
Citation: Su, R.-H.; Tseng, T.-M.; Lin,

C. Integrated Profitability Evaluation

for a Newsboy-Type Product in Own

Brand Manufacturers. Mathematics

2024, 12, 533. https://doi.org/

10.3390/math12040533

Academic Editor: Chunqiao Tan

Received: 24 December 2023

Revised: 5 February 2024

Accepted: 7 February 2024

Published: 8 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Integrated Profitability Evaluation for a Newsboy-Type Product
in Own Brand Manufacturers
Rung-Hung Su * , Tse-Min Tseng and Chun Lin

Department of Statistics and Information Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
410145048@m365.fju.edu.tw (T.-M.T.); 410145177@m365.fju.edu.tw (C.L.)
* Correspondence: 141637@mail.fju.edu.tw

Abstract: Effective inventory management depends on accurate estimates of product profitability
to formulate ordering and manufacturing strategies. The achievable capacity index (ACI) is a
simple yet efficient approach to measuring the profitability of newsboy-type products with normally
distributed demand, wherein profitability is presented as the probability of achieving the target
profit under the optimal ordering quantity. Unfortunately, the ACI is applicable only to retail stores
with a single demand. In the current study, we addressed the issue of measuring the integrated
profitability of newsboy-type products sold in multiple locations with independent demand levels,
such as own-branding-and-manufacture (OBM) companies with multiple owned channels. We began
by formulating profitability in accordance with multiple independent normal demands, and then
developed an integrated ACI (IACI) to simplify expression. We also derived the statistical properties
of the unbiased estimator to determine the true IACI in situations where demand patterns are
unknown. Finally, we conducted hypothesis testing to determine whether the integrated profitability
meets a stipulated minimum level. For convenience, we tabulated the critical values as a function of
sample size, confidence level, the number of channels, and the stipulated minimum level. One can
make decisions simply by estimating the IACI based on historical demand data from all channels and
then looking up the critical value in the corresponding tables. Consequently, the proposed methods
make it possible for OBM managers to address integrated profitability evaluation, which is effective
in deciding the optimal timing to pull unprofitable items from the shelves by looking up generic
tables. Furthermore, we also performed numerical and sensitivity analyses for a real-world case to
illustrate the applicability and some managerial implications of the proposed scheme.

Keywords: inventory; achievable capacity index; newsboy problem; OBM; profitability estimation

MSC: 90B05

1. Introduction

The newsboy problem is a classic optimization problem that originated from a boy
who sells the neighborhood newsletter and decides on copies under uncertainty in weekly
demand. Now, most of the literature involving to newsboy problem has extended to
products with a restricted shelf-life (e.g., daily newspapers and fresh food with an expiry
date) under uncertain demand. Note that some of the literature also refers to this type of
product as a newsboy-type product. For newsboy-type products, there is a single ordering
opportunity at the start of the selling period. If the order quantity exceeds demand after
the end of the period, then the seller must bear the disposal costs of the excess inventory.
If the order quantity falls short of demand, then the seller must consider the opportunity
cost associated with the shortage. This type of product is also called a single-period
product. The sellers of single-period products generally seek to determine the optimal
order quantity for a stipulated objective function (e.g., minimizing the expected cost,
maximizing the expected profit, or maximizing the probability of achieving a target profit)
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within a probabilistic demand framework. Note that the newsboy problem is applicable to
both the manufacturing and retail industries.

Most of the literature related to inventory problems considered the practical scenarios
involving marketing activities and government policies. Edalatpour et al. [1] considered
that sustainable production and inventory management simultaneously take into account
the economic, environmental, and social criteria when determining pricing policies or
inventory levels. For example, the carbon tax and cap-and-trade regulations are environ-
mentally friendly approaches to reducing carbon emissions, which both reduce emissions
by encouraging the lowest-cost emissions reductions. Lee [2] developed an EOQ model
jointly determining optimal order quantity and investment in carbon emissions reduction
under the cap-and-price regulation policy. Entezaminia et al. [3] explored trading and
production planning in an unreliable manufacturing system with cap-and-trade regulation.
Hasan et al. [4] optimized the inventory level and technology investment under a carbon
tax, cap-and-trade, and strict carbon limit regulations. Khanna and Yadav [5] developed an
EOQ model for freshness and stock-dependent demand with an expiration date under the
cap-and-trade mechanism. Qi et al. [6] considered cap-and-trade regulation and uncertain
market demand in a risk-averse firm. Konstantaras et al. [7] proposed a continuous review
production-inventory model in the green supply chain under carbon tax regulation. Karam-
pour et al. [8] developed a bi-objective nonlinear optimization model to maximize the
profit of inventory and minimize the carbon emissions of transportation, simultaneously.
Zhang et al. [9] studied an inventory model involving a consignment stock policy and a
cap-and-trade regulation. Hasan et al. [10] considered green technology investment and
carbon regulations (i.e., carbon tax, cap-and-offset, and cap-and-trade) in their inventory
model. Maity et al. [11] establish a green inventory model, in which the demand rate
depends on selling price, stock, and green concern level. San-José et al. [12] considered a
deteriorating product with power demand and full backlogging in a sustainable inventory
model under a carbon emission tax. In recent years, most of the literature involving the
newsboy problem also considers these two regulations for carbon emission in their models.
Bai and Chen [13] studied a distributionally robust newsboy problem with dual sourcing
under carbon tax and cap-and-trade regulations. Lee et al. [14] considered a newsboy model
with a carbon emission cap-and-trade system under the assumption that policymakers de-
termining the cap for carbon emissions also have the power to regulate prices in the carbon
trading market. Qu et al. [15] considered cap-and-trade regulations in which the carbon
footprint exists in the production, sales, residual disposal, and return warranty service
stages. Chen et al. [16] explored the optimal joint decision problem of shipping quantity,
product pricing strategies, and carbon emissions of online retailers under a new logistics
mode. Zhao et al. [17] analyzed the optimal joint strategies on order quantity and sustain-
able technology investment, in which sustainable technology can decrease greenhouse gas
emissions. Adhikary and Kar [18] considered perishable goods in a multiobjective newsboy
problem which simultaneously maximizes expected profit and minimizes the total carbon
emissions. Gayon and Hassoun [19] studied a newsboy problem with greenhouse gas
emissions at the disposal stage regulated by a cap-and-trade policy. Other researchers have
addressed the newsboy problem in virtual stores. Ma et al. [20] considered a problem with
drop-shipping and resalable returns, wherein both bricks-and-clicks and online businesses
were available. Ma and Jemai [21] analyzed two policies aimed at optimizing the rationing
of store inventory, including a threshold policy and a fixed-portion policy. Some of the
literature also used data-driven methods to address the newsboy problem, such as deep
learning and machine learning. Xu et al. [22] constructed a distribution ambiguity set
with the nonparametric characteristics of the true distribution based on data, and then
used it to make robust decisions for the newsboy problem. Kou and Wan [23] combined
absolute robust optimization with a data-driven uncertainty set to address the multi-item
newsboy problems. Lin et al. [24] proposed a data-driven approximation to the theoretical
risk-averse newsboy model under a value-at-risk constraint. Neghab et al. [25] presented
an integrated learning and optimization method based on deep learning for the data-driven



Mathematics 2024, 12, 533 3 of 21

newsboy problem with observable and unobservable features. Yang et al. [26] studied a
data-driven newsvendor problem, in which the replenishment decisions are obtained by
mapping high-dimensional and mixed-frequency features of historical data. Tian et al. [27]
investigated a data-driven newsboy problem, in which textual review data and histori-
cal data were accessible. Chen [28] considered decision-makers’ risk preferences in the
data-driven newsboy models.

To maximize profits, retailers must consider “what/which to order” as well as “how
much to order”, particularly in situations with limited shelf space. The products that
make it onto the shelves are generally those with the highest estimated profitability. Thus,
estimating profitability is a key task for retailers. A number of researchers have used the
estimated results of the objective function to explain the market performance of newsboy-
type products. Kevork [29] developed an estimator for the maximum expected profit as a
representation of product profitability. They also used the statistical properties of the esti-
mator for inference. Halkos and Kevork [30,31] further derived the interval estimation for
the maximum expected profit based on normally-, exponentially-, and Rayleigh-distributed
demand. Sundar et al. [32] derived the lower bound of interval estimation for the maximum
expected profit to present the conservative profitability of the product. Su and Pearn [33]
considered that the maximum probability of achieving a target profit can also be used to
measure the market performance of the newsboy-type product. Therefore, they defined the
maximum probability in the case of normally distributed demand as the profitability of
a newsboy-type product. Furthermore, they also proposed the achievable capacity index
(ACI), which is positively correlated with profitability, and further studied profitability
estimation using ACI under unknown mean and variance parameters. Note that the sim-
plified formulation of ACI makes it easy to derive the statistical properties of the ACI
estimator, and researchers have explored the practical applicability of the ACI based on
statistical inference. Su and Pearn [33] established a hypothesis test that involves selecting
from among multiple homogeneous products. Su and Pearn [34] addressed the problem
of determining whether the profitability of a product meets a stipulated minimum level
in order to determine the optimal timing to pull unprofitable items from the shelves. To
meet the conditions encountered in real-world scenarios, profitability analysis has also
been used to investigate the assumptions of uncertain demand. Su et al. [35] considered
the issue of data collection in situations involving multiple samples. Su et al. [36] derived
the ACI and statistical properties of its estimator under the assumption that demand is
highly uncertain and obeys an exponential distribution. To eliminate overestimates of
profitability due to sampling error, Su et al. [37] and Su et al. [38] obtained the lower
confidence bound of the ACI as an estimate of conservative profitability for newsboy-type
products. Su et al. [39] also considered the issue of conservative profitability for newsboy
products with exponentially distributed demand based on multiple samples.

