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Abstract: Assembly sequence planning (ASP) is an indispensable and important step in the intelligent
assembly process, and aims to solve the optimal assembly sequence with the shortest assembly
time as its optimization goal. This paper focuses on modular cabin construction for large cruise
ships, tackling the complexities and challenges of part assembly during the process, based on real
engineering problems. It introduces the multiple optimal solutions genetic algorithm (MOSGA). The
MOSGA analyzes product constraints and establishes a mathematical model. Firstly, the traditional
genetic algorithm (GA) is improved in the case of falling into the local optimum when facing complex
problems, so that it can jump out of the local optimum under the condition of satisfying the processing
constraints and achieve the global search effect. Secondly, the problem whereby the traditional search
algorithm converges to the unique optimal solution is solved, and multiple unique optimal solutions
that are more suitable for the actual assembly problem are solved. Thirdly, for a variety of restrictions
and emergencies that may occur during the assembly process, the assembly sequence flexible planning
(ASFP) method is introduced so that each assembly can be flexibly adjusted. Finally, an example is
used to verify the feasibility and effectiveness of the method. This method improves the assembly
efficiency and the diversity of assembly sequence selection, and can flexibly adjust the assembly
sequence, which has important guiding significance for the ASP problem.

Keywords: assembly sequence planning; multiple unique optimal solutions; multi-objective
optimization; flexible planning

MSC: 90-04

1. Introduction

Assembly sequence planning (ASP) holds paramount significance in the realm of
manufacturing and production. It aims to determine the optimal assembly sequence,
seeking to minimize the time required for the assembly process. Thoughtful ASP can
effectively reduce production cycles and enhance productivity, consequently lowering costs
and increasing production capacity [1]. Rational ASP contributes to optimized resource
utilization, ensuring the efficient scheduling and utilization of parts and tools during the
assembly process [2]. This aids in reducing unnecessary wait times and resource wastage,
thereby improving resource utilization efficiency. Well-planned assembly sequences also
play a crucial role in lowering the probability of assembly errors, enhancing accuracy
and consistency, and ultimately elevating product quality, reducing defect rates, and
strengthening product competitiveness [3].

The design and construction of large cruise ship cabins have always been a focus
of research in the field of high-tech passenger ship construction. For the construction
process of prefabricated cabins, the main task of ASP is to find all feasible assembly
sequences and optimize the feasible sequences according to certain assembly objectives,
ultimately providing the best sequence. This paper studies the ASP problem based on the
actual engineering problems of constructing modular cabins for large cruise ships. ASP
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is a complex NP-hard problem [4], particularly challenging when dealing with a large
number of product parts, leading to a phenomenon known as “combinatorial explosion”,
which significantly increases the difficulty of solving the problem [5]. Numerous scholars
have employed various search algorithms, such as genetic algorithms (GA), ant colony
optimization (ACO), heuristic algorithms (HA), simulated annealing (SA), and particle
swarm optimization (PSO), to tackle the ASP [6–11]. Tseng, H.E. et al. [12] proposed
a hierarchical classification method that restructures the initial assembly relationships
into a new hierarchical structure, aiming to achieve efficient assembly planning. They
also introduced an improved ACO based on three assembly principles to search for the
optimal assembly sequence of parts. However, their hierarchical classification method is
only suitable for assembly products that are easily divided into hierarchical structures. In
contrast, complex assembly structures pose challenges in hierarchical division, making this
method unsuitable for solving ASP problems in intricate scenarios. Mishra, A. et al. [13]
presented an assembly sequence optimization method based on the flower pollination
algorithm (FPA). While it can yield multiple optimal solutions, it fails to achieve stable
convergence. After thousands of population iterations, it may not necessarily converge
to the optimal value, with instances of the fitness function continuing to increase at the
end of the iteration. This inability to ascertain global optimality, coupled with a slower
convergence speed and significant computational costs, diminishes the effectiveness of the
method. Wang, Z.Y. et al. [14] proposed an ASP method tailored for discrete manufacturing,
ensuring an optimal assembly sequence. They utilized a non-dominated sorting GA with a
mixed chromosome coding mechanism for the solution. However, their consideration of a
limited number of constraint variables results in poor convergence performance, making it
less applicable to real-world machining scenarios.

ASP is a complex optimization challenge that typically entails a vast array of possible
sequences and constraints. In solving such problems, GAs hold several advantages over
other approaches like HA, ACO, PSO, and SA: Firstly, GAs sustain population diversity
through crossover and mutation operations, enhancing the comprehensive exploration of
the solution space and reducing the likelihood of converging to local optima [15]. Secondly,
GAs do not directly use the actual values of decision variables for optimization calculations
but operate on them in encoded form. It is through this encoding approach that GAs
draw inspiration from biological concepts such as chromosomes and genes, mimicking
the genetic and evolutionary mechanisms to solve problems [16]. Thirdly, GAs boast
strong adaptability: they are not constrained by the specific mathematical formulation of
a problem, rendering them applicable to a wide array of complex optimization scenarios,
including nonlinear, multi-objective, and multi-constraint types [17]. Fourthly, the oper-
ations of GAs, such as selection, crossover, and mutation, can be tailored to the specific
attributes of a problem, offering a high degree of flexibility and customization [18]. Lastly,
GAs are robust: they exhibit minimal dependency on initial parameters and solutions,
demonstrating substantial robustness and stability [19,20].

In the construction process of modular cabins for large cruise ships, GAs can adapt
to changes in problem specifications or constraints without requiring significant modifica-
tions to the algorithm structure. This characteristic is particularly valuable in engineering
problems where design parameters or constraints may evolve over time [21]. Moreover,
many practical engineering problems involve optimizing multiple conflicting objectives
simultaneously. GAs can be extended to multi-objective optimization, enhancing their scal-
ability. This scalability is crucial for addressing the multidimensionality and multifaceted
nature of engineering problems.

However, GAs also have some limitations. The selection operation in GAs includes
three methods: roulette wheel selection, tournament selection, and an elite preservation
strategy [22]. During the selection operation, the number of selected optimal assembly
sequences only represents a small fraction of the population size [23]. Retaining too many
assembly sequences with high fitness values can impact genetic diversity. This may lead to
a situation where a local optimal individual is not easily eliminated, reducing the global
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search efficiency of the algorithm. In complex data input scenarios, the occurrence of local
optima is highly likely [24–27]. This paper first establishes the hierarchical model of the
product, illustrating the constraints and corresponding relationships between assembly
parts, as shown in Figure 1a. Subsequently, a mathematical model is constructed based
on the constraints of the product, with the product’s image and mathematical model
depicted in Figure 1b. Details of the construction of the mathematical model are presented
in Section 2. Through enhancements to the GA, the search space is expanded, improving
search efficiency and enabling the solution to complex assembly problems to break free
from local optima, achieving global optimality. The improved solving process is depicted
in Figure 1c.
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Figure 1. The overall framework.

