
Citation: Wan, X.; Liu, K.; Qiu, W.;

Kang, Z. An Assembly Sequence

Planning Method Based on Multiple

Optimal Solutions Genetic Algorithm.

Mathematics 2024, 12, 574. https://

doi.org/10.3390/math12040574

Academic Editor: Carlos Conceicao

Antonio

Received: 17 January 2024

Revised: 7 February 2024

Accepted: 9 February 2024

Published: 14 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Assembly Sequence Planning Method Based on Multiple
Optimal Solutions Genetic Algorithm
Xin Wan, Kun Liu *, Weijian Qiu and Zhenhang Kang

School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology,
Zhenjiang 212003, China; wanxin_1001@163.com (X.W.); moxin_221@163.com (W.Q.); kangzh0127@163.com (Z.K.)
* Correspondence: kunliu@just.edu.cn; Tel.: +86-135-1169-2085; Fax: +86-0511-8444-6543

Abstract: Assembly sequence planning (ASP) is an indispensable and important step in the intelligent
assembly process, and aims to solve the optimal assembly sequence with the shortest assembly
time as its optimization goal. This paper focuses on modular cabin construction for large cruise
ships, tackling the complexities and challenges of part assembly during the process, based on real
engineering problems. It introduces the multiple optimal solutions genetic algorithm (MOSGA). The
MOSGA analyzes product constraints and establishes a mathematical model. Firstly, the traditional
genetic algorithm (GA) is improved in the case of falling into the local optimum when facing complex
problems, so that it can jump out of the local optimum under the condition of satisfying the processing
constraints and achieve the global search effect. Secondly, the problem whereby the traditional search
algorithm converges to the unique optimal solution is solved, and multiple unique optimal solutions
that are more suitable for the actual assembly problem are solved. Thirdly, for a variety of restrictions
and emergencies that may occur during the assembly process, the assembly sequence flexible planning
(ASFP) method is introduced so that each assembly can be flexibly adjusted. Finally, an example is
used to verify the feasibility and effectiveness of the method. This method improves the assembly
efficiency and the diversity of assembly sequence selection, and can flexibly adjust the assembly
sequence, which has important guiding significance for the ASP problem.

Keywords: assembly sequence planning; multiple unique optimal solutions; multi-objective
optimization; flexible planning

MSC: 90-04

1. Introduction

Assembly sequence planning (ASP) holds paramount significance in the realm of
manufacturing and production. It aims to determine the optimal assembly sequence,
seeking to minimize the time required for the assembly process. Thoughtful ASP can
effectively reduce production cycles and enhance productivity, consequently lowering costs
and increasing production capacity [1]. Rational ASP contributes to optimized resource
utilization, ensuring the efficient scheduling and utilization of parts and tools during the
assembly process [2]. This aids in reducing unnecessary wait times and resource wastage,
thereby improving resource utilization efficiency. Well-planned assembly sequences also
play a crucial role in lowering the probability of assembly errors, enhancing accuracy
and consistency, and ultimately elevating product quality, reducing defect rates, and
strengthening product competitiveness [3].

The design and construction of large cruise ship cabins have always been a focus
of research in the field of high-tech passenger ship construction. For the construction
process of prefabricated cabins, the main task of ASP is to find all feasible assembly
sequences and optimize the feasible sequences according to certain assembly objectives,
ultimately providing the best sequence. This paper studies the ASP problem based on the
actual engineering problems of constructing modular cabins for large cruise ships. ASP

Mathematics 2024, 12, 574. https://doi.org/10.3390/math12040574 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12040574
https://doi.org/10.3390/math12040574
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12040574
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12040574?type=check_update&version=2

Mathematics 2024, 12, 574 2 of 26

is a complex NP-hard problem [4], particularly challenging when dealing with a large
number of product parts, leading to a phenomenon known as “combinatorial explosion”,
which significantly increases the difficulty of solving the problem [5]. Numerous scholars
have employed various search algorithms, such as genetic algorithms (GA), ant colony
optimization (ACO), heuristic algorithms (HA), simulated annealing (SA), and particle
swarm optimization (PSO), to tackle the ASP [6–11]. Tseng, H.E. et al. [12] proposed
a hierarchical classification method that restructures the initial assembly relationships
into a new hierarchical structure, aiming to achieve efficient assembly planning. They
also introduced an improved ACO based on three assembly principles to search for the
optimal assembly sequence of parts. However, their hierarchical classification method is
only suitable for assembly products that are easily divided into hierarchical structures. In
contrast, complex assembly structures pose challenges in hierarchical division, making this
method unsuitable for solving ASP problems in intricate scenarios. Mishra, A. et al. [13]
presented an assembly sequence optimization method based on the flower pollination
algorithm (FPA). While it can yield multiple optimal solutions, it fails to achieve stable
convergence. After thousands of population iterations, it may not necessarily converge
to the optimal value, with instances of the fitness function continuing to increase at the
end of the iteration. This inability to ascertain global optimality, coupled with a slower
convergence speed and significant computational costs, diminishes the effectiveness of the
method. Wang, Z.Y. et al. [14] proposed an ASP method tailored for discrete manufacturing,
ensuring an optimal assembly sequence. They utilized a non-dominated sorting GA with a
mixed chromosome coding mechanism for the solution. However, their consideration of a
limited number of constraint variables results in poor convergence performance, making it
less applicable to real-world machining scenarios.

ASP is a complex optimization challenge that typically entails a vast array of possible
sequences and constraints. In solving such problems, GAs hold several advantages over
other approaches like HA, ACO, PSO, and SA: Firstly, GAs sustain population diversity
through crossover and mutation operations, enhancing the comprehensive exploration of
the solution space and reducing the likelihood of converging to local optima [15]. Secondly,
GAs do not directly use the actual values of decision variables for optimization calculations
but operate on them in encoded form. It is through this encoding approach that GAs
draw inspiration from biological concepts such as chromosomes and genes, mimicking
the genetic and evolutionary mechanisms to solve problems [16]. Thirdly, GAs boast
strong adaptability: they are not constrained by the specific mathematical formulation of
a problem, rendering them applicable to a wide array of complex optimization scenarios,
including nonlinear, multi-objective, and multi-constraint types [17]. Fourthly, the oper-
ations of GAs, such as selection, crossover, and mutation, can be tailored to the specific
attributes of a problem, offering a high degree of flexibility and customization [18]. Lastly,
GAs are robust: they exhibit minimal dependency on initial parameters and solutions,
demonstrating substantial robustness and stability [19,20].

In the construction process of modular cabins for large cruise ships, GAs can adapt
to changes in problem specifications or constraints without requiring significant modifica-
tions to the algorithm structure. This characteristic is particularly valuable in engineering
problems where design parameters or constraints may evolve over time [21]. Moreover,
many practical engineering problems involve optimizing multiple conflicting objectives
simultaneously. GAs can be extended to multi-objective optimization, enhancing their scal-
ability. This scalability is crucial for addressing the multidimensionality and multifaceted
nature of engineering problems.

However, GAs also have some limitations. The selection operation in GAs includes
three methods: roulette wheel selection, tournament selection, and an elite preservation
strategy [22]. During the selection operation, the number of selected optimal assembly
sequences only represents a small fraction of the population size [23]. Retaining too many
assembly sequences with high fitness values can impact genetic diversity. This may lead to
a situation where a local optimal individual is not easily eliminated, reducing the global

Mathematics 2024, 12, 574 3 of 26

search efficiency of the algorithm. In complex data input scenarios, the occurrence of local
optima is highly likely [24–27]. This paper first establishes the hierarchical model of the
product, illustrating the constraints and corresponding relationships between assembly
parts, as shown in Figure 1a. Subsequently, a mathematical model is constructed based
on the constraints of the product, with the product’s image and mathematical model
depicted in Figure 1b. Details of the construction of the mathematical model are presented
in Section 2. Through enhancements to the GA, the search space is expanded, improving
search efficiency and enabling the solution to complex assembly problems to break free
from local optima, achieving global optimality. The improved solving process is depicted
in Figure 1c.

Mathematics 2024, 12, x FOR PEER REVIEW 3 of 27

assembly sequences with high fitness values can impact genetic diversity. This may lead
to a situation where a local optimal individual is not easily eliminated, reducing the global
search efficiency of the algorithm. In complex data input scenarios, the occurrence of local
optima is highly likely [24–27]. This paper first establishes the hierarchical model of the
product, illustrating the constraints and corresponding relationships between assembly
parts, as shown in Figure 1a. Subsequently, a mathematical model is constructed based
on the constraints of the product, with the product’s image and mathematical model de-
picted in Figure 1b. Details of the construction of the mathematical model are presented
in Section 2. Through enhancements to the GA, the search space is expanded, improving
search efficiency and enabling the solution to complex assembly problems to break free
from local optima, achieving global optimality. The improved solving process is depicted
in Figure 1c.

Figure 1. The overall framework.

Furthermore, GAs, ACO and other search algorithms have certain shortcomings.
These algorithms often converge to a single optimal solution, lacking diversity in the so-
lutions [28–33]. Products with multiple parts have a vast solution space during the assem-
bly process, where there may be more than one optimal assembly sequence. Various un-
expected situations may arise during assembly, and a single assembly sequence may not
be sufficient to handle these contingencies. Therefore, it is not suitable for complex assem-
bly scenarios. This paper addresses these limitations by ensuring the generation of multi-
ple unique optimal solutions in a single solving process. This improvement guarantees
the diversity of solutions, as depicted in Figure 1d. This is particularly crucial in the as-
sembly process, where there are multiple optimal assembly sequences to choose from,
aligning more closely with real-world assembly scenarios. Figure 1e illustrates the solving
process of the MOSGA and the model diagram of the product.

Figure 1. The overall framework.