1.1. Problem Statement and Existing Methods

Since competition in the manufacturing sector has increased, many manufacturers are
dedicated to transforming themselves from original equipment manufacturers (OEM) or
original design manufacturers (ODM) to own brand manufacturers (OBM). OBM refers to
a type of manufacturing company that not only manufactures products, but also develops
and owns the brand associated with those products. Therefore, the OBM companies are
responsible for the entire product lifecycle, including design, production, branding, and
marketing. The founder of ACER, President Shih, also advocates that manufacturers
should further develop R&D and marketing to create more added value [40]. In an effort
to safeguard brand image, common OBM firms manufacture and sell products under
their own brand within their own sales channels (e.g., flagship stores, direct-selling stores,
franchise stores, counters, and stipulated retailers with contracts). This model is not
conducive to business expansion; however, it does allow the transfer of stock among
channels to reduce the risk of overstocking or running out of stock due to uncertain
demand. To the best of our knowledge, it appears that most OBM firms adjust their
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manufacturing and sales strategies in accordance with evaluations of profitability based on
the total revenue in all channels. Note, however, that the total revenue gives no indication
of the impact of operating costs, such as surpluses, shortages, disposal costs, or the cost of
manufacturing. Moreover, using total revenue as a means to gauge a product’s profitability
might not encompass the nuances of statistical inference, due to unpredictable demand.
Based on our review of the literature, the ACI index appears to be a useful tool for retailers
seeking an estimate of profitability for a newsboy-type product. Unfortunately, the ACI is
applicable only to retail stores with single demand; i.e., the ACI cannot be used to measure
the integrated profitability of a newsboy-type product sold in multiple locations, such as
OBM companies with multiple owned channels.

1.2. Research Objective

The research gaps in the above-mentioned section motivated us to develop a suitable
ACI for the estimation and measurement of product profitability for use by OBM compa-
nies with multiple owned channels, in which the transfer of products among channels is
permitted to moderate operational losses resulting from demand uncertainty. Furthermore,
it also motivated us to explore the integrated profitability evaluation for a newsboy-type
product. The main contribution of evaluation results is effective for OBM managers in
deciding the optimal timing to pull unprofitable items from the shelves. The objectives
of this research are as follows. In Section 2, we formulated the integrated profitability for
a newsboy-type product sold in multiple channels under normally distributed demand,
and developed an integrated ACI (IACI) index, which has a simplified form and positively
correlated with integrated profitability. Then, we derived the statistical properties of the
IACI estimator for use in statistical inference. Note that a discussion of a scenario case
involving multiple samples is also explored. In Section 3, based on the statistical proper-
ties of the IACI estimator, we established a hypothesis test, which involves determining
whether the integrated profitability of the product meets the stipulated minimum level, i.e.,
integrated profitability evaluation. We also established guidelines and steps for decision-
making. Section 4 illustrates the applicability of the proposed scheme in a numerical
example involving profitability evaluation in an OBM company. The sensitivity analysis
of the numerical example also performed to obtain managerial insights. In Section 5, we
outlined the concluding remarks and future research directions.

2. Integrated Profitability

In this section, we first formulate integrated profitability for a single-period product,
which is defined as the probability of achieving a target profit for all channels under
optimal manufacturing quantity. Note that the time length of the single period is defined
as the time length of shelf-life. Then, we develop an IACI index with a simplified form to
express integrated profitability, and derive the statistical properties of its estimator. For
convenience, the notation used to construct the integrated profitability is listed as follows:

p the selling price of a product;
c the manufacturing cost of a product;
cp the net profit of a product without any cost impact, i.e., cp = p − c;
cs the shortage cost of a product;
cd the disposal cost for a surplus product;
ce the excess cost for a product, i.e., ce = cd + c;
h the number of channels, the set of all channels is denoted as {ψ1, ψ2, . . . , ψh};
di the demand for the channel ψi, where i = 1, 2, . . . , h;
Qi the order quantity for the channel ψi;
Qt the total order quantity for all channels per period, i.e., Qt = ∑h

i=1 Qi;
dt the total demand for all channels per period, i.e., dt = ∑h

i=1 di;
kt the stipulated target profit;
Tt the target demand.
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2.1. Formulations of Integrated Profitability and IACI

This study considers an OBM company with h owned channels selling a newsboy-type
product, wherein the demands of all channels are independent random variables obeying a
normal distribution; i.e., di ∼ N(µi, σ2

i ), where i = 1, 2, . . . , h. Note that all products can
be transferred among channels to reduce the risk of overstock and shortages. Assume that
the selling price of a product (p), the manufacturing cost of a product (c), the shortage cost
of a product (cs), and the disposal cost for a surplus product (cd) are the same and constant
in all channels. At the end of a given sales period, we assume that the subsets of channels
{ψ1, ψ2, . . . , ψs} and {ψs+1, ψs+2, . . . , ψh} are out of stock and meet the demand or have
surplus stocks, respectively, in which s is the number of channels with shortage. Based on
the above scenario, we formulate the total profit for all channels per period (denoted by Zt)
as follows:

Zt =


p∑h

i=1 di − c∑h
i=1 Qi − cd

[
∑h

i=s+1 (Qi − di)− ∑s
i=1 (di − Qi)

]
f or ∑h

i=s+1 (Qi − di) ≥ ∑s
i=1 (di − Qi).

p∑h
i=1 Qi − c∑h

i=1 Qi − cs

[
∑s

i=1 (di − Qi)− ∑h
i=s+1 (Qi − di)

]
f or ∑s

i=1 (di − Qi) > ∑h
i=s+1 (Qi − di).

(1)

where Qi is the order quantity for channel ψi. From Equation (1), the total profit can be
divided into the overall excess case (above) and overall shortage case (below) at the end of a
sales period. To simplify the formulation of Equation (1), we respectively denote cp = p − c
and ce = cd + c as the net profit and excess cost for a product, to obtain the following:

Zt =

{
(cp + ce)dt − ceQt, f or dt ≤ Qt

(cp + cs)Qt − csdt, f or dt > Qt
(2)

where Qt = ∑h
i=1 Qi and dt = ∑h

i=1 di indicate the total order quantity and total demand for
all channels per period, respectively. Using Equation (2), we can obtain an interval of total
demand that meets the stipulated target profit (denoted by kt), i.e.,
dt ∈ [LALt(Qt), UALt(Qt)], where LALt(Qt) = (kt + ceQt)/(cp + ce

)
and UALt(Qt) =

[−kt + (cp + cs)Qt]/cs, both of which depend on the total order quantity. Since dt ∼
N(∑h

i=1 µi, ∑h
i=1 σ2

i ), the probability of achieving the target profit is

Pr(zt ≥ kt) = Pr(LALt(Qt) ≤ dt ≤ UALt(Qt))

= Φ

(
UALt(Qt)−∑h

i=1 µi√
∑h

i=1 σ2
i

)
− Φ

(
LALt(Qt)−∑h

i=1 µi√
∑h

i=1 σ2
i

)
,

(3)

where Φ(·) is the cumulative distribution function of standard normal distribution. From
Equation (3), it is easy to see that the probability depends on the total order quantity.
According to the extreme value theorem, the optimal total order quantity maximizing the
probability can be obtained by solving dPr(zt ≥ kt)/dQt = 0, i.e.,

Q∗
t = Tt +

cs(cp + ce)(cp∑h
i=1 µi − kt)

cp(cp A + 2cecs)

+

√[
cs(cp + ce)(cp∑h

i=1 µi − kt)

cp(cp A + 2cecs)

]2
+

2c2
s (cp + ce)

2ω∑h
i=1 σ2

i
cp A(cp A + 2cecs)

> Tt,
(4)

where A = cp + ce + cs > 0, ω = ln(1 + cp A/csce) > 0, and Tt = kt/cp is the target
demand (i.e., the minimum demand required to achieve the target profit). Note that the
optimal total order quantity exceeds the target demand, Q∗

t > Tt, which is in line with
market intuition. The sufficient condition for maximizing the probability of achieving the
target profit is also shown as follows:
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d2Pr(zt ≥ kt)

dQ2
t

|Qt = Q∗
t
= −

(cp + cs) exp

− 1
2

[
UALt(Q

∗
t ) − µt

∑h
i=1 σ2

i

]2


√
2π(∑h

i=1 σ2
i )

3
c2

s (cp+ce)

×
{

[UALt(Q∗
t ) − LALt(Q∗

t )](cp A + 2cecs)
2 +

cp Aω∑h
i=1 σ2

i
UALt(Q∗

t ) − LALt(Q∗
t )

}
< 0.