Furthermore, GAs, ACO and other search algorithms have certain shortcomings.
These algorithms often converge to a single optimal solution, lacking diversity in the
solutions [28–33]. Products with multiple parts have a vast solution space during the
assembly process, where there may be more than one optimal assembly sequence. Various
unexpected situations may arise during assembly, and a single assembly sequence may not
be sufficient to handle these contingencies. Therefore, it is not suitable for complex assembly
scenarios. This paper addresses these limitations by ensuring the generation of multiple
unique optimal solutions in a single solving process. This improvement guarantees the
diversity of solutions, as depicted in Figure 1d. This is particularly crucial in the assembly
process, where there are multiple optimal assembly sequences to choose from, aligning
more closely with real-world assembly scenarios. Figure 1e illustrates the solving process
of the MOSGA and the model diagram of the product.

In practical production processes, the production workshop is not an idealized pro-
duction environment. Assembly parts are diverse, and the processes are complex. There is
a significant probability of uncertainties such as delayed material deliveries, labor short-
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ages, and equipment damage [34–36]. Therefore, ensuring the continuous fulfillment of
production tasks in the workshop becomes a crucial issue. If a partial shortage of assembly
parts occurs after assembling some parts of the assembly, it is necessary to flexibly plan
and adjust the optimal assembly sequence based on the constraints of the already assem-
bled parts. This involves constructing an adjustable flexible assembly sequence to cope
with these uncertainties and complete production tasks within the specified time. Hence,
there is a need for an assembly sequence flexible planning (ASFP) method, designed to
tackle practical re-optimization issues. This approach adjusts and plans the assembly of
subsequent parts based on the parts that have already been partially installed, effectively
accommodating changes and updates in the assembly process. Figure 1f compares ASFP
with traditional algorithms, demonstrating its advantages. Figure 1g delineates the detailed
solving process of ASFP.

To address these issues, the development of an efficient and reliable ASP method
aimed at solving the construction problems of modular cabins for large cruise ships is
proposed. This method also seeks to reduce product construction costs and improve
construction quality and efficiency. The objectives of this study are as follows: (1) The
MOSGA is proposed to improve the computational efficiency of solving complex assembly
problems, increase the search space, avoid falling into the local optimum, and determine
the global optimum of the assembly sequence. (2) In the assembly sequence planning
process, we aim to obtain multiple unique optimal assembly sequences in a single solving
process. (3) The introduction of the AFSP method effectively addresses the challenge
of reconfiguring assembly sequences when encountering additional constraints. This
approach adeptly manages uncertainties within the assembly process, thereby solving the
practical re-optimization issues in assembly operations.

2. Mathematical Model of Assembly Sequence

ASP is the process of solving optimization problems that meet spatial geometric
relationships, physical relationships, and mechanical condition constraints. Its goal is to
avoid interference between parts while minimizing the waste of resources and time as much
as possible [37–39]. In the complex task of assembly, the establishment of the assembly
information mathematical model is crucial, as it directly affects whether the subsequent
generated assembly sequence is applicable to practical production issues. The design of the
mathematical model is essential for ensuring the orderliness and efficiency of the assembly
process, and its quality directly determines the applicability of the generated assembly
sequence in actual production. When establishing the mathematical model, it is necessary
to clearly reflect the information of the product’s parts, including their relationships [40,41].
Additionally, consideration of information about assembly tools is essential to ensure the
feasibility of the planned sequence in practice. Furthermore, coverage of information
regarding various assembly operations is also necessary to ensure the rationality and
smoothness of the entire assembly process [42–44].

2.1. Design of Constraint Matrix

Assume that the parts of the product undergo horizontal motion in six directions
in three-dimensional space, corresponding to the six coordinate axes of the Cartesian
coordinate system [45]. The variables C(p, q) and T(p, q) are introduced to represent
the contact and motion interference relationship between two arbitrary parts in the six
directions in space, denoted as (x, y, z,−x,−y,−z). The defining expressions for the two
variables are as follows:

C(p, q) = (C1, C2, C3, C4, C5, C6) Ci− > {0, 1} i = 1 − 6
T(p, q) = (T1, T2, T3, T4, T5, T6) Ti− > {0, 1} i = 1 − 6

(1)

In Equation (1), Ci represents the contact relationship between two parts in the i
direction. If Ci = 1, it indicates that part q is in contact with part p in the i direction of
p. Otherwise, if Ci = 0, it signifies that there is no contact between the two parts in that
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direction. The motion contact relationships are illustrated in Table 1. Similarly, Ti represents
the interference relationship when one part moves relative to another in the i direction. If
Ti = 1, it means that part q can move in the i direction relative to p without interference
from p. Conversely, if Ti = 0, it implies that when q moves in that direction to complete
the assembly operation, it will encounter interference from p. The motion interference
relationships are depicted in Table 2.

Table 1. Motion contact relationship.

A B C D E F G H

A (0,0,0,0,0,0) (0,1,0,0,1,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,1,0,0,0) (0,0,0,1,0,0) (0,0,1,0,0,0) (0,1,0,0,0,0)
B (0,1,0,0,1,0) (0,0,0,0,0,0) (0,0,0,1,0,0) (0,0,0,0,0,1) (0,0,0,0,0,0) (0,0,1,0,0,0) (0,1,0,0,0,0) (0,0,0,0,0,0)
C (0,0,0,1,0,0) (1,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,1) (0,0,0,0,0,1) (0,0,1,0,0,0)
D (0,0,0,0,0,0) (0,0,0,0,1,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)
E (0,0,1,0,0,0) (0,0,0,0,0,0) (0,0,1,0,0,0) (0,0,0,1,0,0) (0,0,0,0,0,0) (1,0,0,0,0,0) (0,0,0,0,0,0) (0,1,0,0,0,0)
F (0,0,0,0,1,0) (0,0,0,0,0,0) (1,0,0,0,0,0) (0,1,0,0,0,0) (0,0,0,1,0,0) (0,0,0,0,0,0) (0,1,0,1,0,0) (0,1,0,1,1,1)
G (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,1) (0,1,0,0,1,0) (1,1,1,0,0,0) (0,0,0,0,0,0) (1,1,0,0,0,0)
H (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,1) (0,0,0,0,0,0) (1,0,0,1,0,1) (0,1,0,1,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)

Table 2. Motion interference relationship.

