,k = O. Therefore, Equation (40)
may be transformed as (39). Thus, the result is proven. □

Theorem 6. Let Md-QBD x(t) be irreducible and positive-recurrent, let the matrix U be the
minimal non-negative solution of (6), and let the matrices Rm, 1 ≤ m ≤ M, be defined us-
ing (27). If a vector w ∈ ZM

+ satisfies w ≥ 1, then the vector of the stationary probabilities
π0(w) = [pn]n∈Z0(w) is proportional to the unique solution q(w) = [qn]n∈Z0(w) of the following
linear system

qn = ∑
k∈Z0(w)

qkPk,n + ∑
r,s∈Z1(w)

M

∑
m=1

km=wm

qr−em
QmNr,s(w)Ps,n, n ∈ Z0(w); (41)

∑
n∈Z0(w)

qn1 = 1.

Proof of Theorem 6. Consider the restricted process on X0(w). From Theorem 5.3.1 in [3],
the transition matrix P(X0(w)) of the restricted process is given using

P(X0(w)) = B(w) + A(w)(I − P(w))−1C(w). (42)

The stationary probability vector q(w) of the restricted process is proportional to
π0(w) and is the unique solution of the system

q(w) = q(w)P(X0(w)), qw1 = 1. (43)

Let us partition the matrices A(w) = [Pk,n]k∈Z0(w),n∈Z1(w), B(w) = [Pk,n]k,n∈Z0(w),
and C(w) = [Pk,n]k∈Z1(w),n∈Z0(w) into blocks of order n and partition the vector q into
the subvectors qk, k ∈ Z0(w). From (17) and (42), it follows that the system (43) may be
written as (41), which completes the proof. □

5. Conclusions

This study presents several theoretical results that may be used to calculate the sta-
tionary distribution of simple Md-QBDs. It includes the following four stages.
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(1) First, there is a need to find the minimal non-negative solution U of Equation (6) and
calculate matrices N = (I − U)−1, Gm = NQ−m, and Rm = QmN, 1 ≤ m ≤ M. This
can be performed using the simple algorithms (14)–(16) or recursive procedures of
Theorems 1 and 2;

(2) Then, one must partition the set Z = ZM
+ into levels Zl(1), l ≥ 0, and determine the

stationary probability vector q = (qn)n∈Z0(1)
of the restricted process on X0(1), which

is the unique solution of the linear system in (41) with w = 1;
(3) After this, one must calculate a vector x = (xn)n∈Z proportional to the vector of the

stationary probabilities. We set xn = qn for n ∈ Z0(1) and then use Equation (39) to
subsequently calculate subvectors xn, n ∈ Z1(l1), for l = 1, 2, . . .;

(4) Finally, the stationary probability vector p may be obtained by normalizing the vector
x so that ∑

n∈Z
xn1 = 1.

For a practical implementation of this approach, it is necessary to overcome several
difficulties similar to those encountered when calculating the stationary distribution of one-
dimensional QBDs; see [22,24]. The normalization of x might lead to problems of overflow
if the value of x1 is much greater than l. To overcome such problems, one might renormalize
the vector x each time new subvectors xn, n ∈ Zl(1), are computed during Stage 3. When n
is infinite, it is impossible to actually completely compute any infinite vectors and matrices,
and it will be necessary to truncate this set of phases; see possible solutions in [49]. For
Md-QBDs, it is also desirable to develop faster algorithms for calculating the matrices U
and Gm, similar to the logarithmic reduction algorithm for one-dimensional QBDs [21].
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