(5)

Thus, the integrated profitability for a newsboy-type product (denoted by Ωt) can be
obtained by substituting Equation (4) into Equation (3), as follows:

Ωt = Pr(Zt > kt|Qt = Q∗
t )

= Φ

 cp A(∑h
i=1 µi − Tt)

2(cp A + 2cecs)
√

∑h
i=1 σ2

i

+

√√√√[ cp A(∑h
i=1 µi−Tt)

2(cp A + 2cecs)
√

∑h
i=1 σ2

i

]2

+
cp Aω

2(cp A + 2cecs)

+ ω

cp A(∑h
i=1 µi − Tt)

(cp A + 2cecs)
√

∑h
i=1 σ2

i
+ 2

√√√√[ cp A(∑h
i=1 µi − Tt)

2(cp A + 2cecs)
√

∑h
i=1 σ2

i

]2

+
cp Aω

2(cp A + 2cecs)


+Φ

− cp A(∑h
i=1 µi − Tt)

2(cp A + 2cecs)
√

∑h
i=1 σ2

i

−

√√√√[ cp A(∑h
i=1 µi − Tt)

2(cp A + 2cecs)
√

∑h
i=1 σ2

i

]2

+
cp Aω

2(cp A+2cecs)

+ ω

cp A(∑h
i=1 µi − Tt)

(cp A + 2cecs)
√

∑h
i=1 σ2

i
+ 2

√√√√[ cp A(∑h
i=1 µi − Tt)

2(cp A + 2cecs)
√

∑h
i=1 σ2

i

]2

+
cp Aω

2(cp A + 2cecs)

.

(6)

Based on the above equation, for given values of cp, ce, cs, and Tt, the integrated profitability
depends on a ratio term, and we refer to it as the integrated achievable capacity index
(IACI, denoted by IT

A), i.e.,

IT
A =

∑h
i=1 µi − Tt√

∑h
i=1 σ2

i

. (7)

Consequently, the integrated profitability in Equation (6) can be rearranged as a function of
IT
A (denoted by Ωt(IT

A)). Note that the numerator of IT
A indicates the difference between the

mean total demand and target demand, while the denominator is the root of total variance.
To the best of our knowledge, the value of IT

A is proportional to the integrated profitability.
Taking the first-order derivative of Ωt(IT

A) with respect to IT
A, we obtain

dΩt(IT
A)

dIT
A

=
A2

1 IT
A + A1

√
(A1 IT

A)
2
+ A1ω√

2π
[

A1(IT
A)

2
+ A1ω

]
1 + eω + ω(eω−1)

2
[

A1 IT
A +

√
(A1 IT

A)
2
+ A1ω

]2


× exp

− 1
2

[
A1 IT

A +
√(

A1 IT
A
)2

+ A1ω + 1

2A1 IT
A + 2

√
(A1 IT

A)
2
+ A1ω

]2
 > 0,

(8)

where A1 = cp A(2cp A + 4cecs)
−1 > 0. This implies that Ωt(IT

A) is a monotonic increas-
ing function of IT

A. Note that the simplicity of IACI makes it an efficient measure of
integrated profitability.
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2.2. Statistical Properties of IACI

In situations where the demand patterns of all channels (i.e., µi and σ2
i ) are unknown,

historical demand data must be collected from all channels to estimate the true IT
A. Based on the

sample data set for h channels of size n (denoted as x =
{

xij|i = 1, 2, . . . , h; j = 1, 2, . . . , n
}

),
we respectively replace the unknown µi and σ2

i with their unbiased estimators xi = ∑n
j=1 xij/n

and s2
i = ∑n

j=1 (xij − xi)
2/(n − 1

)
to obtain the nature estimator of IT

A (denoted as ÎT
A),

as follows:

ÎT
A =

∑h
i=1 xi − Tt√

∑h
i=1 s2

i

. (9)

After rearranging Equation (9), we obtain the following:

ÎT
A =

∑h
i=1 xi − ∑h

i=1 µi√
∑h

i=1 σ2
i

+ ∑h
i=1 µi − Tt√

∑h
i=1 σ2

i√
∑h

i=1 s2
i

∑h
i=1 σ2

i

=

∑h
i=1 xi − ∑h

i=1 µi√
∑h

i=1 σ2
i

+ IT
A√

∑h
i=1 s2

i
∑h

i=1 σ2
i

. (10)

In the above equation, the denominator cannot be presented as a chi-square random
variable, due to unequal variance in demand. This means that the form of ÎT

A cannot be
further simplified as a common estimator. In this study, we first explored a case involving
identical variance for all channels, i.e., σ1 = σ2 = . . . = σh = σ. Thus, we obtain the
following:

ÎT
A =

∑h
i=1 xi − ∑h

i=1 µi√
hσ2

+ IT
A√

1
h ∑h

i=1
s2
i

σ2

=

∑h
i=1 xi − ∑h

i=1 µi√
hσ2/n

+
√

nIT
A√

n
h ∑h

i=1
s2
i

σ2

=
Z +

√
nIT

A√
n

h(n−1) ∑h
i=1

(n−1)s2
i

σ2

= 1√
n

Z + θ√
χ2

h(n−1)
h(n−1)

= 1√
n th(n−1)(θ),

(11)

where Z = (∑h
i=1 xi − ∑h

i=1 µi)(hσ2/n)−1/2 is a standard normal random variable,
χ2

h(n−1) = ∑h
i=1 (n − 1)s2

i /σ2 is a chi-square random variable with h(n − 1) degrees of
freedom, and th(n−1)(θ) is a noncentral t random variable with the noncentrality parameter
θ =

√
nIT

A and h(n − 1) degrees of freedom. Considering that ÎT
A is a biased estimator

(i.e., E( ÎT
A) = (

√
h(n − 1)/2Γ((h(n − 1)− 1)/2)/Γ(h(n − 1)/2))× IT

A ̸= IT
A), we define

bt =
√

2/h(n − 1)Γ(h(n − 1)/2)/Γ((h(n − 1)− 1)/2) as a correction factor. This allows us
to obtain an unbiased estimator (denoted as ĨT

A) by multiplying bt with ÎT
A (i.e., ĨT

A = bt ÎT
A).

2.3. Multiple Samples: Discussion

Market information related to demand can be obtained from multiple samples, rather
than a single sample. For example, demand records for all channels could be collected
weekly, monthly, or periodically. For multiple samples that include m groups of size
n in h channels (x

′
=
{

x′il j|i = 1, 2, . . . , h; l = 1, 2, . . . , m; j = 1, 2, . . . , n
}

), the nature

estimator of IT
A based on this group of samples (denoted as Î′TA) can be defined as follows:

Î′TA =
∑h

i=1 x′i − Tt√
∑h

i=1 s′2i
, (12)
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where x′il = ∑n
j=1 x′il j/n, x′i = ∑m

l=1 x′il/m, s′2il = ∑n
j=1 (x′il j − x′il)

2/(n − 1), and

s′2i = ∑m
l=1 s′2il /m. We can further derive Î′TA as follows:

Î′TA =

∑h
i=1 x′i − ∑h

i=1 µi√
hσ2

+ IT
A√

1
h ∑h

i=1
s′2i
σ2

=

∑h
i=1 x′i − ∑h

i=1 µi√
hσ2/mn

+
√

mnIT
A√

mn
h ∑h

i=1
s′2i
σ2

=
Z′ +

√
mnIT

A√
mn

hm(n−1) ∑h
i=1

m(n−1)s′2i
σ2

= 1√
mn

Z′ +
√

mnIT
A√

χ2
hm(n−1)

hm(n−1)

= 1√
mn thm(n−1)(θ

′),

(13)

where Z′ = (∑h
i=1 x′i − ∑h

i=1 µi)(hσ2/mn)−1/2 is a standard normal random variable,
χ2

hm(n−1) = ∑h
i=1 m(n − 1)s′2i /σ2 is a chi-square random variable with hm(n − 1) degrees

of freedom, and thm(n−1)(θ) is a noncentral t random variable with the noncentrality
parameter θ′ =

√
mnIT

A and hm(n − 1) degrees of freedom. Similarly, we define a cor-
rection factor, b′t =

√
2/hm(n − 1)Γ(hm(n − 1)/2)/Γ((hm(n − 1) − 1)/2). This makes

it possible to obtain an unbiased estimator (denoted as Ĩ′TA) after multiplying b′t with
Î′TA (i.e., Ĩ′TA = b′t Î′TA).