A B C D E F G H

A (1,1,1,1,1,1) (0,0,1,0,0,1) (1,0,1,1,1,0) (1,1,1,1,1,0) (1,1,0,0,1,1) (1,1,1,0,1,1) (1,1,0,1,1,1) (1,0,1,1,1,1)
B (0,0,1,0,0,0) (1,1,1,1,1,1) (1,1,1,0,0,0) (1,1,1,1,0,0) (1,0,1,1,1,1) (1,1,0,1,1,1) (1,0,1,1,1,1) (1,1,1,1,1,1)
C (0,0,0,0,0,0) (0,1,0,1,1,1) (1,1,1,1,1,1) (1,1,1,1,0,0) (1,1,0,1,1,1) (1,1,1,1,1,0) (1,1,1,1,1,0) (1,1,0,1,1,1)
D (0,0,0,0,0,0) (1,1,1,0,0,0) (0,1,1,0,0,0) (1,1,1,1,1,1) (0,1,1,1,1,1) (1,1,1,1,1,1) (1,1,1,1,1,1) (1,1,1,1,1,1)
E (0,0,0,1,0,0) (0,1,1,1,1,0) (1,1,0,0,1,0) (1,0,1,0,0,1) (1,1,1,1,1,1) (0,1,1,1,1,1) (1,1,1,1,1,1) (1,0,1,1,1,1)
F (1,1,1,0,0,0) (0,1,0,1,1,1) (0,1,1,1,1,1) (1,0,0,1,1,1) (1,1,0,0,1,1) (1,1,1,1,1,1) (1,0,1,0,1,1) (1,0,1,0,0,0)
G (1,1,1,0,1,1) (0,1,0,1,0,1) (1,1,1,1,0,1) (1,1,1,0,0,0) (0,0,1,1,0,1) (1,0,0,1,1,1) (1,1,1,1,1,1) (0,0,1,1,1,1)
H (0,1,1,1,1,1) (1,1,1,0,1,1) (1,1,1,0,1,0) (1,1,1,0,1,0) (0,1,1,0,1,0) (1,0,1,0,1,1) (1,1,1,0,1,1) (1,1,1,1,1,1)

2.2. Number of Assembly Direction Changes

This section introduces several mathematical symbols to aid in describing the estab-
lished mathematical model. The symbols are as follows:

N: The quantity of parts in the product.
L: The assembly sequence of the product.
Pi: The i-th assembly part in the assembly sequence.
Lc,p,i: The number of direction changes when assembling Pi parts.
Fc: The number of assembly direction changes.

Fc =


N
∑

i=1
Lc,p,i + 1 Change o f assembly direction

0 Else
(2)

In Equation (2), during the assembly of a product, the assembly directions of the parts
are determined based on the information provided in Table 1. When the assembly direction
changes between two adjacent assembly parts, it incurs a certain amount of time and labor
cost [46–48]. Each change in assembly direction increases the reversal count Lc,p,i of the
assembly. The reversal count reflects the complexity of the assembly sequence operations.
The initial Fc value is 0. When the assembly changes direction once, the value of Lc,p,i
increases by 1. A smaller value of Fc indicates lower time costs.
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2.3. Number of Assembly Tool Changes

Lt,p,i: The number of assembly tool changes when assembling Pi parts.
Ft: The number of assembly direction changes.

Ft =


N
∑

i=1
Lt,p,i + 1 Assembly tool changes

0 Else
(3)

In Equation (3), within the assembly sequence, when considering two consecutive
assembly parts, denoted as Pi and Pj, the utilization of the same assembly tool for both
parts contributes to improved assembly efficiency [49,50]. If the assembly tool changes,
the efficiency decreases. By tracking the number of tool changes Lt,p,i, we can reflect the
efficiency of the assembly sequence. The initial value of Ft is 0. When the assembly tool
changes between two adjacent assembly parts, the value of Lt,p,i increases by 1. A smaller
value of Ft indicates higher assembly efficiency.

2.4. Geometric Constraints of Assembly

Lg,i,j: Whether the parts Pi and Pj satisfy the geometric constraint relationship.
Fg: Geometric constraints of assembly.

Lg,i,j =

{
1 Mounting part Pj a f ter part Pi does not satis f y the geometric constraint
0 Else

(4)

Fg =
n

∑
i=1

Lg,i,j (5)

In Equations (4) and (5), within the assembly process, as indicated by the information
presented in Tables 1 and 2, if assembly parts Pi and Pj cannot be assembled in practice due
to mutual interference between the assembly bodies, the feasibility conditions for assembly
are not met [51,52]. As long as there is one situation where the geometric constraints are
not satisfied, the entire assembly becomes unfeasible. In the calculation process, penalty
coefficients need to be introduced to account for such situations. The feasibility of the
assembly sequence can be assessed by tracking whether adjacent parts satisfy the geometric
constraints, denoted as Lg,i,j. The initial value of Fg is set to 0. When there are geometric
constraints between two adjacent parts, the value of Lg,i,j increases by 1. It is then checked
whether Fg is greater than 0; if so, geometric constraints are not satisfied, and a penalty
coefficient is applied to the assembly sequence.

2.5. Sequence Constraints of Assembly

Lr,i,j: Whether the parts Pi and Pj satisfy the sequence constraint relationship.
Fr: Geometric constraints of assembly.

Lr,i,j =

{
1 Mounting part Pj a f ter part Pi does not satis f y the sequence constraint
0 Else

(6)

Fr =
n

∑
i=1

Lr,i,j (7)

In Equations (6) and (7), if adjacent parts Pi and Pj do not satisfy the assembly sequence
constraint, assembly cannot proceed. Taking the example of assembling compartments in a
ship, when installing a sanitation unit and the compartment floor, the sanitation unit cannot
be installed before the compartment floor, which does not meet the actual installation
requirements. As long as there is one instance of a sequence constraint violation, a penalty
coefficient is introduced during the calculation process to prevent the progression to the
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next step in the optimal population selection. By assessing whether adjacent parts satisfy
the sequence constraint Lr,i,j, the feasibility of the assembly sequence can be reflected.
The initial value of Fr is set to 0, and when two adjacent parts do not meet the sequence
constraint, the value of Lr,i,j is incremented by 1. It is then checked whether the value of Fr
is greater than 0. If it is, the sequence constraint is not satisfied, and a penalty coefficient is
applied to the assembly sequence.

2.6. Objective Function and Fitness Function

According to the established mathematical model, the effectiveness of an assembly
sequence is influenced by the number of changes in assembly direction, the number of
changes in assembly tools, geometric constraints, and sequential constraints. Subject to both
geometric and sequential constraints, the objective function F1 for the assembly sequence
can be expressed as Equation (8). Although changes in assembly direction and changes in
assembly tools both affect the total assembly time, changing the assembly tools requires
more time compared to changing the assembly direction. Therefore, the weight coefficients
ω1 and ω2 are added, with ω1 = 0.4 and ω2 = 0.6.