Furthermore, GAs, ACO and other search algorithms have certain shortcomings.
These algorithms often converge to a single optimal solution, lacking diversity in the
solutions [28–33]. Products with multiple parts have a vast solution space during the
assembly process, where there may be more than one optimal assembly sequence. Various
unexpected situations may arise during assembly, and a single assembly sequence may not
be sufficient to handle these contingencies. Therefore, it is not suitable for complex assembly
scenarios. This paper addresses these limitations by ensuring the generation of multiple
unique optimal solutions in a single solving process. This improvement guarantees the
diversity of solutions, as depicted in Figure 1d. This is particularly crucial in the assembly
process, where there are multiple optimal assembly sequences to choose from, aligning
more closely with real-world assembly scenarios. Figure 1e illustrates the solving process
of the MOSGA and the model diagram of the product.

In practical production processes, the production workshop is not an idealized pro-
duction environment. Assembly parts are diverse, and the processes are complex. There is
a significant probability of uncertainties such as delayed material deliveries, labor short-

Mathematics 2024, 12, 574 4 of 26

ages, and equipment damage [34–36]. Therefore, ensuring the continuous fulfillment of
production tasks in the workshop becomes a crucial issue. If a partial shortage of assembly
parts occurs after assembling some parts of the assembly, it is necessary to flexibly plan
and adjust the optimal assembly sequence based on the constraints of the already assem-
bled parts. This involves constructing an adjustable flexible assembly sequence to cope
with these uncertainties and complete production tasks within the specified time. Hence,
there is a need for an assembly sequence flexible planning (ASFP) method, designed to
tackle practical re-optimization issues. This approach adjusts and plans the assembly of
subsequent parts based on the parts that have already been partially installed, effectively
accommodating changes and updates in the assembly process. Figure 1f compares ASFP
with traditional algorithms, demonstrating its advantages. Figure 1g delineates the detailed
solving process of ASFP.

To address these issues, the development of an efficient and reliable ASP method
aimed at solving the construction problems of modular cabins for large cruise ships is
proposed. This method also seeks to reduce product construction costs and improve
construction quality and efficiency. The objectives of this study are as follows: (1) The
MOSGA is proposed to improve the computational efficiency of solving complex assembly
problems, increase the search space, avoid falling into the local optimum, and determine
the global optimum of the assembly sequence. (2) In the assembly sequence planning
process, we aim to obtain multiple unique optimal assembly sequences in a single solving
process. (3) The introduction of the AFSP method effectively addresses the challenge
of reconfiguring assembly sequences when encountering additional constraints. This
approach adeptly manages uncertainties within the assembly process, thereby solving the
practical re-optimization issues in assembly operations.

2. Mathematical Model of Assembly Sequence

ASP is the process of solving optimization problems that meet spatial geometric
relationships, physical relationships, and mechanical condition constraints. Its goal is to
avoid interference between parts while minimizing the waste of resources and time as much
as possible [37–39]. In the complex task of assembly, the establishment of the assembly
information mathematical model is crucial, as it directly affects whether the subsequent
generated assembly sequence is applicable to practical production issues. The design of the
mathematical model is essential for ensuring the orderliness and efficiency of the assembly
process, and its quality directly determines the applicability of the generated assembly
sequence in actual production. When establishing the mathematical model, it is necessary
to clearly reflect the information of the product’s parts, including their relationships [40,41].
Additionally, consideration of information about assembly tools is essential to ensure the
feasibility of the planned sequence in practice. Furthermore, coverage of information
regarding various assembly operations is also necessary to ensure the rationality and
smoothness of the entire assembly process [42–44].

2.1. Design of Constraint Matrix

Assume that the parts of the product undergo horizontal motion in six directions
in three-dimensional space, corresponding to the six coordinate axes of the Cartesian
coordinate system [45]. The variables C(p, q) and T(p, q) are introduced to represent
the contact and motion interference relationship between two arbitrary parts in the six
directions in space, denoted as (x, y, z,−x,−y,−z). The defining expressions for the two
variables are as follows:

C(p, q) = (C1, C2, C3, C4, C5, C6) Ci− > {0, 1} i = 1 − 6
T(p, q) = (T1, T2, T3, T4, T5, T6) Ti− > {0, 1} i = 1 − 6

(1)

In Equation (1), Ci represents the contact relationship between two parts in the i
direction. If Ci = 1, it indicates that part q is in contact with part p in the i direction of
p. Otherwise, if Ci = 0, it signifies that there is no contact between the two parts in that

Mathematics 2024, 12, 574 5 of 26

direction. The motion contact relationships are illustrated in Table 1. Similarly, Ti represents
the interference relationship when one part moves relative to another in the i direction. If
Ti = 1, it means that part q can move in the i direction relative to p without interference
from p. Conversely, if Ti = 0, it implies that when q moves in that direction to complete
the assembly operation, it will encounter interference from p. The motion interference
relationships are depicted in Table 2.

Table 1. Motion contact relationship.

A B C D E F G H

A (0,0,0,0,0,0) (0,1,0,0,1,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,1,0,0,0) (0,0,0,1,0,0) (0,0,1,0,0,0) (0,1,0,0,0,0)
B (0,1,0,0,1,0) (0,0,0,0,0,0) (0,0,0,1,0,0) (0,0,0,0,0,1) (0,0,0,0,0,0) (0,0,1,0,0,0) (0,1,0,0,0,0) (0,0,0,0,0,0)
C (0,0,0,1,0,0) (1,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,1) (0,0,0,0,0,1) (0,0,1,0,0,0)
D (0,0,0,0,0,0) (0,0,0,0,1,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)
E (0,0,1,0,0,0) (0,0,0,0,0,0) (0,0,1,0,0,0) (0,0,0,1,0,0) (0,0,0,0,0,0) (1,0,0,0,0,0) (0,0,0,0,0,0) (0,1,0,0,0,0)
F (0,0,0,0,1,0) (0,0,0,0,0,0) (1,0,0,0,0,0) (0,1,0,0,0,0) (0,0,0,1,0,0) (0,0,0,0,0,0) (0,1,0,1,0,0) (0,1,0,1,1,1)
G (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,1) (0,1,0,0,1,0) (1,1,1,0,0,0) (0,0,0,0,0,0) (1,1,0,0,0,0)
H (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,1) (0,0,0,0,0,0) (1,0,0,1,0,1) (0,1,0,1,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)

Table 2. Motion interference relationship.

A B C D E F G H

A (1,1,1,1,1,1) (0,0,1,0,0,1) (1,0,1,1,1,0) (1,1,1,1,1,0) (1,1,0,0,1,1) (1,1,1,0,1,1) (1,1,0,1,1,1) (1,0,1,1,1,1)
B (0,0,1,0,0,0) (1,1,1,1,1,1) (1,1,1,0,0,0) (1,1,1,1,0,0) (1,0,1,1,1,1) (1,1,0,1,1,1) (1,0,1,1,1,1) (1,1,1,1,1,1)
C (0,0,0,0,0,0) (0,1,0,1,1,1) (1,1,1,1,1,1) (1,1,1,1,0,0) (1,1,0,1,1,1) (1,1,1,1,1,0) (1,1,1,1,1,0) (1,1,0,1,1,1)
D (0,0,0,0,0,0) (1,1,1,0,0,0) (0,1,1,0,0,0) (1,1,1,1,1,1) (0,1,1,1,1,1) (1,1,1,1,1,1) (1,1,1,1,1,1) (1,1,1,1,1,1)
E (0,0,0,1,0,0) (0,1,1,1,1,0) (1,1,0,0,1,0) (1,0,1,0,0,1) (1,1,1,1,1,1) (0,1,1,1,1,1) (1,1,1,1,1,1) (1,0,1,1,1,1)
F (1,1,1,0,0,0) (0,1,0,1,1,1) (0,1,1,1,1,1) (1,0,0,1,1,1) (1,1,0,0,1,1) (1,1,1,1,1,1) (1,0,1,0,1,1) (1,0,1,0,0,0)
G (1,1,1,0,1,1) (0,1,0,1,0,1) (1,1,1,1,0,1) (1,1,1,0,0,0) (0,0,1,1,0,1) (1,0,0,1,1,1) (1,1,1,1,1,1) (0,0,1,1,1,1)
H (0,1,1,1,1,1) (1,1,1,0,1,1) (1,1,1,0,1,0) (1,1,1,0,1,0) (0,1,1,0,1,0) (1,0,1,0,1,1) (1,1,1,0,1,1) (1,1,1,1,1,1)

2.2. Number of Assembly Direction Changes

This section introduces several mathematical symbols to aid in describing the estab-
lished mathematical model. The symbols are as follows:

N: The quantity of parts in the product.
L: The assembly sequence of the product.
Pi: The i-th assembly part in the assembly sequence.
Lc,p,i: The number of direction changes when assembling Pi parts.
Fc: The number of assembly direction changes.

Fc =


N
∑

i=1
Lc,p,i + 1 Change o f assembly direction

0 Else
(2)

In Equation (2), during the assembly of a product, the assembly directions of the parts
are determined based on the information provided in Table 1. When the assembly direction
changes between two adjacent assembly parts, it incurs a certain amount of time and labor
cost [46–48]. Each change in assembly direction increases the reversal count Lc,p,i of the
assembly. The reversal count reflects the complexity of the assembly sequence operations.
The initial Fc value is 0. When the assembly changes direction once, the value of Lc,p,i
increases by 1. A smaller value of Fc indicates lower time costs.

Mathematics 2024, 12, 574 6 of 26

2.3. Number of Assembly Tool Changes

Lt,p,i: The number of assembly tool changes when assembling Pi parts.
Ft: The number of assembly direction changes.