3. Evaluating Integrated Profitability Using IACI

In addition to measuring the integrated profitability for all channels, the IACI can
also be used by OBM managers to assess whether the integrated profitability meets a
stipulated minimum level (denoted as IT(R)

A ); i.e., to determine if IT
A ≥ IT(R)

A . The results
of this assessment can then be used by the OBM manager to guide decision-making. For
example, if IT

A ≥ IT(R)
A , then the product is deemed profitable according to the standards

set by the OBM manager, indicating that it is worth continuing to produce and sell. If the
product fails to meet this standard, then the OBM managers should consider discontinuing
production or reducing volumes or the number of sales points.

If the demand patterns of all channels (i.e., µi and σ2
i ) are unknown, then an evaluation of

integrated profitability based on statistical inference must be performed. In the current study,
we present the following statistical hypothesis test: H0 : IT

A ≤ IT(R)
A versus HA : IT

A > IT(R)
A .

This analysis focuses on a critical value (denoted as c0) with stipulated Type-I error α

(i.e., the chance of incorrectly judging IT
A ≤ IT(R)

A as IT
A > IT(R)

A ). Based on historical
demand data from all channels, the null hypothesis is rejected if the observed value of the
statistic ĨT

A exceeds the critical value (i.e., estimate ĨT
A falls into the rejection region, [c0, ∞)).

This implies that the integrated profitability meets the stipulated minimum level with a
confidence level of (1 − α)× 100%. Since ĨT

A is distributed as btn−1/2th(n−1)(θ), the value
of c0 can be obtained by solving the following equation:

α = P
{

ĨT
A ≥ c0

∣∣∣IT
A = IT(R)

A

}
= P

{
bt√

n th(n−1)(θ) ≥ c0

∣∣∣IT
A = IT(R)

A

}
= P

{
th(n−1)(θ) ≥

√
n

bt
c0

∣∣∣IT
A = IT(R)

A

}
.

(14)

For the sake of simplicity, we denote qth(n−1), α(
√

nIT(R)
A ) as the upper α quantile of

a noncentral t distribution with the noncentrality parameter
√

nIT(R)
A and h(n − 1) de-

grees of freedom, while satisfying α = P
{

th(n−1)(
√

nIT(R)
A ) ≥ qth(n−1), α(

√
nIT(R)

A )
}

. Thus,
Equation (14) becomes

qth(n−1), α(
√

nIT(R)
A ) =

√
n

bt
c0. (15)
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After rearranging Equation (15), we obtain a closed form of the critical value as follows:

c0 = bt
qth(n−1), α(

√
nIT(R)

A )
√

n
. (16)

Tables 1–9 tabulate the critical values for various sample sizes and stipulated minimum
levels as α = 0.1, 0.05, 0.01 and h = 5, 10, 15. Note that these tables are applicable to
any decision-making situation involving the evaluation of integrated profitability in OBM
firms, simply by calculating the value of ĨT

A and comparing it with the critical value in
the corresponding table. For example, consider an estimate ĨT

A = 1.5, which is based on
a sample data set involving h = 10 channels of size n = 100. If the stipulated minimum
profit is IT(R)

A = 1.4 and the confidence level is 95%, then the corresponding critical value
(c0 = 1.5737) can be found in Table 5. Since ĨT

A = 1.5 < c0 = 1.5737, the null hypothesis
is accepted, which means that the integrated profitability fails to meet the stipulated
minimum profit with a 95% confidence level. Figure 1 also plots the three-dimensional
critical value graphs of sample sizes and stipulated minimum profit with α = 0.1, 0.05, 0.01
and h = 5, 10, 15. From Tables 1–9 and Figure 1, we derived the following observations:

(1) If the values of IT(R)
A , h, and α were fixed, then the critical value would decrease with

an increase in sample size n. This means that an increase in sample size would widen
the rejection region of the test (i.e., a higher likelihood of ĨT

A falling into the rejection
region). Note, however, that increasing the sample size would not necessarily increase
the probability of rejecting H0, due to the fact that estimate ĨT

A could change.
(2) If the values of n, h, and α were fixed, then the critical value would increase with

an increase in the stipulated minimum profit IT(R)
A . This means that increasing the

stipulated minimum profit would reduce the width of the rejection region and thereby
reduce the likelihood of rejecting the null hypothesis. This is in line with intuition and
statistical inference.

Table 1. Critical values for various values of n and IT(R)
A as h = 5 and α = 0.1.

n
IT(R)

A 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 1.3977 1.4982 1.6444 1.7503 1.8566 1.9632 2.0702 2.1774 2.2849 2.3928 2.5009
20 1.2901 1.3913 1.5113 1.6152 1.7192 1.8235 1.9281 2.0328 2.1377 2.2428 2.3481
30 1.2396 1.341 1.4533 1.5564 1.6596 1.7630 1.8665 1.9703 2.0742 2.1783 2.2825
40 1.2088 1.3102 1.4190 1.5215 1.6243 1.7272 1.8302 1.9334 2.0367 2.1402 2.2438
50 1.1875 1.2888 1.3956 1.4979 1.6003 1.7029 1.8056 1.9084 2.0113 2.1144 2.2176
60 1.1716 1.2729 1.3784 1.4805 1.5827 1.6850 1.7874 1.8900 1.9926 2.0954 2.1983
70 1.1592 1.2604 1.3651 1.4670 1.5690 1.6711 1.7734 1.8757 1.9782 2.0807 2.1834
80 1.1491 1.2503 1.3543 1.4561 1.5580 1.6599 1.7620 1.8642 1.9665 2.0689 2.1714
90 1.1408 1.2419 1.3454 1.4471 1.5488 1.6507 1.7527 1.8547 1.9569 2.0591 2.1615
100 1.1337 1.2348 1.3379 1.4395 1.5411 1.6429 1.7448 1.8467 1.9488 2.0509 2.1531
110 1.1275 1.2286 1.3315 1.4329 1.5345 1.6362 1.7380 1.8398 1.9418 2.0438 2.1459
120 1.1222 1.2232 1.3258 1.4272 1.5288 1.6304 1.7321 1.8338 1.9357 2.0376 2.1396
130 1.1174 1.2185 1.3209 1.4222 1.5237 1.6252 1.7268 1.8285 1.9303 2.0322 2.1341
140 1.1132 1.2142 1.3164 1.4177 1.5191 1.6206 1.7222 1.8238 1.9255 2.0273 2.1292
150 1.1094 1.2104 1.3125 1.4137 1.5151 1.6165 1.7180 1.8196 1.9212 2.0230 2.1248
160 1.1060 1.2069 1.3089 1.4101 1.5114 1.6128 1.7142 1.8158 1.9174 2.0190 2.1208
170 1.1028 1.2037 1.3056 1.4068 1.5081 1.6094 1.7108 1.8123 1.9138 2.0154 2.1171
180 1.1000 1.2009 1.3026 1.4038 1.5050 1.6063 1.7077 1.8091 1.9106 2.0122 2.1138
190 1.0973 1.1982 1.2999 1.4010 1.5022 1.6034 1.7048 1.8062 1.9076 2.0092 2.1107
200 1.0949 1.1957 1.2973 1.3984 1.4996 1.6008 1.7021 1.8035 1.9049 2.0064 2.1079
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Table 2. Critical values for various values of n and IT(R)
A as h = 10 and α = 0.1.

n
IT(R)