F1 =
1

[ω1Fc + ω2Ft]
(8)

If the geometric constraints are not met, the assembly process will be hindered by
interference between parts, affecting the assembly efficiency. To address this, a penalty
coefficient α is introduced, with α taking a value greater than 1, set to α = 1.8. This
adjustment will result in a lower overall value of the objective function, thus diminishing
the competitiveness of the assembly sequence in question. The objective function F2 is as
presented in Equation (9).

F2 =
1

α[ω1Fc + ω2Ft]
(9)

When the sequence constraints are not met, this sequence cannot proceed with as-
sembly and must be directly eliminated. A penalty coefficient µ is added, µ = 8. When α
and µ are multiplied, the result of the objective function calculation is an extremely small
value, eliminating it from the population evolution. The objective function F3 is as shown
in Equation (10).

F3 =
1

α × µ
(10)

In summary, the fitness function is shown in Equation (11). When the assembly
sequence satisfies all the constraint conditions, formula (a) is used. Formula (b) is used
when the geometric constraints are not satisfied, and formula (c) is used when the sequence
constraints are not met. Fitness(S) represents the fitness function of the assembly sequence.

Fitness(S) =


1

[ω1Fc+ω2Ft ]
(a)

1
α[ω1Fc+ω2Ft ]

(b)
1

α×µ (c)

(11)

3. Improvement Principle

This section elaborates on how the MOSGA enhances computational efficiency, ex-
pands the search space, and avoids falling into local optima when solving complex assembly
problems. This approach aims to achieve the global optimum of assembly sequences during
the solving process. This section also illustrates the methodology for obtaining multiple
unique optimal assembly sequences in a single solving process. Additionally, it outlines
the approach of AFSP in implementing flexible planning for assembly sequences.
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3.1. Principle Analysis

The traditional GA process includes first setting the population size, and then, selecting
the method of selection to be applied from among three selection methods: roulette wheel
selection, tournament selection, and elitism retention strategy. After selecting the initial
population, a given number of iterations are performed. During these iterations, crossover,
mutation, selection, and the evolution of the population occur until the iteration count is
reached. A flowchart of the traditional GA process is shown in Figure 2.
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1. Feasibility Analysis of Improving Computational Efficiency

Through analysis, when dealing with complex problems, the reasons for traditional
GAs getting stuck in local optima include the following: (1) For large-scale problems, there
are fewer excellent individuals. The sparse distribution makes it difficult to search. Increas-
ing the number of iterations does not bring significant improvement. This phenomenon
occurs due to the complexity of the problem, leading to a larger search space for solutions.
(2) When the optimization iterations of the GA reach a certain optimal value, the fitness
value is already very high. Individuals with better fitness are sparsely distributed in the
search space, making it difficult to conduct further searches. (3) In the process of popula-
tion evolution, the GA tends to converge, leading to a reduction in population diversity.
This decrease in diversity makes it difficult for GAs to mutate and surpass the current
local optimum.
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The advantages of the MOSGA compared to traditional GAs are as follows: (1) The
MOSGA adds new judgment criteria. If the highest fitness function value remains the same
for several consecutive generations during the evolution process, optimization is carried out
according to the optimization criteria. (2) During optimization, the current best sequence is
first preserved to prevent it from being compromised. The best assembly sequence is saved
and added to the next generation of the population. (3) Random assembly sequences are
introduced to increase the diversity of the solution space. Two individuals are randomly
generated as parents for crossover and mutation, and 1/3 of the population is randomly
generated to enhance diversity. These individuals are added to the next generation of
the population. (4) Evolution is carried out using dominant individuals, increasing the
probability of mutation while enhancing global search capability. The current best assembly
sequence is used as the parental sequence. In the operations of crossover and mutation,
the probability of chromosome crossover and mutation is increased compared to the
original probabilities of 0.3 and 0.1, raising the crossover probability to 0.8 and the mutation
probability to 0.3, to generate the individuals of the remaining population. This enhances
the overall search capability while preventing local optima.

2. Theoretical Feasibility of Multiple Unique Optimal Solutions

GA and other search methodologies often fall short by converging on a single optimal
solution, lacking diversity in outcomes. This limitation becomes particularly evident in the
assembly of complex parts, where the vast solution space may contain multiple effective
assembly sequences. Should the algorithm identify only a singular optimal solution, it
may prove insufficient in practical scenarios, especially when unexpected changes or
challenges arise. The significance of possessing multiple unique optimal solutions is
manifold: (1) Enhanced Adaptability to Complexity: In intricate assembly scenarios, the
availability of multiple optimal assembly sequences affords greater flexibility. This implies
that in practical operations, should complications arise or specific parts become unavailable,
an alternative optimal sequence can be selected to complete the assembly, bypassing the
need to start anew or dismantle partially assembled sections in search of a new solution.
(2) Increased System Robustness: By ensuring a selection from multiple solutions, the
system’s adaptability to external changes is bolstered, enabling a more robust response
to emergencies. (3) A Closer Reflection of Real-World Conditions: Real-world problems
seldom have a single solution. More often, multiple viable approaches exist to achieve a
goal. Generating multiple optimal solutions allows algorithms to more accurately mirror
the complexity and uncertainty of the real world, offering a method that is both more
accurate and practical. (4) Application in Flexible Planning: The concept of multiple
unique optimal solutions can also be applied to the ASFP method discussed herein, solving
practical re-optimization problems.

In conclusion, the MOSGA presents a significant advancement over traditional GAs by
addressing their key limitations, particularly in terms of computational efficiency and the
ability to find multiple unique optimal solutions. These improvements make the MOSGA
more suitable for complex problem-solving scenarios, offering enhanced adaptability,
robustness, and a more accurate reflection of real-world conditions.

3.2. Improving Search Efficiency and Avoiding Local Optima

To address the issue of traditional GAs falling into local optima, the MOSGA employs
a new optimization criterion in its selection process. This method aims to avoid entrapment
in local optima and further expand the search space for solutions. In the process of solving,
the assembly sequence of the highest fitness function value of each generation is saved.
However, if the optimal sequence for an assembly remains the same for several consecutive
generations, there is a risk of falling into a local optimum. To address this issue, the
following optimization steps are implemented:
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(1) Save the optimal assembly sequences and incorporate them into the next-
generation population.

(2) Randomly generate two individuals as parents, perform crossover and mutation, and
randomly generate 1/3 of the population to enhance diversity. Add these individuals
to the next-generation population.