Ft =


N
∑

i=1
Lt,p,i + 1 Assembly tool changes

0 Else
(3)

In Equation (3), within the assembly sequence, when considering two consecutive
assembly parts, denoted as Pi and Pj, the utilization of the same assembly tool for both
parts contributes to improved assembly efficiency [49,50]. If the assembly tool changes,
the efficiency decreases. By tracking the number of tool changes Lt,p,i, we can reflect the
efficiency of the assembly sequence. The initial value of Ft is 0. When the assembly tool
changes between two adjacent assembly parts, the value of Lt,p,i increases by 1. A smaller
value of Ft indicates higher assembly efficiency.

2.4. Geometric Constraints of Assembly

Lg,i,j: Whether the parts Pi and Pj satisfy the geometric constraint relationship.
Fg: Geometric constraints of assembly.

Lg,i,j =

{
1 Mounting part Pj a f ter part Pi does not satis f y the geometric constraint
0 Else

(4)

Fg =
n

∑
i=1

Lg,i,j (5)

In Equations (4) and (5), within the assembly process, as indicated by the information
presented in Tables 1 and 2, if assembly parts Pi and Pj cannot be assembled in practice due
to mutual interference between the assembly bodies, the feasibility conditions for assembly
are not met [51,52]. As long as there is one situation where the geometric constraints are
not satisfied, the entire assembly becomes unfeasible. In the calculation process, penalty
coefficients need to be introduced to account for such situations. The feasibility of the
assembly sequence can be assessed by tracking whether adjacent parts satisfy the geometric
constraints, denoted as Lg,i,j. The initial value of Fg is set to 0. When there are geometric
constraints between two adjacent parts, the value of Lg,i,j increases by 1. It is then checked
whether Fg is greater than 0; if so, geometric constraints are not satisfied, and a penalty
coefficient is applied to the assembly sequence.

2.5. Sequence Constraints of Assembly

Lr,i,j: Whether the parts Pi and Pj satisfy the sequence constraint relationship.
Fr: Geometric constraints of assembly.

Lr,i,j =

{
1 Mounting part Pj a f ter part Pi does not satis f y the sequence constraint
0 Else

(6)

Fr =
n

∑
i=1

Lr,i,j (7)

In Equations (6) and (7), if adjacent parts Pi and Pj do not satisfy the assembly sequence
constraint, assembly cannot proceed. Taking the example of assembling compartments in a
ship, when installing a sanitation unit and the compartment floor, the sanitation unit cannot
be installed before the compartment floor, which does not meet the actual installation
requirements. As long as there is one instance of a sequence constraint violation, a penalty
coefficient is introduced during the calculation process to prevent the progression to the

Mathematics 2024, 12, 574 7 of 26

next step in the optimal population selection. By assessing whether adjacent parts satisfy
the sequence constraint Lr,i,j, the feasibility of the assembly sequence can be reflected.
The initial value of Fr is set to 0, and when two adjacent parts do not meet the sequence
constraint, the value of Lr,i,j is incremented by 1. It is then checked whether the value of Fr
is greater than 0. If it is, the sequence constraint is not satisfied, and a penalty coefficient is
applied to the assembly sequence.

2.6. Objective Function and Fitness Function

According to the established mathematical model, the effectiveness of an assembly
sequence is influenced by the number of changes in assembly direction, the number of
changes in assembly tools, geometric constraints, and sequential constraints. Subject to both
geometric and sequential constraints, the objective function F1 for the assembly sequence
can be expressed as Equation (8). Although changes in assembly direction and changes in
assembly tools both affect the total assembly time, changing the assembly tools requires
more time compared to changing the assembly direction. Therefore, the weight coefficients
ω1 and ω2 are added, with ω1 = 0.4 and ω2 = 0.6.

F1 =
1

[ω1Fc + ω2Ft]
(8)

If the geometric constraints are not met, the assembly process will be hindered by
interference between parts, affecting the assembly efficiency. To address this, a penalty
coefficient α is introduced, with α taking a value greater than 1, set to α = 1.8. This
adjustment will result in a lower overall value of the objective function, thus diminishing
the competitiveness of the assembly sequence in question. The objective function F2 is as
presented in Equation (9).

F2 =
1

α[ω1Fc + ω2Ft]
(9)

When the sequence constraints are not met, this sequence cannot proceed with as-
sembly and must be directly eliminated. A penalty coefficient µ is added, µ = 8. When α
and µ are multiplied, the result of the objective function calculation is an extremely small
value, eliminating it from the population evolution. The objective function F3 is as shown
in Equation (10).

F3 =
1

α × µ
(10)

In summary, the fitness function is shown in Equation (11). When the assembly
sequence satisfies all the constraint conditions, formula (a) is used. Formula (b) is used
when the geometric constraints are not satisfied, and formula (c) is used when the sequence
constraints are not met. Fitness(S) represents the fitness function of the assembly sequence.

Fitness(S) =


1

[ω1Fc+ω2Ft]
(a)

1
α[ω1Fc+ω2Ft]

(b)
1

α×µ (c)

(11)

3. Improvement Principle

This section elaborates on how the MOSGA enhances computational efficiency, ex-
pands the search space, and avoids falling into local optima when solving complex assembly
problems. This approach aims to achieve the global optimum of assembly sequences during
the solving process. This section also illustrates the methodology for obtaining multiple
unique optimal assembly sequences in a single solving process. Additionally, it outlines
the approach of AFSP in implementing flexible planning for assembly sequences.

Mathematics 2024, 12, 574 8 of 26

3.1. Principle Analysis

The traditional GA process includes first setting the population size, and then, selecting
the method of selection to be applied from among three selection methods: roulette wheel
selection, tournament selection, and elitism retention strategy. After selecting the initial
population, a given number of iterations are performed. During these iterations, crossover,
mutation, selection, and the evolution of the population occur until the iteration count is
reached. A flowchart of the traditional GA process is shown in Figure 2.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 27

the geometric constraints are not satisfied, and formula (c) is used when the sequence
constraints are not met. ()Fitness S represents the fitness function of the assembly se-
quence.

()

()

()

()

1 2

1 2

1

1

1

c t

c t

a

F s

F

s

F

F F
itne S b

c

ω ω

α ω ω

α μ


 +  
=  +  



×

 (11)

3. Improvement Principle
This section elaborates on how the MOSGA enhances computational efficiency, ex-

pands the search space, and avoids falling into local optima when solving complex assem-
bly problems. This approach aims to achieve the global optimum of assembly sequences
during the solving process. This section also illustrates the methodology for obtaining
multiple unique optimal assembly sequences in a single solving process. Additionally, it
outlines the approach of AFSP in implementing flexible planning for assembly sequences.

3.1. Principle Analysis
The traditional GA process includes first setting the population size, and then, select-

ing the method of selection to be applied from among three selection methods: roulette
wheel selection, tournament selection, and elitism retention strategy. After selecting the
initial population, a given number of iterations are performed. During these iterations,
crossover, mutation, selection, and the evolution of the population occur until the iteration
count is reached. A flowchart of the traditional GA process is shown in Figure 2.

Figure 2. GA flowchart. Figure 2. GA flowchart.

1. Feasibility Analysis of Improving Computational Efficiency

Through analysis, when dealing with complex problems, the reasons for traditional
GAs getting stuck in local optima include the following: (1) For large-scale problems, there
are fewer excellent individuals. The sparse distribution makes it difficult to search. Increas-
ing the number of iterations does not bring significant improvement. This phenomenon
occurs due to the complexity of the problem, leading to a larger search space for solutions.
(2) When the optimization iterations of the GA reach a certain optimal value, the fitness
value is already very high. Individuals with better fitness are sparsely distributed in the
search space, making it difficult to conduct further searches. (3) In the process of popula-
tion evolution, the GA tends to converge, leading to a reduction in population diversity.
This decrease in diversity makes it difficult for GAs to mutate and surpass the current
local optimum.

Mathematics 2024, 12, 574 9 of 26

The advantages of the MOSGA compared to traditional GAs are as follows: (1) The
MOSGA adds new judgment criteria. If the highest fitness function value remains the same
for several consecutive generations during the evolution process, optimization is carried out
according to the optimization criteria. (2) During optimization, the current best sequence is
first preserved to prevent it from being compromised. The best assembly sequence is saved
and added to the next generation of the population. (3) Random assembly sequences are
introduced to increase the diversity of the solution space. Two individuals are randomly
generated as parents for crossover and mutation, and 1/3 of the population is randomly
generated to enhance diversity. These individuals are added to the next generation of
the population. (4) Evolution is carried out using dominant individuals, increasing the
probability of mutation while enhancing global search capability. The current best assembly
sequence is used as the parental sequence. In the operations of crossover and mutation,
the probability of chromosome crossover and mutation is increased compared to the
original probabilities of 0.3 and 0.1, raising the crossover probability to 0.8 and the mutation
probability to 0.3, to generate the individuals of the remaining population. This enhances
the overall search capability while preventing local optima.

2. Theoretical Feasibility of Multiple Unique Optimal Solutions

GA and other search methodologies often fall short by converging on a single optimal
solution, lacking diversity in outcomes. This limitation becomes particularly evident in the
assembly of complex parts, where the vast solution space may contain multiple effective
assembly sequences. Should the algorithm identify only a singular optimal solution, it
may prove insufficient in practical scenarios, especially when unexpected changes or
challenges arise. The significance of possessing multiple unique optimal solutions is
manifold: (1) Enhanced Adaptability to Complexity: In intricate assembly scenarios, the
availability of multiple optimal assembly sequences affords greater flexibility. This implies
that in practical operations, should complications arise or specific parts become unavailable,
an alternative optimal sequence can be selected to complete the assembly, bypassing the
need to start anew or dismantle partially assembled sections in search of a new solution.
(2) Increased System Robustness: By ensuring a selection from multiple solutions, the
system’s adaptability to external changes is bolstered, enabling a more robust response
to emergencies. (3) A Closer Reflection of Real-World Conditions: Real-world problems
seldom have a single solution. More often, multiple viable approaches exist to achieve a
goal. Generating multiple optimal solutions allows algorithms to more accurately mirror
the complexity and uncertainty of the real world, offering a method that is both more
accurate and practical. (4) Application in Flexible Planning: The concept of multiple
unique optimal solutions can also be applied to the ASFP method discussed herein, solving
practical re-optimization problems.