A 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 1.4016 1.5018 1.6251 1.7281 1.8314 1.9349 2.0385 2.1423 2.2463 2.3505 2.4548
20 1.2883 1.3890 1.4991 1.6011 1.7032 1.8055 1.9078 2.0103 2.1129 2.2157 2.3185
30 1.2368 1.3375 1.4438 1.5454 1.6470 1.7488 1.8507 1.9527 2.0547 2.1569 2.2592
40 1.2058 1.3065 1.4109 1.5123 1.6137 1.7152 1.8168 1.9185 2.0202 2.1221 2.2240
50 1.1844 1.2851 1.3885 1.4897 1.5910 1.6923 1.7937 1.8952 1.9968 2.0984 2.2001
60 1.1686 1.2692 1.3720 1.4731 1.5742 1.6754 1.7767 1.8781 1.9795 2.0810 2.1825
70 1.1562 1.2569 1.3592 1.4602 1.5612 1.6624 1.7635 1.8648 1.9661 2.0675 2.1689
80 1.1462 1.2468 1.3489 1.4498 1.5508 1.6518 1.7529 1.8541 1.9553 2.0566 2.1579
90 1.1380 1.2385 1.3403 1.4412 1.5421 1.6431 1.7441 1.8452 1.9464 2.0476 2.1488
100 1.1309 1.2315 1.3331 1.4339 1.5348 1.6357 1.7367 1.8377 1.9388 2.0399 2.1411
110 1.1249 1.2254 1.3269 1.4277 1.5285 1.6294 1.7303 1.8313 1.9323 2.0334 2.1345
120 1.1196 1.2201 1.3215 1.4222 1.5230 1.6238 1.7247 1.8257 1.9267 2.0277 2.1288
130 1.1149 1.2155 1.3167 1.4174 1.5182 1.6190 1.7198 1.8207 1.9217 2.0227 2.1237
140 1.1108 1.2113 1.3124 1.4131 1.5138 1.6146 1.7154 1.8163 1.9172 2.0182 2.1192
150 1.1071 1.2075 1.3086 1.4093 1.5100 1.6107 1.7115 1.8123 1.9132 2.0141 2.1151
160 1.1037 1.2041 1.3052 1.4058 1.5065 1.6072 1.7080 1.8088 1.9096 2.0105 2.1114
170 1.1006 1.2011 1.3020 1.4026 1.5033 1.6040 1.7047 1.8055 1.9063 2.0072 2.1081
180 1.0978 1.1982 1.2991 1.3997 1.5004 1.6010 1.7018 1.8025 1.9033 2.0042 2.1050
190 1.0952 1.1956 1.2965 1.3971 1.4977 1.5983 1.6990 1.7998 1.9006 2.0014 2.1022
200 1.0928 1.1932 1.2940 1.3946 1.4952 1.5958 1.6965 1.7972 1.8980 1.9988 2.0996

Table 3. Critical values for various values of n and IT(R)
A as h = 15 and α = 0.1.

n
IT(R)

A 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 1.4028 1.5030 1.6185 1.7206 1.8228 1.9251 2.0276 2.1302 2.2329 2.3358 2.4388
20 1.2878 1.3882 1.4950 1.5963 1.6977 1.7993 1.9009 2.0026 2.1044 2.2062 2.3082
30 1.2359 1.3364 1.4406 1.5416 1.6427 1.7439 1.8452 1.9466 2.0480 2.1495 2.2510
40 1.2047 1.3052 1.4082 1.5091 1.6100 1.7111 1.8122 1.9133 2.0145 2.1158 2.2171
50 1.1834 1.2838 1.3861 1.4869 1.5878 1.6887 1.7896 1.8907 1.9917 2.0928 2.1940
60 1.1675 1.2680 1.3699 1.4706 1.5713 1.6722 1.7730 1.8740 1.9749 2.0759 2.1770
70 1.1552 1.2556 1.3572 1.4579 1.5586 1.6593 1.7601 1.8610 1.9619 2.0628 2.1638
80 1.1453 1.2457 1.3470 1.4477 1.5483 1.6490 1.7498 1.8506 1.9514 2.0523 2.1532
90 1.1370 1.2374 1.3386 1.4392 1.5398 1.6405 1.7412 1.8419 1.9427 2.0435 2.1444
100 1.1300 1.2304 1.3315 1.4320 1.5326 1.6332 1.7339 1.8346 1.9353 2.0361 2.1369
110 1.1240 1.2244 1.3253 1.4259 1.5264 1.6270 1.7276 1.8283 1.9290 2.0298 2.1305
120 1.1187 1.2191 1.3200 1.4205 1.5210 1.6216 1.7222 1.8228 1.9235 2.0242 2.1250
130 1.1141 1.2145 1.3153 1.4158 1.5163 1.6168 1.7174 1.8180 1.9186 2.0193 2.1200
140 1.1100 1.2103 1.3111 1.4115 1.5120 1.6126 1.7131 1.8137 1.9143 2.0150 2.1157
150 1.1063 1.2066 1.3073 1.4077 1.5082 1.6087 1.7093 1.8098 1.9104 2.0111 2.1117
160 1.1029 1.2032 1.3039 1.4043 1.5048 1.6053 1.7058 1.8063 1.9069 2.0075 2.1082
170 1.0998 1.2001 1.3008 1.4012 1.5016 1.6021 1.7026 1.8032 1.9037 2.0043 2.1049
180 1.0970 1.1973 1.2979 1.3983 1.4988 1.5992 1.6997 1.8002 1.9008 2.0014 2.1020
190 1.0944 1.1947 1.2953 1.3957 1.4961 1.5966 1.6971 1.7976 1.8981 1.9986 2.0992
200 1.0921 1.1924 1.2929 1.3933 1.4937 1.5941 1.6946 1.7951 1.8956 1.9961 2.0967
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Table 4. Critical values for various values of n and IT(R)
A as h = 5 and α = 0.05.

n
IT(R)

A 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 1.5177 1.6190 1.7856 1.8942 2.0033 2.1127 2.2226 2.3329 2.4435 2.5545 2.6659
20 1.3762 1.4781 1.6062 1.7116 1.8173 1.9233 2.0295 2.1360 2.2428 2.3498 2.4570
30 1.3103 1.4123 1.5293 1.6335 1.7379 1.8426 1.9475 2.0526 2.1579 2.2634 2.3690
40 1.2701 1.3721 1.4841 1.5876 1.6913 1.7953 1.8994 2.0037 2.1082 2.2128 2.3177
50 1.2424 1.3442 1.4535 1.5565 1.6598 1.7633 1.8669 1.9707 2.0747 2.1788 2.2830
60 1.2217 1.3235 1.4309 1.5337 1.6367 1.7398 1.8431 1.9465 2.0501 2.1538 2.2576
70 1.2056 1.3073 1.4135 1.5161 1.6188 1.7216 1.8246 1.9278 2.0311 2.1345 2.2380
80 1.1925 1.2941 1.3995 1.5019 1.6044 1.7070 1.8098 1.9128 2.0158 2.1190 2.2223
90 1.1816 1.2832 1.3879 1.4901 1.5925 1.6950 1.7976 1.9004 2.0032 2.1062 2.2093
100 1.1724 1.2739 1.3781 1.4802 1.5825 1.6848 1.7873 1.8899 1.9926 2.0954 2.1983
110 1.1645 1.2659 1.3697 1.4717 1.5739 1.6761 1.7784 1.8809 1.9835 2.0861 2.1889
120 1.1575 1.2590 1.3624 1.4643 1.5663 1.6685 1.7707 1.8731 1.9755 2.0781 2.1807
130 1.1514 1.2528 1.3560 1.4578 1.5597 1.6618 1.7639 1.8662 1.9685 2.0710 2.1735
140 1.1459 1.2473 1.3502 1.4520 1.5538 1.6558 1.7579 1.8600 1.9623 2.0646 2.1671
150 1.1410 1.2423 1.3451 1.4468 1.5486 1.6505 1.7524 1.8545 1.9567 2.0590 2.1613
160 1.1366 1.2378 1.3404 1.4421 1.5438 1.6456 1.7475 1.8495 1.9516 2.0538 2.1561
170 1.1325 1.2337 1.3362 1.4378 1.5394 1.6412 1.7431 1.8450 1.9471 2.0492 2.1514
180 1.1288 1.2300 1.3323 1.4339 1.5355 1.6372 1.7390 1.8409 1.9429 2.0449 2.1470
190 1.1254 1.2265 1.3288 1.4302 1.5318 1.6335 1.7352 1.8371 1.9390 2.0410 2.1431
200 1.1222 1.2233 1.3255 1.4269 1.5284 1.6301 1.7318 1.8336 1.9354 2.0374 2.1394

Table 5. Critical values for various values of n and IT(R)
A as h = 10 and α = 0.05.

n
IT(R)