(3) Use the current optimal assembly sequence as a parent. In the crossover and mutation
operation, increase the probability of chromosome crossover and mutation to generate
the remaining population. Increase the crossover probability to 0.8 and mutation
probability to 0.3, compared to the original probabilities of 0.3 and 0.1. This enhances
the overall search capability of the population, preventing local optima.

Upon completion of these operations, the population size reaches the quantity required
for the next-generation evolution. By expanding the search space, the current population’s
optimal assembly sequences are retained. Experimental validation shows that this approach
helps prevent local optima during subsequent evolution. A flow chart of this process is
shown in Figure 3.
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3.3. Establishment of Multiple Unique Optimal Solutions

Establishing multiple unique optimal solutions is not as simple as running the algo-
rithm multiple times to obtain several optimal solutions. Running the algorithm multiple
times often leads to convergence towards the same optimal sequence, failing to achieve
the uniqueness of optimal solutions and resulting in a substantial waste of computational
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resources. The method employed in this study involves saving the assembly sequence
with the highest fitness after the completion of each generation’s selection. Assuming the
number of iterations is denoted as Pn, this results in the preservation of Pn optimal assembly
sequences. After the iterations, duplicate assembly sequences are removed from the saved
optimal sequences to maintain uniqueness. Subsequently, based on the converged highest
fitness function value, sequences below this value are excluded. The final remaining assem-
bly sequences constitute multiple unique optimal solutions. A flow chart of this process is
shown in Figure 4.
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3.4. Assembly Sequence Flexible Planning
3.4.1. Problem Analysis

In the ASP problem, many scholars often focus on finding an optimal assembly se-
quence for use when production starts in a factory. However, they overlook a crucial
issue—adopting a single assembly sequence for production does not provide a one-stop
solution to all problems. In actual assembly processes, various issues may arise, such as
insufficient part capacity, delivery delays, transportation damage, and occupied assem-
bly tools, preventing the continuation of assembly according to the original sequence.
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This results in increased waiting time and total assembly time, leading to manufacturing
resource waste.

Addressing the aforementioned challenges, this paper proposes the ASFP method,
which tackles the need to readjust assembly sequences when encountering different con-
straints during the assembly process. The ASFP method can further plan the assembly
of remaining parts based on the already installed parts. This planning ensures that un-
der various constraints, an optimal assembly sequence is devised for assembling the
remaining parts.

Suppose that at the start of assembly, the initially planned optimal assembly sequence
1, 2, 3, 4, 5, 6, 7, 8, 9 is chosen. However, during the assembly of part 5, certain constraints
prevent the continuation of assembly according to the sequence 5, 6, 7, 8, 9. In such a
scenario, re-planning of the assembly sequence 5, 6, 7, 8, 9 is required. ASFP can, based
on the already installed parts 1, 2, 3, 4, and under various constraints, devise an optimal
assembly plan for parts 5, 6, 7, 8, 9. The newly planned assembly sequence satisfies the
constraints imposed by the already assembled parts. Among the multiple optimal solutions
generated, the one most suitable for practical production is selected.

For example, three optimal assembly sequences are generated: 6, 9, 5, 8, 7; 6, 5, 8, 7,
9; 6, 8, 9, 5, 7. In actual production, due to insufficient capacity for part 5, the sequence 6,
8, 9, 5, 7, where part 5 is assembled later, is selected as the final solution. This addresses
engineering challenges and improves assembly efficiency.

3.4.2. Process of ASFP

Assembly sequence flexibility planning poses two main challenges:

1. Constraints of installed parts

The existing assembly sequence has already assembled some parts. The planning of
the remaining assembly sequence pertains to the unassembled parts. Therefore, planning
the assembly sequence for the remaining parts must satisfy the optimal conditions while
adhering to constraints imposed by the already installed parts. For example, if the initially
planned optimal assembly sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9 and re-planning is needed
during the assembly of part 5, resulting in a sequence like 7, 8, 9, 5, 6, this new sequence
must not only satisfy its own constraints but also meet the constraints from the already
installed parts 1, 2, 3, 4. These constraints include assembly geometry constraints and
sequence constraints.

2. Selecting the optimal assembly sequence

The generated optimal assembly sequences need further optimization under various
constraints to make them more suitable for practical applications. For instance, if the
initially planned optimal assembly sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9 and flexibility planning
is performed during the assembly of part 5, yielding four optimal sequences like 6, 9, 5, 8,
7; 6, 5, 8, 7, 9; 6, 8, 9, 5, 7; 6, 7, 8, 9, because 6, 7, 8, 9 is the original assembly sequence, it
is initially excluded. In actual production, if there is a shortage of supply for part 5, then
the sequence 6, 8, 9, 5, 7, where part 5 is assembled later, would be selected as the final
optimized result.

Based on these challenges, this paper proposes the following solutions:
Assume some parts have already been assembled, making it impossible to follow the

original assembly sequence.

1. Utilize the MOSGA: Employ the MOSGA to plan assembly sequences for the remain-
ing parts and generate multiple optimal solutions for further selection.

2. Evaluate constraint satisfaction: Assess the constraint satisfaction of the generated
optimal solutions and retain sequences that satisfy the constraints imposed by the
already assembled parts.

3. Make a selection: Opt for sequences that align most effectively with the factory’s
production scenario.
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4. Update original assembly sequence: Update the original assembly sequence and
proceed with assembly.

A flexibility planning flowchart for ASFP is illustrated in Figure 5.
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4. MOSGA and ASFP

The MOSGA is divided into the following steps: Firstly, the parts of the assembly are
encoded using a genome-based encoding method in GA. Subsequently, crossover, mutation,
and selection are performed to generate multiple unique optimal solutions. The iteration
concludes with the completion of the calculations.

4.1. Encodings

In a GA, the method of transforming candidate solutions of a problem from their
solution space to the search space that the GA can handle is referred to as encoding. Com-
mon encoding techniques include binary encoding, real-valued encoding, and permutation
encoding. In this paper, the decimal method in real number coding is used for coding, and
each digital coding represents the corresponding parts. Assuming there are N parts in the
product, the encoding length is N.