In conclusion, the MOSGA presents a significant advancement over traditional GAs by
addressing their key limitations, particularly in terms of computational efficiency and the
ability to find multiple unique optimal solutions. These improvements make the MOSGA
more suitable for complex problem-solving scenarios, offering enhanced adaptability,
robustness, and a more accurate reflection of real-world conditions.

3.2. Improving Search Efficiency and Avoiding Local Optima

To address the issue of traditional GAs falling into local optima, the MOSGA employs
a new optimization criterion in its selection process. This method aims to avoid entrapment
in local optima and further expand the search space for solutions. In the process of solving,
the assembly sequence of the highest fitness function value of each generation is saved.
However, if the optimal sequence for an assembly remains the same for several consecutive
generations, there is a risk of falling into a local optimum. To address this issue, the
following optimization steps are implemented:

Mathematics 2024, 12, 574 10 of 26

(1) Save the optimal assembly sequences and incorporate them into the next-
generation population.

(2) Randomly generate two individuals as parents, perform crossover and mutation, and
randomly generate 1/3 of the population to enhance diversity. Add these individuals
to the next-generation population.

(3) Use the current optimal assembly sequence as a parent. In the crossover and mutation
operation, increase the probability of chromosome crossover and mutation to generate
the remaining population. Increase the crossover probability to 0.8 and mutation
probability to 0.3, compared to the original probabilities of 0.3 and 0.1. This enhances
the overall search capability of the population, preventing local optima.

Upon completion of these operations, the population size reaches the quantity required
for the next-generation evolution. By expanding the search space, the current population’s
optimal assembly sequences are retained. Experimental validation shows that this approach
helps prevent local optima during subsequent evolution. A flow chart of this process is
shown in Figure 3.

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 27

MOSGA more suitable for complex problem-solving scenarios, offering enhanced adapt-
ability, robustness, and a more accurate reflection of real-world conditions.

3.2. Improving Search Efficiency and Avoiding Local Optima
To address the issue of traditional GAs falling into local optima, the MOSGA em-

ploys a new optimization criterion in its selection process. This method aims to avoid en-
trapment in local optima and further expand the search space for solutions. In the process
of solving, the assembly sequence of the highest fitness function value of each generation
is saved. However, if the optimal sequence for an assembly remains the same for several
consecutive generations, there is a risk of falling into a local optimum. To address this
issue, the following optimization steps are implemented:
(1) Save the optimal assembly sequences and incorporate them into the next-generation

population.
(2) Randomly generate two individuals as parents, perform crossover and mutation, and

randomly generate 1/3 of the population to enhance diversity. Add these individuals
to the next-generation population.

(3) Use the current optimal assembly sequence as a parent. In the crossover and mutation
operation, increase the probability of chromosome crossover and mutation to gener-
ate the remaining population. Increase the crossover probability to 0.8 and mutation
probability to 0.3, compared to the original probabilities of 0.3 and 0.1. This enhances
the overall search capability of the population, preventing local optima.
Upon completion of these operations, the population size reaches the quantity re-

quired for the next-generation evolution. By expanding the search space, the current pop-
ulation’s optimal assembly sequences are retained. Experimental validation shows that
this approach helps prevent local optima during subsequent evolution. A flow chart of
this process is shown in Figure 3.

Figure 3. Improving search efficiency and avoiding local optima. Figure 3. Improving search efficiency and avoiding local optima.

3.3. Establishment of Multiple Unique Optimal Solutions

Establishing multiple unique optimal solutions is not as simple as running the algo-
rithm multiple times to obtain several optimal solutions. Running the algorithm multiple
times often leads to convergence towards the same optimal sequence, failing to achieve
the uniqueness of optimal solutions and resulting in a substantial waste of computational

Mathematics 2024, 12, 574 11 of 26

resources. The method employed in this study involves saving the assembly sequence
with the highest fitness after the completion of each generation’s selection. Assuming the
number of iterations is denoted as Pn, this results in the preservation of Pn optimal assembly
sequences. After the iterations, duplicate assembly sequences are removed from the saved
optimal sequences to maintain uniqueness. Subsequently, based on the converged highest
fitness function value, sequences below this value are excluded. The final remaining assem-
bly sequences constitute multiple unique optimal solutions. A flow chart of this process is
shown in Figure 4.

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 27

3.3. Establishment of Multiple Unique Optimal Solutions
Establishing multiple unique optimal solutions is not as simple as running the algo-

rithm multiple times to obtain several optimal solutions. Running the algorithm multiple
times often leads to convergence towards the same optimal sequence, failing to achieve
the uniqueness of optimal solutions and resulting in a substantial waste of computational
resources. The method employed in this study involves saving the assembly sequence
with the highest fitness after the completion of each generation’s selection. Assuming the
number of iterations is denoted as nP , this results in the preservation of nP optimal as-
sembly sequences. After the iterations, duplicate assembly sequences are removed from
the saved optimal sequences to maintain uniqueness. Subsequently, based on the con-
verged highest fitness function value, sequences below this value are excluded. The final
remaining assembly sequences constitute multiple unique optimal solutions. A flow chart
of this process is shown in Figure 4.

Figure 4. Establishment of multiple unique optimal solutions.

3.4. Assembly Sequence Flexible Planning
3.4.1. Problem Analysis

In the ASP problem, many scholars often focus on finding an optimal assembly se-
quence for use when production starts in a factory. However, they overlook a crucial is-
sue—adopting a single assembly sequence for production does not provide a one-stop
solution to all problems. In actual assembly processes, various issues may arise, such as
insufficient part capacity, delivery delays, transportation damage, and occupied assembly
tools, preventing the continuation of assembly according to the original sequence. This
results in increased waiting time and total assembly time, leading to manufacturing re-
source waste.

Addressing the aforementioned challenges, this paper proposes the ASFP method,
which tackles the need to readjust assembly sequences when encountering different

Figure 4. Establishment of multiple unique optimal solutions.

3.4. Assembly Sequence Flexible Planning
3.4.1. Problem Analysis

In the ASP problem, many scholars often focus on finding an optimal assembly se-
quence for use when production starts in a factory. However, they overlook a crucial
issue—adopting a single assembly sequence for production does not provide a one-stop
solution to all problems. In actual assembly processes, various issues may arise, such as
insufficient part capacity, delivery delays, transportation damage, and occupied assem-
bly tools, preventing the continuation of assembly according to the original sequence.

Mathematics 2024, 12, 574 12 of 26

This results in increased waiting time and total assembly time, leading to manufacturing
resource waste.

Addressing the aforementioned challenges, this paper proposes the ASFP method,
which tackles the need to readjust assembly sequences when encountering different con-
straints during the assembly process. The ASFP method can further plan the assembly
of remaining parts based on the already installed parts. This planning ensures that un-
der various constraints, an optimal assembly sequence is devised for assembling the
remaining parts.

Suppose that at the start of assembly, the initially planned optimal assembly sequence
1, 2, 3, 4, 5, 6, 7, 8, 9 is chosen. However, during the assembly of part 5, certain constraints
prevent the continuation of assembly according to the sequence 5, 6, 7, 8, 9. In such a
scenario, re-planning of the assembly sequence 5, 6, 7, 8, 9 is required. ASFP can, based
on the already installed parts 1, 2, 3, 4, and under various constraints, devise an optimal
assembly plan for parts 5, 6, 7, 8, 9. The newly planned assembly sequence satisfies the
constraints imposed by the already assembled parts. Among the multiple optimal solutions
generated, the one most suitable for practical production is selected.

For example, three optimal assembly sequences are generated: 6, 9, 5, 8, 7; 6, 5, 8, 7,
9; 6, 8, 9, 5, 7. In actual production, due to insufficient capacity for part 5, the sequence 6,
8, 9, 5, 7, where part 5 is assembled later, is selected as the final solution. This addresses
engineering challenges and improves assembly efficiency.

3.4.2. Process of ASFP

Assembly sequence flexibility planning poses two main challenges:

1. Constraints of installed parts

The existing assembly sequence has already assembled some parts. The planning of
the remaining assembly sequence pertains to the unassembled parts. Therefore, planning
the assembly sequence for the remaining parts must satisfy the optimal conditions while
adhering to constraints imposed by the already installed parts. For example, if the initially
planned optimal assembly sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9 and re-planning is needed
during the assembly of part 5, resulting in a sequence like 7, 8, 9, 5, 6, this new sequence
must not only satisfy its own constraints but also meet the constraints from the already
installed parts 1, 2, 3, 4. These constraints include assembly geometry constraints and
sequence constraints.

2. Selecting the optimal assembly sequence

The generated optimal assembly sequences need further optimization under various
constraints to make them more suitable for practical applications. For instance, if the
initially planned optimal assembly sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9 and flexibility planning
is performed during the assembly of part 5, yielding four optimal sequences like 6, 9, 5, 8,
7; 6, 5, 8, 7, 9; 6, 8, 9, 5, 7; 6, 7, 8, 9, because 6, 7, 8, 9 is the original assembly sequence, it
is initially excluded. In actual production, if there is a shortage of supply for part 5, then
the sequence 6, 8, 9, 5, 7, where part 5 is assembled later, would be selected as the final
optimized result.

Based on these challenges, this paper proposes the following solutions:
Assume some parts have already been assembled, making it impossible to follow the

original assembly sequence.

1. Utilize the MOSGA: Employ the MOSGA to plan assembly sequences for the remain-
ing parts and generate multiple optimal solutions for further selection.