A 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 1.5190 1.6197 1.7531 1.8575 1.9622 2.0671 2.1722 2.2776 2.3833 2.4891 2.5951
20 1.3720 1.4730 1.5872 1.6900 1.7929 1.8961 1.9993 2.1027 2.2063 2.3101 2.4139
30 1.3053 1.4064 1.5150 1.6172 1.7195 1.8219 1.9244 2.0271 2.1299 2.2329 2.3359
40 1.2651 1.3661 1.4722 1.5741 1.6760 1.7781 1.8802 1.9825 2.0849 2.1874 2.2899
50 1.2375 1.3385 1.4432 1.5448 1.6465 1.7483 1.8502 1.9522 2.0543 2.1565 2.2588
60 1.2171 1.3180 1.4218 1.5232 1.6248 1.7264 1.8281 1.9299 2.0318 2.1338 2.2359
70 1.2011 1.3020 1.4052 1.5065 1.6079 1.7094 1.8110 1.9126 2.0144 2.1162 2.2181
80 1.1882 1.2891 1.3918 1.4930 1.5944 1.6957 1.7972 1.8987 2.0004 2.1021 2.2038
90 1.1776 1.2783 1.3808 1.4819 1.5831 1.6844 1.7858 1.8873 1.9888 2.0904 2.1920
100 1.1685 1.2693 1.3714 1.4725 1.5737 1.6749 1.7762 1.8776 1.9790 2.0805 2.1821
110 1.1607 1.2614 1.3634 1.4644 1.5655 1.6667 1.7679 1.8692 1.9706 2.0720 2.1735
120 1.1539 1.2546 1.3564 1.4574 1.5584 1.6595 1.7607 1.8619 1.9632 2.0646 2.1660
130 1.1479 1.2486 1.3502 1.4512 1.5522 1.6532 1.7543 1.8555 1.9568 2.0581 2.1595
140 1.1425 1.2432 1.3447 1.4456 1.5466 1.6476 1.7487 1.8498 1.9510 2.0523 2.1536
150 1.1377 1.2384 1.3398 1.4407 1.5416 1.6426 1.7436 1.8447 1.9459 2.0471 2.1483
160 1.1333 1.2340 1.3353 1.4362 1.5371 1.6380 1.7390 1.8401 1.9412 2.0424 2.1436
170 1.1294 1.2300 1.3313 1.4321 1.5329 1.6339 1.7348 1.8359 1.9370 2.0381 2.1393
180 1.1257 1.2263 1.3275 1.4283 1.5292 1.6301 1.7310 1.8320 1.9331 2.0342 2.1353
190 1.1224 1.2230 1.3241 1.4249 1.5257 1.6266 1.7275 1.8285 1.9295 2.0306 2.1317
200 1.1193 1.2199 1.3210 1.4217 1.5225 1.6234 1.7243 1.8252 1.9262 2.0272 2.1283
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Table 6. Critical values for various values of n and IT(R)
A as h = 15 and α = 0.05.

n
IT(R)

A 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 1.5194 1.6199 1.7422 1.8451 1.9483 2.0516 2.1551 2.2588 2.3626 2.4666 2.5707
20 1.3706 1.4713 1.5808 1.6827 1.7847 1.8868 1.9890 2.0913 2.1937 2.2963 2.3989
30 1.3037 1.4044 1.5101 1.6116 1.7132 1.8148 1.9165 2.0184 2.1203 2.2223 2.3244
40 1.2635 1.3641 1.4682 1.5695 1.6708 1.7721 1.8736 1.9752 2.0768 2.1785 2.2803
50 1.2359 1.3365 1.4397 1.5408 1.6419 1.7431 1.8444 1.9458 2.0472 2.1487 2.2503
60 1.2155 1.3161 1.4187 1.5196 1.6207 1.7218 1.8229 1.9242 2.0255 2.1268 2.2282
70 1.1996 1.3002 1.4023 1.5032 1.6042 1.7052 1.8063 1.9074 2.0086 2.1098 2.2111
80 1.1868 1.2874 1.3892 1.4900 1.5909 1.6919 1.7929 1.8939 1.9950 2.0962 2.1974
90 1.1762 1.2767 1.3783 1.4791 1.5799 1.6808 1.7817 1.8827 1.9838 2.0849 2.1860
100 1.1672 1.2677 1.3691 1.4699 1.5706 1.6715 1.7724 1.8733 1.9743 2.0753 2.1764
110 1.1594 1.2599 1.3612 1.4619 1.5627 1.6635 1.7643 1.8652 1.9661 2.0671 2.1681
120 1.1527 1.2531 1.3543 1.4550 1.5557 1.6565 1.7573 1.8581 1.9590 2.0599 2.1609
130 1.1467 1.2471 1.3483 1.4489 1.5496 1.6503 1.7511 1.8519 1.9527 2.0536 2.1545
140 1.1414 1.2418 1.3428 1.4434 1.5441 1.6448 1.7455 1.8463 1.9471 2.0480 2.1489
150 1.1366 1.2370 1.3380 1.4386 1.5392 1.6399 1.7406 1.8413 1.9421 2.0429 2.1438
160 1.1322 1.2327 1.3336 1.4341 1.5348 1.6354 1.7361 1.8368 1.9376 2.0384 2.1392
170 1.1283 1.2287 1.3296 1.4301 1.5307 1.6313 1.7320 1.8327 1.9334 2.0342 2.1350
180 1.1247 1.2251 1.3259 1.4264 1.5270 1.6276 1.7283 1.8289 1.9297 2.0304 2.1312
190 1.1214 1.2218 1.3225 1.4231 1.5236 1.6242 1.7248 1.8255 1.9262 2.0269 2.1277
200 1.1183 1.2187 1.3194 1.4199 1.5205 1.6210 1.7217 1.8223 1.9230 2.0237 2.1244

Table 7. Critical values for various values of n and IT(R)
A as h = 5 and α = 0.01.

n
IT(R)

A 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 1.7474 1.8504 2.0683 2.1828 2.2979 2.4137 2.5300 2.6469 2.7643 2.8822 3.0006
20 1.5407 1.6442 1.7913 1.9000 2.0091 2.1186 2.2284 2.3387 2.4493 2.5603 2.6715
30 1.4450 1.5483 1.6762 1.7828 1.8897 1.9970 2.1046 2.2124 2.3206 2.4290 2.5377
40 1.3868 1.4900 1.6093 1.7148 1.8205 1.9266 2.0329 2.1395 2.2464 2.3534 2.4607
50 1.3467 1.4497 1.5643 1.6691 1.7741 1.8794 1.9849 2.0907 2.1966 2.3028 2.4092
60 1.3169 1.4197 1.5314 1.6357 1.7402 1.8449 1.9499 2.0550 2.1604 2.2660 2.3717
70 1.2936 1.3963 1.5060 1.6099 1.7140 1.8183 1.9229 2.0276 2.1325 2.2376 2.3429
80 1.2748 1.3773 1.4856 1.5892 1.6930 1.7970 1.9012 2.0056 2.1102 2.2149 2.3198
90 1.2592 1.3616 1.4688 1.5722 1.6758 1.7795 1.8834 1.9875 2.0917 2.1962 2.3007
100 1.2459 1.3482 1.4547 1.5578 1.6612 1.7647 1.8684 1.9722 2.0763 2.1804 2.2847
110 1.2345 1.3367 1.4425 1.5455 1.6487 1.7520 1.8555 1.9592 2.0630 2.1669 2.2710
120 1.2245 1.3267 1.4320 1.5348 1.6378 1.7410 1.8443 1.9478 2.0514 2.1552 2.2591
130 1.2157 1.3178 1.4227 1.5254 1.6283 1.7313 1.8345 1.9378 2.0413 2.1449 2.2486
140 1.2079 1.3099 1.4144 1.5170 1.6198 1.7227 1.8257 1.9289 2.0322 2.1357 2.2393
150 1.2008 1.3028 1.4070 1.5095 1.6121 1.7149 1.8179 1.9209 2.0241 2.1275 2.2309
160 1.1945 1.2963 1.4003 1.5027 1.6053 1.7080 1.8108 1.9138 2.0168 2.1200 2.2234
170 1.1886 1.2905 1.3942 1.4965 1.5990 1.7016 1.8043 1.9072 2.0102 2.1133 2.2165
180 1.1833 1.2851 1.3886 1.4909 1.5933 1.6958 1.7985 1.9012 2.0041 2.1071 2.2103
190 1.1784 1.2802 1.3835 1.4857 1.5880 1.6905 1.7930 1.8957 1.9986 2.1015 2.2045
200 1.1739 1.2756 1.3788 1.4809 1.5832 1.6855 1.7881 1.8907 1.9934 2.0963 2.1992
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Table 8. Critical values for various values of n and IT(R)
A as h = 10 and α = 0.01.

n
IT(R)