Taking the compartments of a certain ship as an example, the compartments include
parts, sanitation units, furniture, ceilings, electrical equipment, fire doors, cables, and more.
Each of these parts is assigned a specific code ranging from 1 to N, facilitating an organized
and efficient encoding strategy of the MOSGA in this paper.
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4.2. Crossover and Mutation

(1) Crossover

The chromosomes were crossed using the following methods. Two father chromo-
somes, A and B, were randomly selected to cross. We randomly selected the crossover
position, assuming that the crossover position selected by A and B was 5–9:

A = 1 2 3 4 | 5 6 7 8 9 | 10 11 12 13 14 15

B = 3 2 4 1 | 9 14 11 15 5 | 10 7 12 13 6 8

The cross-sections 5,6,7,8,9 of A were crossed with the cross-sections 9,12,11,15,5 of B,
and the following results were obtained:

A = 1 2 3 4 | 5 6 7 8 9 9 14 11 15 5 | 10 11 12 13 14 15

B = 3 2 4 1 | 9 14 11 15 5 5 6 7 8 9 | 10 7 12 13 6 8

We removed the duplicate parts in A and B in turn, and obtained the following result
after crossing:

A = 1 2 3 4 5 6 7 8 9 14 11 15 10 12 13

B = 3 2 4 1 9 14 11 15 5 6 7 8 10 12 13

(2) Mutation

The chromosome was mutated by the reverse mutation method. Two chromosomes,
A and B, were selected for variation. We randomly selected the mutation position of 4–9:

A = 1 2 3 | 4 5 6 7 8 9 | 10 11 12 13 14 15

B = 3 2 4 | 1 9 14 11 15 5 | 10 7 12 13 6 8

The mutation part 4, 5, 6, 7, 8, 9 of A was reversed to obtain 9, 8, 7, 6, 5, 4. The variation
part 1, 9, 14, 11, 15, 5 of B was inverted to obtain 5, 15, 11, 14, 9, 1. The variation results are
as follows:

A = 1 2 3 9 8 7 6 5 4 10 11 12 13 14 15

B = 3 2 4 5 15 11 14 9 1 10 7 12 13 6 8

4.3. Overall Solution and Selection Steps

Step 1: Set the initial population size, crossover probability, and mutation probability.
Generate the initial population through random number generation, with the generated
population serving as the parent population.

Step 2: Analyze the interference matrix of the assembly, considering the number of
assembly reorientations, tool change frequency, geometric constraints of the assembly, and
impact of sequence constraints on the assembly. Design the fitness function calculation
formula, and calculate the fitness function values of the population individuals according
to the fitness calculation formula.

Step 3: Retain the assembly sequence with the highest fitness in each generation to
establish multiple unique optimal solutions.

Step 4: Select chromosomes, perform crossover to generate new chromosomes based
on crossover probability, and mutate the new chromosomes based on mutation probability
to produce further diversity.

Step 5: Evaluate the change in fitness function values over multiple generations. If
the fitness values remain unchanged for consecutive generations, optimize the algorithm
according to predefined criteria to expand the search space and avoid local optima.

Step 6: Based on the highest fitness function value reached during convergence,
discard assembly sequences with fitness values lower than the highest value from the saved
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sequences. Retain only those sequences equal to the highest fitness function value to obtain
multiple unique optimal solutions.

Step 7: Choose an assembly sequence for assembly from multiple unique optimal solutions.
Step 8: If constraints arise preventing assembly according to the original sequence,

utilize ASFP to plan the assembly sequence.
Step 9: Employ the MOSGA to plan multiple unique optimal solutions, select the best

one among them, and update the assembly sequence.
Step 10: Complete the product assembly.
An algorithm flowchart is illustrated in Figure 6.
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5. Experimental Case Study

Taking a cruise cabin as a case, our analysis reveals that the cabin unit is mainly
composed of sanitary units, wall panel systems, ceiling systems, fire doors, furniture
systems, ventilation systems, sprinkler systems, and electrical systems. Schematic and
model diagrams of the cabin are presented in Figure 7a,b. The installation requires tools
such as a cutting machine, a welding machine, an electric drill, a curve saw, an electrician’s
diagonal pliers, a wire stripper, a screwdriver, an electrician’s pen, a multimeter, a cable-
bundling tool, an aluminum ladder, a pry bar, a laser level, and a 20 m tape measure.
According to the cabin assembly information, there are a total of 15 parts.
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To ensure reliable experimental results, the parameters of both algorithms were stan-
dardized. The population size for the GA and MOSGA was set to 200, with a crossover
rate of 0.3 and a mutation rate of 0.1, utilizing the tournament selection method, with each
tournament’s size being half of the population number. Geometric constraints, sequence
constraints, number of directional changes, and number of tool changes were all set to
identical values. The same fitness function value evaluation strategy was applied for solv-
ing. In the small-scale experiment, a simplified cabin composed of 9 parts was used. The
large-scale experiment involved a complete cabin comprised of 15 parts. By maintaining
consistent parameter settings, data, and evaluation strategies, the aim is to conduct a fair
and comparative analysis between the traditional GA and the MOSGA.

5.1. Small-Scale Experiments

In our small-scale experiment, a simplified cabin with nine parts was utilized. The
results of solving the GA ten times with 100 iterations and 200 iterations were compared
with solving the MOSGA once, all under the same parameters.

5.1.1. GA Solved 10 Times

From Figure 8a, it can be observed that at 100 iterations, when solving small-scale
problems, the GA finds the highest fitness function value of 0.2155 in six out of ten attempts,
while the rest fall into local optima, as shown in Table 3. Figure 8b indicates that at
200 iterations, among the ten runs of the GA, three runs end up in local optima, as detailed
in Table 4. This indicates the instability of the GA when solving simplified small-scale cabin
problems. Furthermore, by observing Figure 9a,b, which describe the convergence graphs
during the GA solving process, it can be noted that the GA’s convergence is not only slow
but also unstable, often converging to local optima multiple times.
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Table 3. GA with 100 iterations solving for 10 results.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints Global Optimal

1 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,2,8,3,9,7,6,4,5 0.1644 5 3 Yes Yes No
4 4,1,2,8,6,7,3,9,5 0.1724 5 4 Yes Yes No
5 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,2,8,6,7,3,9,5,4 0.1689 4 3 Yes Yes No
7 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
8 1,2,3,9,7,6,8,4,5 0.1644 5 4 Yes Yes No
9 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
10 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes

Table 4. GA with 200 iterations solving for 10 results.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints Global Optimal

1 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,2,7,6,8,3,9,5,4 0.1689 4 3 Yes Yes No
6 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
7 1,2,8,6,7,3,9,5,4 0.1689 4 3 Yes Yes No
8 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
9 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
10 1,2,8,3,9,7,6,4,5 0.1644 5 3 Yes Yes No
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5.1.2. MOSGA Solved Once

From Figure 10a, it is evident that at 100 iterations, the MOSGA yielded six unique
optimal solutions in just one run, as shown in Table 5. Similarly, Figure 10b illustrates that
at 200 iterations, the MOSGA produced eight unique optimal solutions in only one run, as
detailed in Table 6. The convergence plots in Figure 11a,b demonstrate that the MOSGA
rapidly converges to the global optimum. Compared to the GA, the MOSGA not only
converges faster but also is capable of finding multiple unique global optimal solutions in a
single run, highlighting its advanced capabilities.
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(b) 200 iterations.