2. Evaluate constraint satisfaction: Assess the constraint satisfaction of the generated
optimal solutions and retain sequences that satisfy the constraints imposed by the
already assembled parts.

3. Make a selection: Opt for sequences that align most effectively with the factory’s
production scenario.

Mathematics 2024, 12, 574 13 of 26

4. Update original assembly sequence: Update the original assembly sequence and
proceed with assembly.

A flexibility planning flowchart for ASFP is illustrated in Figure 5.

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 27

Figure 5. ASFP flow chart.

4. MOSGA and ASFP
The MOSGA is divided into the following steps: Firstly, the parts of the assembly are

encoded using a genome-based encoding method in GA. Subsequently, crossover, muta-
tion, and selection are performed to generate multiple unique optimal solutions. The iter-
ation concludes with the completion of the calculations.

4.1. Encodings
In a GA, the method of transforming candidate solutions of a problem from their

solution space to the search space that the GA can handle is referred to as encoding. Com-
mon encoding techniques include binary encoding, real-valued encoding, and permuta-
tion encoding. In this paper, the decimal method in real number coding is used for coding,
and each digital coding represents the corresponding parts. Assuming there are N parts
in the product, the encoding length is N .

Taking the compartments of a certain ship as an example, the compartments include
parts, sanitation units, furniture, ceilings, electrical equipment, fire doors, cables, and
more. Each of these parts is assigned a specific code ranging from 1 to N , facilitating an
organized and efficient encoding strategy of the MOSGA in this paper.

4.2. Crossover and Mutation
(1) Crossover

The chromosomes were crossed using the following methods. Two father chromo-
somes, A and B, were randomly selected to cross. We randomly selected the crossover
position, assuming that the crossover position selected by A and B was 5–9:

A = 1 2 3 4 | 5 6 7 8 9 | 10 11 12 13 14 15
B = 3 2 4 1 | 9 14 11 15 5 | 10 7 12 13 6 8

The cross-sections 5,6,7,8,9 of A were crossed with the cross-sections 9,12,11,15,5 of
B, and the following results were obtained:

Figure 5. ASFP flow chart.

4. MOSGA and ASFP

The MOSGA is divided into the following steps: Firstly, the parts of the assembly are
encoded using a genome-based encoding method in GA. Subsequently, crossover, mutation,
and selection are performed to generate multiple unique optimal solutions. The iteration
concludes with the completion of the calculations.

4.1. Encodings

In a GA, the method of transforming candidate solutions of a problem from their
solution space to the search space that the GA can handle is referred to as encoding. Com-
mon encoding techniques include binary encoding, real-valued encoding, and permutation
encoding. In this paper, the decimal method in real number coding is used for coding, and
each digital coding represents the corresponding parts. Assuming there are N parts in the
product, the encoding length is N.

Taking the compartments of a certain ship as an example, the compartments include
parts, sanitation units, furniture, ceilings, electrical equipment, fire doors, cables, and more.
Each of these parts is assigned a specific code ranging from 1 to N, facilitating an organized
and efficient encoding strategy of the MOSGA in this paper.

Mathematics 2024, 12, 574 14 of 26

4.2. Crossover and Mutation

(1) Crossover

The chromosomes were crossed using the following methods. Two father chromo-
somes, A and B, were randomly selected to cross. We randomly selected the crossover
position, assuming that the crossover position selected by A and B was 5–9:

A = 1 2 3 4 | 5 6 7 8 9 | 10 11 12 13 14 15

B = 3 2 4 1 | 9 14 11 15 5 | 10 7 12 13 6 8

The cross-sections 5,6,7,8,9 of A were crossed with the cross-sections 9,12,11,15,5 of B,
and the following results were obtained:

A = 1 2 3 4 | 5 6 7 8 9 9 14 11 15 5 | 10 11 12 13 14 15

B = 3 2 4 1 | 9 14 11 15 5 5 6 7 8 9 | 10 7 12 13 6 8

We removed the duplicate parts in A and B in turn, and obtained the following result
after crossing:

A = 1 2 3 4 5 6 7 8 9 14 11 15 10 12 13

B = 3 2 4 1 9 14 11 15 5 6 7 8 10 12 13

(2) Mutation

The chromosome was mutated by the reverse mutation method. Two chromosomes,
A and B, were selected for variation. We randomly selected the mutation position of 4–9:

A = 1 2 3 | 4 5 6 7 8 9 | 10 11 12 13 14 15

B = 3 2 4 | 1 9 14 11 15 5 | 10 7 12 13 6 8

The mutation part 4, 5, 6, 7, 8, 9 of A was reversed to obtain 9, 8, 7, 6, 5, 4. The variation
part 1, 9, 14, 11, 15, 5 of B was inverted to obtain 5, 15, 11, 14, 9, 1. The variation results are
as follows:

A = 1 2 3 9 8 7 6 5 4 10 11 12 13 14 15

B = 3 2 4 5 15 11 14 9 1 10 7 12 13 6 8

4.3. Overall Solution and Selection Steps

Step 1: Set the initial population size, crossover probability, and mutation probability.
Generate the initial population through random number generation, with the generated
population serving as the parent population.

Step 2: Analyze the interference matrix of the assembly, considering the number of
assembly reorientations, tool change frequency, geometric constraints of the assembly, and
impact of sequence constraints on the assembly. Design the fitness function calculation
formula, and calculate the fitness function values of the population individuals according
to the fitness calculation formula.

Step 3: Retain the assembly sequence with the highest fitness in each generation to
establish multiple unique optimal solutions.

Step 4: Select chromosomes, perform crossover to generate new chromosomes based
on crossover probability, and mutate the new chromosomes based on mutation probability
to produce further diversity.

Step 5: Evaluate the change in fitness function values over multiple generations. If
the fitness values remain unchanged for consecutive generations, optimize the algorithm
according to predefined criteria to expand the search space and avoid local optima.

Step 6: Based on the highest fitness function value reached during convergence,
discard assembly sequences with fitness values lower than the highest value from the saved

Mathematics 2024, 12, 574 15 of 26

sequences. Retain only those sequences equal to the highest fitness function value to obtain
multiple unique optimal solutions.

Step 7: Choose an assembly sequence for assembly from multiple unique optimal solutions.
Step 8: If constraints arise preventing assembly according to the original sequence,

utilize ASFP to plan the assembly sequence.
Step 9: Employ the MOSGA to plan multiple unique optimal solutions, select the best

one among them, and update the assembly sequence.
Step 10: Complete the product assembly.
An algorithm flowchart is illustrated in Figure 6.

Mathematics 2024, 12, x FOR PEER REVIEW 15 of 27

Figure 6. Overall solution and selection steps.

5. Experimental Case Study
Taking a cruise cabin as a case, our analysis reveals that the cabin unit is mainly com-

posed of sanitary units, wall panel systems, ceiling systems, fire doors, furniture systems,
ventilation systems, sprinkler systems, and electrical systems. Schematic and model dia-
grams of the cabin are presented in Figure 7a,b. The installation requires tools such as a
cutting machine, a welding machine, an electric drill, a curve saw, an electrician’s diagonal
pliers, a wire stripper, a screwdriver, an electrician’s pen, a multimeter, a cable-bundling
tool, an aluminum ladder, a pry bar, a laser level, and a 20 m tape measure. According to
the cabin assembly information, there are a total of 15 parts.

To ensure reliable experimental results, the parameters of both algorithms were
standardized. The population size for the GA and MOSGA was set to 200, with a crossover
rate of 0.3 and a mutation rate of 0.1, utilizing the tournament selection method,with each
tournament’s size being half of the population number. Geometric constraints, sequence
constraints, number of directional changes, and number of tool changes were all set to
identical values. The same fitness function value evaluation strategy was applied for solv-
ing. In the small-scale experiment, a simplified cabin composed of 9 parts was used. The
large-scale experiment involved a complete cabin comprised of 15 parts. By maintaining
consistent parameter settings, data, and evaluation strategies, the aim is to conduct a fair
and comparative analysis between the traditional GA and the MOSGA.

Figure 6. Overall solution and selection steps.

Mathematics 2024, 12, 574 16 of 26

5. Experimental Case Study

Taking a cruise cabin as a case, our analysis reveals that the cabin unit is mainly
composed of sanitary units, wall panel systems, ceiling systems, fire doors, furniture
systems, ventilation systems, sprinkler systems, and electrical systems. Schematic and
model diagrams of the cabin are presented in Figure 7a,b. The installation requires tools
such as a cutting machine, a welding machine, an electric drill, a curve saw, an electrician’s
diagonal pliers, a wire stripper, a screwdriver, an electrician’s pen, a multimeter, a cable-
bundling tool, an aluminum ladder, a pry bar, a laser level, and a 20 m tape measure.
According to the cabin assembly information, there are a total of 15 parts.

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 27

(a) (b)

Figure 7. Cabin pictures. (a) Schematic diagram; (b) model diagram.

5.1. Small-Scale Experiments
In our small-scale experiment, a simplified cabin with nine parts was utilized. The

results of solving the GA ten times with 100 iterations and 200 iterations were compared
with solving the MOSGA once, all under the same parameters.

5.1.1. GA Solved 10 Times
From Figure 8a, it can be observed that at 100 iterations, when solving small-scale

problems, the GA finds the highest fitness function value of 0.2155 in six out of ten at-
tempts, while the rest fall into local optima, as shown in Table 3. Figure 8b indicates that
at 200 iterations, among the ten runs of the GA, three runs end up in local optima, as
detailed in Table 4. This indicates the instability of the GA when solving simplified small-
scale cabin problems. Furthermore, by observing Figure 9a,b, which describe the conver-
gence graphs during the GA solving process, it can be noted that the GA’s convergence is
not only slow but also unstable, often converging to local optima multiple times.

(a) (b)

Figure 8. GA solves for the highest fitness function value 10 times, with (a) 100 iterations; (b) 200
iterations.