A 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 1.7417 1.8432 2.0017 2.1090 2.2168 2.3249 2.4333 2.5420 2.6511 2.7605 2.8702
20 1.5305 1.6323 1.7559 1.8604 1.9651 2.0700 2.1751 2.2805 2.3861 2.4919 2.5979
30 1.4349 1.5366 1.6507 1.7541 1.8577 1.9614 2.0654 2.1695 2.2738 2.3783 2.4830
40 1.3774 1.4790 1.5888 1.6916 1.7946 1.8977 2.0010 2.1045 2.2081 2.3119 2.4158
50 1.3379 1.4394 1.5468 1.6493 1.7519 1.8547 1.9576 2.0606 2.1637 2.2670 2.3705
60 1.3087 1.4101 1.5160 1.6182 1.7206 1.8231 1.9257 2.0284 2.1312 2.2342 2.3373
70 1.2859 1.3872 1.4922 1.5942 1.6963 1.7986 1.9010 2.0035 2.1061 2.2088 2.3116
80 1.2675 1.3688 1.4730 1.5749 1.6769 1.7789 1.8811 1.9834 2.0859 2.1884 2.2910
90 1.2522 1.3535 1.4572 1.5589 1.6608 1.7627 1.8648 1.9669 2.0692 2.1715 2.2740
100 1.2393 1.3405 1.4438 1.5454 1.6472 1.7490 1.8509 1.9530 2.0551 2.1573 2.2596
110 1.2282 1.3293 1.4323 1.5339 1.6355 1.7372 1.8391 1.9410 2.0430 2.1451 2.2473
120 1.2185 1.3196 1.4223 1.5238 1.6253 1.7270 1.8287 1.9306 2.0325 2.1345 2.2366
130 1.2099 1.3110 1.4135 1.5149 1.6164 1.7180 1.8196 1.9214 2.0232 2.1251 2.2271
140 1.2023 1.3033 1.4056 1.5070 1.6084 1.7099 1.8115 1.9132 2.0150 2.1168 2.2187
150 1.1954 1.2964 1.3986 1.4999 1.6013 1.7027 1.8043 1.9059 2.0076 2.1094 2.2112
160 1.1892 1.2902 1.3922 1.4935 1.5948 1.6962 1.7977 1.8993 2.0009 2.1026 2.2044
170 1.1836 1.2845 1.3864 1.4876 1.5889 1.6903 1.7917 1.8932 1.9948 2.0965 2.1982
180 1.1784 1.2793 1.3811 1.4823 1.5835 1.6849 1.7862 1.8877 1.9893 2.0909 2.1925
190 1.1736 1.2745 1.3762 1.4774 1.5786 1.6799 1.7812 1.8826 1.9841 2.0857 2.1873
200 1.1692 1.2701 1.3717 1.4728 1.5740 1.6753 1.7766 1.8780 1.9794 2.0809 2.1825

Table 9. Critical values for various values of n and IT(R)
A as h = 15 and α = 0.01.

n
IT(R)

A 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

10 1.7397 1.8407 1.9796 2.0846 2.1898 2.2952 2.4009 2.5068 2.6130 2.7194 2.8260
20 1.5271 1.6283 1.7441 1.8471 1.9502 2.0535 2.1570 2.2607 2.3645 2.4684 2.5725
30 1.4315 1.5327 1.6421 1.7444 1.8468 1.9493 2.0520 2.1548 2.2578 2.3608 2.4640
40 1.3742 1.4753 1.5818 1.6837 1.7858 1.8879 1.9901 2.0925 2.1950 2.2975 2.4002
50 1.3350 1.4360 1.5409 1.6426 1.7444 1.8462 1.9482 2.0502 2.1524 2.2546 2.3570
60 1.3059 1.4069 1.5108 1.6123 1.7139 1.8156 1.9173 2.0192 2.1211 2.2232 2.3253
70 1.2833 1.3842 1.4875 1.5889 1.6903 1.7918 1.8935 1.9951 2.0969 2.1988 2.3007
80 1.2650 1.3659 1.4688 1.5700 1.6713 1.7728 1.8742 1.9758 2.0775 2.1792 2.2810
90 1.2499 1.3507 1.4532 1.5544 1.6556 1.7570 1.8584 1.9598 2.0614 2.1630 2.2646
100 1.2371 1.3379 1.4401 1.5412 1.6424 1.7436 1.8449 1.9463 2.0478 2.1493 2.2509
110 1.2261 1.3268 1.4288 1.5299 1.6310 1.7322 1.8334 1.9347 2.0361 2.1375 2.2390
120 1.2165 1.3172 1.4190 1.5200 1.6211 1.7222 1.8234 1.9246 2.0259 2.1273 2.2287
130 1.2080 1.3087 1.4104 1.5113 1.6123 1.7134 1.8145 1.9157 2.0170 2.1183 2.2196
140 1.2004 1.3011 1.4027 1.5036 1.6045 1.7056 1.8066 1.9078 2.0090 2.1103 2.2116
150 1.1936 1.2943 1.3957 1.4966 1.5975 1.6985 1.7996 1.9007 2.0018 2.1030 2.2043
160 1.1875 1.2881 1.3895 1.4903 1.5912 1.6922 1.7932 1.8942 1.9954 2.0965 2.1978
170 1.1819 1.2825 1.3838 1.4846 1.5855 1.6864 1.7874 1.8884 1.9895 2.0906 2.1918
180 1.1767 1.2774 1.3786 1.4794 1.5802 1.6811 1.7820 1.8830 1.9841 2.0852 2.1863
190 1.1720 1.2726 1.3738 1.4745 1.5754 1.6762 1.7771 1.8781 1.9791 2.0802 2.1813
200 1.1677 1.2682 1.3693 1.4701 1.5709 1.6717 1.7726 1.8736 1.9746 2.0756 2.1767
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If the values of IT(R)
A , n, and h were fixed, then the critical value would increase with a

decrease in Type-I error α. This means that increasing the confidence level would reduce
the width of the rejection region and in so doing, decrease the probability of rejecting the
null hypothesis. This is also in line with intuition and statistical inference.

4. Application Example

In this section, the applicability of IACI was demonstrated using a case study involving
an OBM firm. A numerical example of this case is provided to illustrate the decision-
making process. Sensitivity analysis based on the numerical example was used to obtain
managerial insights.

4.1. OBM Firm

In the following, we consider an OBM firm engaged in the manufacture and sale of
bedding, including mattresses, mattress protectors, pillows, bedframes, and cushions. In an
effort to preserve its brand image, the products are sold only in flagship stores and at their
own counters in department stores and shopping malls. This allows the transfer of stock
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among channels to minimize the loss of sales due to demand uncertainty. The bedding is
made of cotton covers, polyester interlining, and viscoelastic polyurethane foam (so-called
memory foam or low-resistance polyurethane foam). Because most consumers are sensitive
to the perceived cleanliness of bedding products, managers must be highly cognizant of the
appearance of the bedding and packaging. The color of foam changes from white to yellow
under exposure to ultraviolet light and cloth covers are susceptible to mildew growth,
particularly under imperfect storage conditions. These kinds of imperfections in no way
impede the function of the product; however, they reduce the visual appeal for customers.
Thus, any firm that hopes to preserve its reputation must set a shelf life for stock. Removing
expired stock from shelves incurs the original costs, as well as additional costs for shipping
and disposal. Note that providing discounts for expired or defective products would work
against the brand image. At the same time, product shortages incur opportunity costs, as
well as costs pertaining to shipping, discounts, free giveaways, and compensation. Clearly,
the bedding in this model can be considered a newsboy-type product.

4.2. Numerical Example

In the following, we explore the sales strategies for the OBM bedding firm de-
scribed above. The rapid development of information-and-communications technology
has prompted many firms to focus on e-commerce. Note that in terms of pricing, discounts,
and promotions, the operating models for virtual stores differ considerably from those
for physical stores. Generally, firms must differentiate products as online-exclusive or
physical-exclusive to avoid complaints due to differences in pricing or service. The com-
pany addressed in the current study transfers unprofitable products from physical stores to
virtual stores, thereby necessitating an evaluation of integrated profitability in all channels.

In the following, we consider a pillow product that has for many years remained
profitable, despite the introduction of new products. In this example, the OBM manager
is considering listing this pillow as an online-exclusive item to increase profitability by
generating more media exposure. The manager stipulates a minimum level as the criterion
for decision-making. Essentially, the pillow will be listed as an online-exclusive item if
its integrated profitability in all channels does not exceed the stipulated level. We use the
integrated profitability evaluation based on the IACI index to decide how to handle the
pillow. First, of all, the demand parameters for all channels are unknown; therefore, the
manager must collect historical demand data from all channels to estimate the IACI. Note
that demand data do not include the promotion activities during festivals or anniversaries.
Table 10 presents the historical demand data of the classic pillow for h = 10 representative
channels through n = 30 periods, as well as the results of Kolmogorov–Smirnov (K-S) and
Anderson–Darling (A-D) normality tests using R software (version 1.1.419). Note that the
p-values of the two tests exceeded 0.05 for all channels, indicating that the data posed no
significant violation of normal distribution.