Table 5. MOSGA with 100 iterations to solve once.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints Global Optimal

1 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,2,4,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes

Table 6. MOSGA with 200 iterations to solve once.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of Tool

Changes
Sequence

Constraints
Geometric
Constraints Global Optimal

1 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,4,2,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
7 1,2,4,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
8 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes

5.2. Large-Scale Experiments

In the large-scale experiment, a complete cabin with 15 parts was used. Compared
to a small-scale experiment with only 9 parts, the experiment with 15 parts presented
a significantly larger search space and increased the difficulty of finding solutions. The
complexity of solving a nine-part problem is the factorial of 9, requiring optimization of
the best solution from a total of 362,880 assembly sequences. On the other hand, solving a
problem composed of 15 parts requires exploring a vast solution space, with a complexity
of the factorial of 15, resulting in 1,307,674,368,000 assembly sequences. Solving the optimal
sequence from these solution spaces is a tremendous computational challenge. Under
the same parameters, the results of solving the GA five times with 60 iterations and
100 iterations were compared with solving the MOSGA once.
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(b) 200 iterations.

5.2.1. GA Solved Five Times

From Figure 12a, it can be observed that, at 60 iterations, the GA converged to the
optimal value of 0.1157 only in the fifth run, while the other four runs got trapped in local
optima, as shown in Table 7. Figure 12b indicates that at 100 iterations, among the five runs
of the GA, three runs ended up in local optima, as shown in Table 8. This demonstrates the
instability of the GA when dealing with complex assembly sequence planning problems.
Additionally, by observing Figure 13a,b, which depict convergence graphs during GA
solving, it can be noted that the convergence speed of the GA is slow and unstable, often
converging to local optima multiple times.
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Figure 12. GA solving for the highest fitness function value 5 times, with (a) 60 iterations;
(b) 100 iterations.

Table 7. GA with 60 iterations solving for 5 results.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1 6,11,4,13,1,2,3,5,9,8,14,10,15,12,7 0.0333 11 8 Yes Yes No
2 1,2,6,4,8,9,3,5,10,11,7,12,13,14,15 0.0932 7 6 Yes Yes No
3 1,4,7,2,3,5,11,10,9,12,13,8,6,14,15 0.0932 7 6 Yes Yes No
4 1,2,6,11,9,3,14,15,5,4,10,7,12,13,8 0.0976 9 4 Yes Yes No
5 1,2,4,8,11,9,3,13,12,7,6,14,15,5,10 0.1157 6 3 Yes Yes Yes
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Table 8. GA with 100 iterations solving for 5 results.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1 1,2,4,14,8,3,5,15,10,11,9,12,13,7,6 0.1136 7 3 Yes Yes No
2 1,4,2,7,6,8,3,5,9,10,11,13,12,14,15 0.1157 5 4 Yes Yes Yes
3 1,2,4,9,3,14,15,5,11,10,7,6,13,12,8 0.1157 6 3 Yes Yes Yes
4 8,4,1,2,13,6,7,3,9,11,5,10,12,14,15 0.0847 6 5 Yes Yes No
5 1,4,6,2,3,13,8,11,12,15,5,10,9,7,14 0.0892 11 5 Yes Yes No
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5.2.2. MOSGA Solved Once

From Figure 14a, it is evident that at 60 iterations, the MOSGA yielded four unique
optimal solutions in just one run, as shown in Table 9. Figure 14b illustrates that at
100 iterations, the MOSGA produced 11 unique optimal solutions in only one run, as shown
in Table 10. At the same number of iterations, the number of global optimal solutions
obtained by the GA in multiple runs is significantly less than the number obtained by the
MOSGA in a single run. This clearly indicates the superiority of the MOSGA over the GA.
The convergence graphs in Figure 15a,b demonstrate that the MOSGA rapidly converges
to the global optimum.
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Table 9. MOSGA with 60 iterations to solve once.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1 1,2,4,6,7,8,3,9,14,15,5,11,10,13,12 0.1157 6 3 Yes Yes Yes
2 1,2,4,8,3,14,15,5,9,11,10,12,13,7,6 0.1157 6 3 Yes Yes Yes
3 1,2,4,8,3,5,15,14,10,9,11,13,12,7,6 0.1157 6 3 Yes Yes Yes
4 1,2,4,8,3,14,15,5,11,9,10,7,6,12,13 0.1157 6 3 Yes Yes Yes

Table 10. MOSGA with 100 iterations to solve once.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1 1,4,2,3,9,11,5,15,14,8,10,13,12,7,6 0.1157 6 3 Yes Yes Yes
2 1,4,2,8,3,9,11,6,7,13,12,14,15,5,10 0.1157 6 3 Yes Yes Yes
3 1,4,2,8,3,9,5,15,14,6,7,11,10,13,12 0.1157 6 3 Yes Yes Yes
4 1,4,2,3,5,15,14,8,7,6,9,11,10,13,12 0.1157 6 3 Yes Yes Yes
5 1,4,2,6,7,3,5,15,14,8,10,11,9,13,12 0.1157 6 3 Yes Yes Yes
6 1,4,2,6,7,3,5,15,14,11,10,9,13,12,8 0.1157 6 3 Yes Yes Yes
7 1,4,2,6,7,3,5,15,14,11,10,9,8,13,12 0.1157 6 3 Yes Yes Yes
8 1,4,2,6,7,3,5,15,14,8,10,9,11,13,12 0.1157 6 3 Yes Yes Yes
9 1,4,2,7,6,11,9,3,5,15,14,8,10,13,12 0.1157 6 3 Yes Yes Yes
10 1,4,2,3,6,7,14,15,5,10,11,9,8,13,12 0.1157 6 3 Yes Yes Yes
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6. ASFP Case Study

To verify the feasibility of ASFP method based on the MOSGA, experiments were
conducted using a cabin. This shipyard completed the basic layout of the workshop in 2021
and commenced production at the beginning of 2022. Based on the cabin conditions, the
optimal assembly sequence planned by the MOSGA is 1, 2, 4, 9, 3, 5, 11, 10, 14, 8, 13, 12,
6, 7, 15, as shown in the first row of Table 11. Using ASFP for its flexible assembly, when
the factory assembles part 11, it is observed that there is a capacity shortage. Therefore, it
is necessary to adjust the assembly sequence and conduct flexible planning. The planned
result is shown in the second row of Table 7, and the optimized assembly sequence is as
follows: 1, 2, 4, 9, 3, 5, 15, 14, 6, 7, 8, 10, 11, 12, 13. This sequence meets the constraints
imposed by the already assembled parts 1, 4, 9, 3, 5 and represents the optimal assembly
sequence for the next assembly steps. When assembling part 8, it was damaged during
transportation, necessitating an adjustment to the assembly sequence. Once again, flexible
planning was conducted, and the resulting sequence is shown in the third row of Table 7.
The optimized assembly sequence is as follows: 1, 2, 4, 9, 3, 5, 15, 14, 6, 7, 11, 10, 13, 12, 8.
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This sequence meets the constraints imposed by the already assembled parts, 1, 4, 9, 3, 5,
15, 14, 6, 7, and ensures that part 8 is assembled at a later time to address the damage issue.
The completed cruise cabin is shown in Figure 16.