Figure 7. Cabin pictures. (a) Schematic diagram; (b) model diagram.

To ensure reliable experimental results, the parameters of both algorithms were stan-
dardized. The population size for the GA and MOSGA was set to 200, with a crossover
rate of 0.3 and a mutation rate of 0.1, utilizing the tournament selection method, with each
tournament’s size being half of the population number. Geometric constraints, sequence
constraints, number of directional changes, and number of tool changes were all set to
identical values. The same fitness function value evaluation strategy was applied for solv-
ing. In the small-scale experiment, a simplified cabin composed of 9 parts was used. The
large-scale experiment involved a complete cabin comprised of 15 parts. By maintaining
consistent parameter settings, data, and evaluation strategies, the aim is to conduct a fair
and comparative analysis between the traditional GA and the MOSGA.

5.1. Small-Scale Experiments

In our small-scale experiment, a simplified cabin with nine parts was utilized. The
results of solving the GA ten times with 100 iterations and 200 iterations were compared
with solving the MOSGA once, all under the same parameters.

5.1.1. GA Solved 10 Times

From Figure 8a, it can be observed that at 100 iterations, when solving small-scale
problems, the GA finds the highest fitness function value of 0.2155 in six out of ten attempts,
while the rest fall into local optima, as shown in Table 3. Figure 8b indicates that at
200 iterations, among the ten runs of the GA, three runs end up in local optima, as detailed
in Table 4. This indicates the instability of the GA when solving simplified small-scale cabin
problems. Furthermore, by observing Figure 9a,b, which describe the convergence graphs
during the GA solving process, it can be noted that the GA’s convergence is not only slow
but also unstable, often converging to local optima multiple times.

Mathematics 2024, 12, 574 17 of 26

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 27

(a) (b)

Figure 7. Cabin pictures. (a) Schematic diagram; (b) model diagram.

5.1. Small-Scale Experiments
In our small-scale experiment, a simplified cabin with nine parts was utilized. The

results of solving the GA ten times with 100 iterations and 200 iterations were compared
with solving the MOSGA once, all under the same parameters.

5.1.1. GA Solved 10 Times
From Figure 8a, it can be observed that at 100 iterations, when solving small-scale

problems, the GA finds the highest fitness function value of 0.2155 in six out of ten at-
tempts, while the rest fall into local optima, as shown in Table 3. Figure 8b indicates that
at 200 iterations, among the ten runs of the GA, three runs end up in local optima, as
detailed in Table 4. This indicates the instability of the GA when solving simplified small-
scale cabin problems. Furthermore, by observing Figure 9a,b, which describe the conver-
gence graphs during the GA solving process, it can be noted that the GA’s convergence is
not only slow but also unstable, often converging to local optima multiple times.

(a) (b)

Figure 8. GA solves for the highest fitness function value 10 times, with (a) 100 iterations; (b) 200
iterations.

Figure 8. GA solves for the highest fitness function value 10 times, with (a) 100 iterations; (b) 200 iterations.

Table 3. GA with 100 iterations solving for 10 results.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints Global Optimal

1 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,2,8,3,9,7,6,4,5 0.1644 5 3 Yes Yes No
4 4,1,2,8,6,7,3,9,5 0.1724 5 4 Yes Yes No
5 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,2,8,6,7,3,9,5,4 0.1689 4 3 Yes Yes No
7 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
8 1,2,3,9,7,6,8,4,5 0.1644 5 4 Yes Yes No
9 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
10 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes

Table 4. GA with 200 iterations solving for 10 results.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints Global Optimal

1 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,2,7,6,8,3,9,5,4 0.1689 4 3 Yes Yes No
6 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
7 1,2,8,6,7,3,9,5,4 0.1689 4 3 Yes Yes No
8 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
9 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
10 1,2,8,3,9,7,6,4,5 0.1644 5 3 Yes Yes No

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 27

Table 3. GA with 100 iterations solving for 10 results.

Number of
Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes
Number of

Tool Changes
Sequence

Constraints
Geometric

Constraints Global Optimal

1 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,2,8,3,9,7,6,4,5 0.1644 5 3 Yes Yes No
4 4,1,2,8,6,7,3,9,5 0.1724 5 4 Yes Yes No
5 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,2,8,6,7,3,9,5,4 0.1689 4 3 Yes Yes No
7 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
8 1,2,3,9,7,6,8,4,5 0.1644 5 4 Yes Yes No
9 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes

10 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes

Table 4. GA with 200 iterations solving for 10 results.

Number of
Times Optimal Sequence

Fitness Function
Value

Number of Direction
Changes

Number of Tool
Changes

Sequence
Constraints

Geometric
Constraints

Global
Optimal

1 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,2,7,6,8,3,9,5,4 0.1689 4 3 Yes Yes No
6 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
7 1,2,8,6,7,3,9,5,4 0.1689 4 3 Yes Yes No
8 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
9 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes

10 1,2,8,3,9,7,6,4,5 0.1644 5 3 Yes Yes No

(a) (b)

Figure 9. Convergence graphs of GA for solving small-scale problems, with (a) 100 iterations; (b)
200 iterations.

5.1.2. MOSGA Solved Once
From Figure 10a, it is evident that at 100 iterations, the MOSGA yielded six unique

optimal solutions in just one run, as shown in Table 5. Similarly, Figure 10b illustrates that
at 200 iterations, the MOSGA produced eight unique optimal solutions in only one run,
as detailed in Table 6. The convergence plots in Figure 11a,b demonstrate that the MOSGA
rapidly converges to the global optimum. Compared to the GA, the MOSGA not only
converges faster but also is capable of finding multiple unique global optimal solutions in
a single run, highlighting its advanced capabilities.

Figure 9. Convergence graphs of GA for solving small-scale problems, with (a) 100 iterations;
(b) 200 iterations.

Mathematics 2024, 12, 574 18 of 26

5.1.2. MOSGA Solved Once

From Figure 10a, it is evident that at 100 iterations, the MOSGA yielded six unique
optimal solutions in just one run, as shown in Table 5. Similarly, Figure 10b illustrates that
at 200 iterations, the MOSGA produced eight unique optimal solutions in only one run, as
detailed in Table 6. The convergence plots in Figure 11a,b demonstrate that the MOSGA
rapidly converges to the global optimum. Compared to the GA, the MOSGA not only
converges faster but also is capable of finding multiple unique global optimal solutions in a
single run, highlighting its advanced capabilities.

Mathematics 2024, 12, x FOR PEER REVIEW 18 of 27

(a) (b)

Figure 10. MOSGA solving for the highest fitness function value 1 time, with (a) 100 iterations; (b)
200 iterations.

Table 5. MOSGA with 100 iterations to solve once.

Number of
Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes
Number of

Tool Changes
Sequence

Constraints
Geometric

Constraints Global Optimal

1 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,2,4,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes

Table 6. MOSGA with 200 iterations to solve once.

Number of
Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes

Number of
Tool

Changes

Sequence
Constraints

Geometric
Constraints Global Optimal

1 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,4,2,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
7 1,2,4,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
8 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes

(a) (b)

Figure 11. Convergence graphs of MOSGA for solving small-scale problems, with (a) 100 iterations;
(b) 200 iterations.

Figure 10. MOSGA solving for the highest fitness function value 1 time, with (a) 100 iterations;
(b) 200 iterations.

Table 5. MOSGA with 100 iterations to solve once.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints Global Optimal

1 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,2,4,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes

Table 6. MOSGA with 200 iterations to solve once.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of Tool

Changes
Sequence

Constraints
Geometric
Constraints Global Optimal

1 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,4,2,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
7 1,2,4,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
8 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes

5.2. Large-Scale Experiments

In the large-scale experiment, a complete cabin with 15 parts was used. Compared
to a small-scale experiment with only 9 parts, the experiment with 15 parts presented
a significantly larger search space and increased the difficulty of finding solutions. The
complexity of solving a nine-part problem is the factorial of 9, requiring optimization of
the best solution from a total of 362,880 assembly sequences. On the other hand, solving a
problem composed of 15 parts requires exploring a vast solution space, with a complexity
of the factorial of 15, resulting in 1,307,674,368,000 assembly sequences. Solving the optimal
sequence from these solution spaces is a tremendous computational challenge. Under
the same parameters, the results of solving the GA five times with 60 iterations and
100 iterations were compared with solving the MOSGA once.

Mathematics 2024, 12, 574 19 of 26

Mathematics 2024, 12, x FOR PEER REVIEW 18 of 27

(a) (b)

Figure 10. MOSGA solving for the highest fitness function value 1 time, with (a) 100 iterations; (b)
200 iterations.

Table 5. MOSGA with 100 iterations to solve once.

Number of
Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes
Number of

Tool Changes
Sequence

Constraints
Geometric

Constraints Global Optimal

1 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,2,4,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes

Table 6. MOSGA with 200 iterations to solve once.

Number of
Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes

Number of
Tool

Changes

Sequence
Constraints

Geometric
Constraints Global Optimal

1 1,2,4,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
2 1,2,4,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
3 1,4,2,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
4 1,4,2,6,7,8,3,9,5 0.2155 3 2 Yes Yes Yes
5 1,4,2,8,7,6,3,9,5 0.2155 3 2 Yes Yes Yes
6 1,4,2,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes
7 1,2,4,7,6,8,3,9,5 0.2155 3 2 Yes Yes Yes
8 1,2,4,8,6,7,3,9,5 0.2155 3 2 Yes Yes Yes

(a) (b)

Figure 11. Convergence graphs of MOSGA for solving small-scale problems, with (a) 100 iterations;
(b) 200 iterations.

Figure 11. Convergence graphs of MOSGA for solving small-scale problems, with (a) 100 iterations;
(b) 200 iterations.