The parameter values of the considered product are as follows:

• selling price: p = 3500;
• manufacturing cost: c = 2000;
• net profit per pillow: cp = p − c = 1500;
• total target profit for all channels per cycle: kt = 380, 000;
• total target demand for all channels per period: Tt = kt/cp = 253.33;
• shortage cost per pillow: cs = 250;
• disposal cost per pillow: cd = 200;
• excess cost per pillow: ce = cd + c = 2200;

• stipulated minimum level for IACI: IT(R)
A = 1.5. The corresponding integrated prof-

itability is Ωt(1. 5) = 0.88.
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Table 10. Thirty sale periods of demand from 10 channels.

Period
Channel

1 2 3 4 5 6 7 8 9 10

1 44 31 37 25 20 24 17 32 22 28
2 46 36 41 22 23 13 17 35 22 26
3 36 36 34 22 24 21 19 32 19 20
4 40 40 40 24 23 24 17 34 23 18
5 40 28 37 26 24 15 19 44 22 23
6 42 39 42 23 21 12 21 29 18 22
7 37 38 35 28 25 22 17 31 19 23
8 48 30 43 22 25 17 19 37 23 26
9 41 37 38 24 20 27 17 35 23 21

10 46 38 41 28 24 8 17 30 21 24
11 35 38 38 27 21 13 19 30 21 18
12 44 45 39 26 19 18 14 26 23 15
13 37 37 38 27 20 24 20 31 24 21
14 41 39 35 32 25 17 20 30 19 22
15 39 34 38 19 19 19 20 28 20 22
16 45 37 41 29 25 25 15 29 21 20
17 38 38 42 24 26 21 17 35 17 21
18 39 30 37 27 22 19 20 30 20 21
19 45 34 40 25 28 26 18 28 24 22
20 42 33 42 25 18 20 21 29 19 26
21 37 31 38 27 24 14 18 31 22 26
22 44 30 36 23 23 19 18 29 22 18
23 39 37 37 23 24 24 16 33 23 22
24 39 33 47 24 28 13 20 17 22 25
25 42 35 42 29 18 19 13 34 20 16
26 35 26 38 27 24 19 19 23 23 17
27 38 31 39 30 14 15 19 36 22 20
28 41 40 33 23 24 19 17 34 19 16
29 40 35 41 24 18 8 16 38 20 19
30 36 37 43 25 26 26 16 32 20 23

xi 40.533 35.100 39.067 25.333 22.500 18.700 17.867 31.400 21.100 21.367
s2

i 12.464 17.334 9.444 7.816 10.603 26.838 3.913 23.421 3.403 11.137
K-S 0.90 0.58 0.64 0.81 0.30 0.75 0.51 0.57 0.24 0.96
A-D 0.47 0.20 0.42 0.47 0.08 0.36 0.10 0.10 0.05 0.55

Note that the historical data and parameter values pertaining to selling price and re-
lated costs have been slightly modified to protect company information. Based on historical
demand data from Table 10, we first calculate the total sample mean ∑h

i=1 xi = 272.967,
total sample variance ∑h

i=1 s2
i = 126.374, and estimate of the nature IACI ÎT

A = 1.7468. Since
the correction factor for n = 30 and h = 10 is bt = 0.9974, the estimate of the unbiased IACI
is ĨT

A = bt ÎT
A = 0.9974 × 1.7468 = 1.7423. For the method of point estimation, since the

estimated result of integrated profitability in all channels exceeds the stipulated level (i.e.,
ĨT

A = 1.7423 > IT(R)
A = 1.5), the product should not be classified as an online-exclusive item.

However, this result does not take into account the effect of sampling error. If the confidence
level were set at 95%, the critical value for h = 10, n = 30, and IT(R)

A = 1.5 can be obtained
by looking for Table 5, i.e., c0 = 1.8219. The result of the test is ĨT

A = 1.7423 < c0 = 1.8219,
such that the null hypothesis is accepted, which indicates that the physical-exclusive pillow
should be recategorized as an online-exclusive item.

4.3. Sensitivity Analysis

The decision-making process based on an assessment of integrated profitability in-
volves a comparison of ĨT

A and c0 values. Note, however, that observations (1) and (4) in

Section 3 reveal that increasing the stipulated minimum profit IT(R)
A and/or decreasing the
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Type-I error α would increase the value of c0. As shown in Equation (9), the value of ĨT
A

increases with a decrease in the target profit kt, which means that changing the stipulated
minimum level, Type-I error, or target profit could alter the direction of the decision reached
through an assessment of integrated profitability. We performed sensitivity analysis on the
above numerical example to elucidate the effects of changes to parameters IT(R)

A , α, and kt

on the test results. Figures 2–4 plot the curves for c0 and ĨT
A as functions of IT(R)

A , α, and kt.
As shown in Figure 2, changing the stipulated minimum profit would not affect the value
of ĨT

A, and decreasing the stipulated minimum profit by more than 5.18% would result in
the rejection of the null hypothesis. As shown in Figure 3, changing the Type-I error would
not affect the value of ĨT

A, and increasing the Type-I error by more than 112% would result
in the rejection of the null hypothesis. In other words, decreasing the confidence level to
below 89.4% would reverse the decision on the product category. As shown in Figure 4,
changing the target profit would not affect the value of c0, and decreasing the target profit
by more than 35.6% would result in the rejection of the null hypothesis. Note that an
excessive reduction of the stipulated profit (i.e., IT(R)

A = 1.5 to IT(R)
A = 1.422), confidence

level (i.e., 95% to 89.4%), or target profit (i.e., kt = 380, 000 to kt = 378, 647) could lead to
erroneous decisions resulting from an overestimate of profitability. Clearly, further analysis
of risk is warranted.
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We determined that changing the stipulated minimum profit, Type-I error, or the target
profit could alter the direction of the decision; however, there are situations in which adjusting
more than one parameter would be beneficial. We first consider the effects of adjusting
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5. Conclusions

This paper addresses the issue of integrated profitability evaluation in an OBM com-
pany engaged in the manufacture and sale of newsboy-type products exclusively through
owned channels. Based on the assumption of normally distributed demand in all channels,
we formulated the concept of integrated profitability and developed an IACI index by
which to measure it. Historical demand data from all channels was used to formulate an
unbiased estimator for IACI and its sampling distribution. Data collection in situations
involving multiple samplings is also discussed. Based on the statistical properties of the
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unbiased IACI estimator, we established a hypothesis test by which to determine whether
the integrated profitability meets the stipulated minimum profit. For convenience, we
tabulated the critical values as a function of sample size, confidence level, the number of
channels, and stipulated minimum profit. This makes it possible for OBM managers to
make decisions simply by estimating the IACI based on historical demand data from all
channels, and then looking up the critical value in the corresponding table. Note that the
proposed tables are universally applicable to any case involving the integrated profitability
evaluation problem in an OBM company. The applicability of the proposed method was
demonstrated in a practical case involving sales models (online-exclusive and physical-
exclusive) in a bedding company. Numerical analysis and sensitivity analysis of this case
revealed that decisions pertaining to integrated profitability evaluation could be reversed
simply by adjusting the stipulated minimum profit, Type-I error, or target profit. We also
derived the parameter boundary values that correspond to a decision reversal. Finally,
we explored the effects of simultaneously adjusting IT(R)

A and α on decision-making. The
findings of this study can provide OBM managers with a new measurement tool for the
profitability of newsboy-type products. Since the tool can be also conducive to perform-
ing statistical inferences, the OBM managers can make logical and scientific decisions on
marketing and sales strategies, rather than simply observing revenue data. Furthermore,
we also provide guidelines and steps to affect the direction of decisions so that the OBM
managers can easily grasp the key points in decision-making management. Therefore, we
can recommend that OBM managers use the proposed method to replace the traditional
measurement and evaluation modes.

We recommend the following directions for future research:

(1) In particular environments, the demand data may be collected from multiple samples
rather than a single sample. Therefore, we can consider the data collection involving
multiple samples, in which the sample size of each group is equal or unequal.

(2) In the current study, the statistical properties of ĨT
A were derived under the assumption

that the demand variance was the same in all channels. We recommend further
research without this assumption to enhance generalizability.

(3) The use of IACI is limited to situations where demand obeys normal distribution. To
enhance the generalizability of the IACI, the sample data can be made to resemble a
normal distribution by applying Box–Cox and Yeo–Johnson transformations.

(4) In this study, the demands of each channel are assumed to be mutually exclusive.
However, this assumption cannot be fully satisfied in the real-world scenario. To
make our method more applicable in the real world, we can develop the IACI index
involving the correlation factors among channels.

(5) To gain further managerial insights, it should be possible to establish a feasible loss

function for the adjustable parameters (i.e., IT(R)
A and α). In cases where the manager

desires to change decisions based on integrated profitability, it should be possible to
formulate an optimal model aimed at loss minimization involving a combination of
IT(R)
A and α as a decision variable.
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