Table 11. Flexible planning of optimal assembly sequences.

Number
of ASFP Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

0 1,2,4,9,3,5,11,10,14,8,13,12,6,7,15 0.1157 6 3 Yes Yes Yes
1 1,2,4,9,3,5,15,14,6,7,8,10,11,12,13 0.1157 6 3 Yes Yes Yes
2 1,2,4,9,3,5,15,14,6,7,11,10,13,12,8 0.1157 5 4 Yes Yes Yes
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7. Discussion

This paper conducted experiments on a cabin with 15 parts in a shipyard, comparing
and analyzing GAs and MOSGAs with different iteration numbers. The experimental
results show that in small-scale problems, the GA exhibits instability and convergence
issues at both 100 and 200 iterations, getting trapped in local optima. In Figure 17, the GA
is compared with the MOSGA. In 10 runs, the GA achieved the global optimum six times
in 100 iterations, and seven times in 200 iterations. In contrast, the MOSGA, in just one run,
obtained six global optima at 100 iterations and eight global optima at 200 iterations.
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In large-scale problems, the advantages of the MOSGA are further highlighted. The
experimental results indicate that the GA exhibits instability and convergence issues at
60 and 100 iterations, falling into local optima. In Figure 18, compare the GA with the
MOSGA. Among the five runs, the GA at 60 iterations achieves a global optimum once,
and at 100 iterations, it obtains two global optima, with the rest falling into local optima.
In contrast, the MOSGA, with only one run, attains 4 global optima at 60 iterations and
11 global optima at 100 iterations. The proposed MOSGA overcomes the limitations of the
GA in solving complex problems, further enhancing search efficiency. Our experimental
results demonstrate that the MOSGA outperforms the GA significantly, whether in terms
of convergence speed or the quantity of optimal solutions obtained.
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Observing the convergence plot reveals that the GA quickly falls into a local optimum,
and increasing the number of iterations fails to bring about significant improvements. This
phenomenon arises due to the complexity of the problem, leading to a larger search space
for solutions. When the optimization iteration of the GA reaches a certain optimal value,
the fitness value is already high. The individuals with better fitness are less distributed
in the search space and it is difficult to carry out a further search. Additionally, during
the population evolution process, the GA tends to converge, resulting in a reduction in
population diversity. This decrease in diversity makes it difficult for the GA to undergo
mutations and explore beyond the current local optimum. Therefore, further enhancements
are needed to address the limitations of GAs.

Table 11 clearly demonstrates that the ASFP method proposed in this paper effectively
addresses the practical re-optimization issues encountered during the assembly process.
This approach is utilized in situations where assembly sequences need to be readjusted
due to unforeseen constraints encountered during the assembly process, thereby avoiding
the waste of manufacturing resources and improving assembly efficiency. Initially, the
MOSGA is used to plan the global optimum solutions for the products requiring assembly.
Throughout each step of the assembly process, flexible planning is applied based on the
actual conditions in the factory. If a sudden problem arises, the assembly sequence must
be readjusted. In cases of installation issues with any part, the assembly sequence can be
re-planned, allowing for the development and optimization of multiple unique solutions
to select the optimal sequence that aligns most closely with the actual assembly situation.
By doing so, the factory continues its assembly operations with reduced waiting and total
assembly times, consequently lowering manufacturing costs.

During the planning process using ASFP, if there is no new optimal assembly sequence
that satisfies the constraints of the already installed parts, the planning is considered
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unsuccessful, and the assembly proceeds according to the original assembly sequence.
The experiments in this study addressed situations where the assembly of factory parts
encountered issues twice, and flexible planning was employed to adjust the assembly
sequence. If more unexpected situations are encountered, in the worst case, one or more
instance of flexible planning can be carried out for each part installed until the optimal
assembly sequence in line with the actual production situation is planned. The experimental
results presented in this study confirm the practical feasibility of ASFP, highlighting its
significant guiding implications for assembly sequence planning problems.

8. Conclusions

This paper introduces a novel ASP method suitable for the construction of modular
cabins in large cruise ships. Utilizing four constraint conditions, including geometric
constraints, sequence constraints, assembly changeover times, and tool changeover times,
the method conducts multi-objective optimization. It generates multiple unique optimal
assembly sequences that satisfy specified constraints and improves search efficiency. Simul-
taneously, this paper proposes the ASFP method to tackle practical re-optimization issues
in factory assembly processes, such as material delivery delays, equipment breakdowns,
and transportation damage. When encountering these situations, using ASFP for flexible
planning can lead to the creation of a new assembly plan for workshop production.

The paper provides a detailed description of the algorithm’s steps and core processes,
comparing it with the GA. Illustrated by examples, the innovation of the proposed opti-
mization algorithm is demonstrated. The key contributions of this paper are as follows:

• Overcoming Local Optima in GA: This paper resolves the issue of the GA converging to
local optima when dealing with complex assembly problems. It introduces the MOSGA
method, an improved approach that determines global optimal assembly sequences.

• Diverse Optimal Solutions: Addressing the problem of multiple search algorithms con-
verging to a single optimal solution, the MOSGA not only identifies global optimal so-
lutions but also produces multiple unique optimal solutions in a single solving process.

• ASFP for Flexible Planning: Regarding the ASFP method, this approach, designed to
solve practical re-optimization issues in assembly processes, becomes crucial when un-
foreseen circumstances hinder adherence to the original assembly sequence, necessitat-
ing the re-planning of the optimal assembly sequence. The application of ASFP proves
effective in reducing assembly costs and significantly enhancing assembly efficiency.

• Validation through Experiments: Through experiments with different parameters us-
ing a cabin example, this paper compares the GA and MOSGA, proving the advanced
and innovative nature of the MOSGA. Additionally, flexible planning based on the
cabin example verifies the feasibility of ASFP in solving assembly flexibility planning
problems, achieving the expected results.
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