5.2.1. GA Solved Five Times

From Figure 12a, it can be observed that, at 60 iterations, the GA converged to the
optimal value of 0.1157 only in the fifth run, while the other four runs got trapped in local
optima, as shown in Table 7. Figure 12b indicates that at 100 iterations, among the five runs
of the GA, three runs ended up in local optima, as shown in Table 8. This demonstrates the
instability of the GA when dealing with complex assembly sequence planning problems.
Additionally, by observing Figure 13a,b, which depict convergence graphs during GA
solving, it can be noted that the convergence speed of the GA is slow and unstable, often
converging to local optima multiple times.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 27

5.2. Large-Scale Experiments
In the large-scale experiment, a complete cabin with 15 parts was used. Compared to

a small-scale experiment with only 9 parts, the experiment with 15 parts presented a sig-
nificantly larger search space and increased the difficulty of finding solutions. The com-
plexity of solving a nine-part problem is the factorial of 9, requiring optimization of the
best solution from a total of 362,880 assembly sequences. On the other hand, solving a
problem composed of 15 parts requires exploring a vast solution space, with a complexity
of the factorial of 15, resulting in 1,307,674,368,000 assembly sequences. Solving the opti-
mal sequence from these solution spaces is a tremendous computational challenge. Under
the same parameters, the results of solving the GA five times with 60 iterations and 100
iterations were compared with solving the MOSGA once.

5.2.1. GA Solved Five Times
From Figure 12a, it can be observed that, at 60 iterations, the GA converged to the

optimal value of 0.1157 only in the fifth run, while the other four runs got trapped in local
optima, as shown in Table 7. Figure 12b indicates that at 100 iterations, among the five
runs of the GA, three runs ended up in local optima, as shown in Table 8. This demon-
strates the instability of the GA when dealing with complex assembly sequence planning
problems. Additionally, by observing Figure 13a,b, which depict convergence graphs dur-
ing GA solving, it can be noted that the convergence speed of the GA is slow and unstable,
often converging to local optima multiple times.

(a) (b)

Figure 12. GA solving for the highest fitness function value 5 times, with (a) 60 iterations; (b) 100
iterations.

Table 7. GA with 60 iterations solving for 5 results.

Number of
Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1
6,11,4,13,1,2,3,5,9,8,1

4,10,15,12,7
0.0333 11 8 Yes Yes No

2
1,2,6,4,8,9,3,5,10,11,7

,12,13,14,15
0.0932 7 6 Yes Yes No

3
1,4,7,2,3,5,11,10,9,12,

13,8,6,14,15
0.0932 7 6 Yes Yes No

4
1,2,6,11,9,3,14,15,5,4,

10,7,12,13,8
0.0976 9 4 Yes Yes No

5
1,2,4,8,11,9,3,13,12,7,

6,14,15,5,10
0.1157 6 3 Yes Yes Yes

Figure 12. GA solving for the highest fitness function value 5 times, with (a) 60 iterations;
(b) 100 iterations.

Table 7. GA with 60 iterations solving for 5 results.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1 6,11,4,13,1,2,3,5,9,8,14,10,15,12,7 0.0333 11 8 Yes Yes No
2 1,2,6,4,8,9,3,5,10,11,7,12,13,14,15 0.0932 7 6 Yes Yes No
3 1,4,7,2,3,5,11,10,9,12,13,8,6,14,15 0.0932 7 6 Yes Yes No
4 1,2,6,11,9,3,14,15,5,4,10,7,12,13,8 0.0976 9 4 Yes Yes No
5 1,2,4,8,11,9,3,13,12,7,6,14,15,5,10 0.1157 6 3 Yes Yes Yes

Mathematics 2024, 12, 574 20 of 26

Table 8. GA with 100 iterations solving for 5 results.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1 1,2,4,14,8,3,5,15,10,11,9,12,13,7,6 0.1136 7 3 Yes Yes No
2 1,4,2,7,6,8,3,5,9,10,11,13,12,14,15 0.1157 5 4 Yes Yes Yes
3 1,2,4,9,3,14,15,5,11,10,7,6,13,12,8 0.1157 6 3 Yes Yes Yes
4 8,4,1,2,13,6,7,3,9,11,5,10,12,14,15 0.0847 6 5 Yes Yes No
5 1,4,6,2,3,13,8,11,12,15,5,10,9,7,14 0.0892 11 5 Yes Yes No

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 27

Table 8. GA with 100 iterations solving for 5 results.

Number of
Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1
1,2,4,14,8,3,5,15,10,11

,9,12,13,7,6
0.1136 7 3 Yes Yes No

2
1,4,2,7,6,8,3,5,9,10,11,

13,12,14,15
0.1157 5 4 Yes Yes Yes

3
1,2,4,9,3,14,15,5,11,10

,7,6,13,12,8
0.1157 6 3 Yes Yes Yes

4
8,4,1,2,13,6,7,3,9,11,5,

10,12,14,15
0.0847 6 5 Yes Yes No

5
1,4,6,2,3,13,8,11,12,15

,5,10,9,7,14
0.0892 11 5 Yes Yes No

(a) (b)

Figure 13. Convergence graphs of GA for solving large-scale problems, with (a) 60 iterations; (b) 100
iterations.

5.2.2. MOSGA Solved Once
From Figure 14a, it is evident that at 60 iterations, the MOSGA yielded four unique opti-

mal solutions in just one run, as shown in Table 9. Figure 14b illustrates that at 100 iterations,
the MOSGA produced 11 unique optimal solutions in only one run, as shown in Table 10. At
the same number of iterations, the number of global optimal solutions obtained by the GA in
multiple runs is significantly less than the number obtained by the MOSGA in a single run.
This clearly indicates the superiority of the MOSGA over the GA. The convergence graphs in
Figure 15a,b demonstrate that the MOSGA rapidly converges to the global optimum.

(a) (b)

Figure 14. MOSGA solving for the highest fitness function value 1 time, with (a) 60 iterations; (b)
100 iterations.

Figure 13. Convergence graphs of GA for solving large-scale problems, with (a) 60 iterations;
(b) 100 iterations.

5.2.2. MOSGA Solved Once

From Figure 14a, it is evident that at 60 iterations, the MOSGA yielded four unique
optimal solutions in just one run, as shown in Table 9. Figure 14b illustrates that at
100 iterations, the MOSGA produced 11 unique optimal solutions in only one run, as shown
in Table 10. At the same number of iterations, the number of global optimal solutions
obtained by the GA in multiple runs is significantly less than the number obtained by the
MOSGA in a single run. This clearly indicates the superiority of the MOSGA over the GA.
The convergence graphs in Figure 15a,b demonstrate that the MOSGA rapidly converges
to the global optimum.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 27

Table 8. GA with 100 iterations solving for 5 results.

Number of
Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1
1,2,4,14,8,3,5,15,10,11

,9,12,13,7,6
0.1136 7 3 Yes Yes No

2
1,4,2,7,6,8,3,5,9,10,11,

13,12,14,15
0.1157 5 4 Yes Yes Yes

3
1,2,4,9,3,14,15,5,11,10

,7,6,13,12,8
0.1157 6 3 Yes Yes Yes

4
8,4,1,2,13,6,7,3,9,11,5,

10,12,14,15
0.0847 6 5 Yes Yes No

5
1,4,6,2,3,13,8,11,12,15

,5,10,9,7,14
0.0892 11 5 Yes Yes No

(a) (b)

Figure 13. Convergence graphs of GA for solving large-scale problems, with (a) 60 iterations; (b) 100
iterations.

5.2.2. MOSGA Solved Once
From Figure 14a, it is evident that at 60 iterations, the MOSGA yielded four unique opti-

mal solutions in just one run, as shown in Table 9. Figure 14b illustrates that at 100 iterations,
the MOSGA produced 11 unique optimal solutions in only one run, as shown in Table 10. At
the same number of iterations, the number of global optimal solutions obtained by the GA in
multiple runs is significantly less than the number obtained by the MOSGA in a single run.
This clearly indicates the superiority of the MOSGA over the GA. The convergence graphs in
Figure 15a,b demonstrate that the MOSGA rapidly converges to the global optimum.

(a) (b)

Figure 14. MOSGA solving for the highest fitness function value 1 time, with (a) 60 iterations; (b)
100 iterations.

Figure 14. MOSGA solving for the highest fitness function value 1 time, with (a) 60 iterations;
(b) 100 iterations.

Mathematics 2024, 12, 574 21 of 26

Table 9. MOSGA with 60 iterations to solve once.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1 1,2,4,6,7,8,3,9,14,15,5,11,10,13,12 0.1157 6 3 Yes Yes Yes
2 1,2,4,8,3,14,15,5,9,11,10,12,13,7,6 0.1157 6 3 Yes Yes Yes
3 1,2,4,8,3,5,15,14,10,9,11,13,12,7,6 0.1157 6 3 Yes Yes Yes
4 1,2,4,8,3,14,15,5,11,9,10,7,6,12,13 0.1157 6 3 Yes Yes Yes

Table 10. MOSGA with 100 iterations to solve once.

Number
of Times Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1 1,4,2,3,9,11,5,15,14,8,10,13,12,7,6 0.1157 6 3 Yes Yes Yes
2 1,4,2,8,3,9,11,6,7,13,12,14,15,5,10 0.1157 6 3 Yes Yes Yes
3 1,4,2,8,3,9,5,15,14,6,7,11,10,13,12 0.1157 6 3 Yes Yes Yes
4 1,4,2,3,5,15,14,8,7,6,9,11,10,13,12 0.1157 6 3 Yes Yes Yes
5 1,4,2,6,7,3,5,15,14,8,10,11,9,13,12 0.1157 6 3 Yes Yes Yes
6 1,4,2,6,7,3,5,15,14,11,10,9,13,12,8 0.1157 6 3 Yes Yes Yes
7 1,4,2,6,7,3,5,15,14,11,10,9,8,13,12 0.1157 6 3 Yes Yes Yes
8 1,4,2,6,7,3,5,15,14,8,10,9,11,13,12 0.1157 6 3 Yes Yes Yes
9 1,4,2,7,6,11,9,3,5,15,14,8,10,13,12 0.1157 6 3 Yes Yes Yes
10 1,4,2,3,6,7,14,15,5,10,11,9,8,13,12 0.1157 6 3 Yes Yes Yes

Mathematics 2024, 12, x FOR PEER REVIEW 21 of 27

Table 9. MOSGA with 60 iterations to solve once.

Number
of Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes
Number of Tool

Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1
1,2,4,6,7,8,3,9,14,15,5,

11,10,13,12
0.1157 6 3 Yes Yes Yes

2
1,2,4,8,3,14,15,5,9,11,

10,12,13,7,6
0.1157 6 3 Yes Yes Yes

3
1,2,4,8,3,5,15,14,10,9,

11,13,12,7,6
0.1157 6 3 Yes Yes Yes

4
1,2,4,8,3,14,15,5,11,9,

10,7,6,12,13
0.1157 6 3 Yes Yes Yes

Table 10. MOSGA with 100 iterations to solve once.

Number
of Times Optimal Sequence Fitness Function

Value
Number of Direction

Changes
Number of Tool

Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

1
1,4,2,3,9,11,5,15,14,8,1

0,13,12,7,6
0.1157 6 3 Yes Yes Yes

2
1,4,2,8,3,9,11,6,7,13,12,

14,15,5,10
0.1157 6 3 Yes Yes Yes

3
1,4,2,8,3,9,5,15,14,6,7,1

1,10,13,12
0.1157 6 3 Yes Yes Yes

4
1,4,2,3,5,15,14,8,7,6,9,1

1,10,13,12
0.1157 6 3 Yes Yes Yes

5
1,4,2,6,7,3,5,15,14,8,10,

11,9,13,12
0.1157 6 3 Yes Yes Yes

6
1,4,2,6,7,3,5,15,14,11,1

0,9,13,12,8
0.1157 6 3 Yes Yes Yes

7
1,4,2,6,7,3,5,15,14,11,1

0,9,8,13,12
0.1157 6 3 Yes Yes Yes

8
1,4,2,6,7,3,5,15,14,8,10,

9,11,13,12
0.1157 6 3 Yes Yes Yes

9
1,4,2,7,6,11,9,3,5,15,14,

8,10,13,12
0.1157 6 3 Yes Yes Yes

10
1,4,2,3,6,7,14,15,5,10,1

1,9,8,13,12
0.1157 6 3 Yes Yes Yes

(a) (b)

Figure 15. Convergence graphs of MOSGA for solving large-scale problems, with (a) 60 iterations;
(b) 100 iterations.

Figure 15. Convergence graphs of MOSGA for solving large-scale problems, with (a) 60 iterations;
(b) 100 iterations.

6. ASFP Case Study

To verify the feasibility of ASFP method based on the MOSGA, experiments were
conducted using a cabin. This shipyard completed the basic layout of the workshop in 2021
and commenced production at the beginning of 2022. Based on the cabin conditions, the
optimal assembly sequence planned by the MOSGA is 1, 2, 4, 9, 3, 5, 11, 10, 14, 8, 13, 12,
6, 7, 15, as shown in the first row of Table 11. Using ASFP for its flexible assembly, when
the factory assembles part 11, it is observed that there is a capacity shortage. Therefore, it
is necessary to adjust the assembly sequence and conduct flexible planning. The planned
result is shown in the second row of Table 7, and the optimized assembly sequence is as
follows: 1, 2, 4, 9, 3, 5, 15, 14, 6, 7, 8, 10, 11, 12, 13. This sequence meets the constraints
imposed by the already assembled parts 1, 4, 9, 3, 5 and represents the optimal assembly
sequence for the next assembly steps. When assembling part 8, it was damaged during
transportation, necessitating an adjustment to the assembly sequence. Once again, flexible
planning was conducted, and the resulting sequence is shown in the third row of Table 7.
The optimized assembly sequence is as follows: 1, 2, 4, 9, 3, 5, 15, 14, 6, 7, 11, 10, 13, 12, 8.

Mathematics 2024, 12, 574 22 of 26

This sequence meets the constraints imposed by the already assembled parts, 1, 4, 9, 3, 5,
15, 14, 6, 7, and ensures that part 8 is assembled at a later time to address the damage issue.
The completed cruise cabin is shown in Figure 16.

Table 11. Flexible planning of optimal assembly sequences.

Number
of ASFP Optimal Sequence Fitness

Function Value
Number of

Direction Changes
Number of

Tool Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

0 1,2,4,9,3,5,11,10,14,8,13,12,6,7,15 0.1157 6 3 Yes Yes Yes
1 1,2,4,9,3,5,15,14,6,7,8,10,11,12,13 0.1157 6 3 Yes Yes Yes
2 1,2,4,9,3,5,15,14,6,7,11,10,13,12,8 0.1157 5 4 Yes Yes Yes

Mathematics 2024, 12, x FOR PEER REVIEW 22 of 27

6. ASFP Case Study
To verify the feasibility of ASFP method based on the MOSGA, experiments were

conducted using a cabin. This shipyard completed the basic layout of the workshop in
2021 and commenced production at the beginning of 2022. Based on the cabin conditions,
the optimal assembly sequence planned by the MOSGA is 1, 2, 4, 9, 3, 5, 11, 10, 14, 8, 13,
12, 6, 7, 15, as shown in the first row of Table 11. Using ASFP for its flexible assembly,
when the factory assembles part 11, it is observed that there is a capacity shortage. There-
fore, it is necessary to adjust the assembly sequence and conduct flexible planning. The
planned result is shown in the second row of Table 7, and the optimized assembly se-
quence is as follows: 1, 2, 4, 9, 3, 5, 15, 14, 6, 7, 8, 10, 11, 12, 13. This sequence meets the
constraints imposed by the already assembled parts 1, 4, 9, 3, 5 and represents the optimal
assembly sequence for the next assembly steps. When assembling part 8, it was damaged
during transportation, necessitating an adjustment to the assembly sequence. Once again,
flexible planning was conducted, and the resulting sequence is shown in the third row of
Table 7. The optimized assembly sequence is as follows: 1, 2, 4, 9, 3, 5, 15, 14, 6, 7, 11, 10,
13, 12, 8. This sequence meets the constraints imposed by the already assembled parts, 1,
4, 9, 3, 5, 15, 14, 6, 7, and ensures that part 8 is assembled at a later time to address the
damage issue. The completed cruise cabin is shown in Figure 16.

Table 11. Flexible planning of optimal assembly sequences.

Number of
ASFP Optimal Sequence Fitness Function

Value
Number of Direction

Changes
Number of Tool

Changes
Sequence

Constraints
Geometric
Constraints

Global
Optimal

0
1,2,4,9,3,5,11,10,14,8,

13,12,6,7,15
0.1157 6 3 Yes Yes Yes

1
1,2,4,9,3,5,15,14,6,7,8

,10,11,12,13
0.1157 6 3 Yes Yes Yes

2
1,2,4,9,3,5,15,14,6,7,1

1,10,13,12,8
0.1157 5 4 Yes Yes Yes

Figure 16. The completed cruise cabin.

7. Discussion
This paper conducted experiments on a cabin with 15 parts in a shipyard, comparing

and analyzing GAs and MOSGAs with different iteration numbers. The experimental results
show that in small-scale problems, the GA exhibits instability and convergence issues at both
100 and 200 iterations, getting trapped in local optima. In Figure 17, the GA is compared with
the MOSGA. In 10 runs, the GA achieved the global optimum six times in 100 iterations, and

Figure 16. The completed cruise cabin.

7. Discussion

This paper conducted experiments on a cabin with 15 parts in a shipyard, comparing
and analyzing GAs and MOSGAs with different iteration numbers. The experimental
results show that in small-scale problems, the GA exhibits instability and convergence
issues at both 100 and 200 iterations, getting trapped in local optima. In Figure 17, the GA
is compared with the MOSGA. In 10 runs, the GA achieved the global optimum six times
in 100 iterations, and seven times in 200 iterations. In contrast, the MOSGA, in just one run,
obtained six global optima at 100 iterations and eight global optima at 200 iterations.

Mathematics 2024, 12, x FOR PEER REVIEW 23 of 27

seven times in 200 iterations. In contrast, the MOSGA, in just one run, obtained six global op-
tima at 100 iterations and eight global optima at 200 iterations.

(a) (b)

Figure 17. Comparison between MOSGA and GA, with (a) 100 iterations; (b) 200 iterations.

In large-scale problems, the advantages of the MOSGA are further highlighted. The
experimental results indicate that the GA exhibits instability and convergence issues at 60
and 100 iterations, falling into local optima. In Figure 18, compare the GA with the
MOSGA. Among the five runs, the GA at 60 iterations achieves a global optimum once,
and at 100 iterations, it obtains two global optima, with the rest falling into local optima.
In contrast, the MOSGA, with only one run, attains 4 global optima at 60 iterations and 11
global optima at 100 iterations. The proposed MOSGA overcomes the limitations of the
GA in solving complex problems, further enhancing search efficiency. Our experimental
results demonstrate that the MOSGA outperforms the GA significantly, whether in terms
of convergence speed or the quantity of optimal solutions obtained.

(a) (b)

Figure 18. Comparison between MOSGA and GA, with (a) 60 iterations; (b) 100 iterations.

Observing the convergence plot reveals that the GA quickly falls into a local opti-
mum, and increasing the number of iterations fails to bring about significant improve-
ments. This phenomenon arises due to the complexity of the problem, leading to a larger
search space for solutions. When the optimization iteration of the GA reaches a certain
optimal value, the fitness value is already high. The individuals with better fitness are less
distributed in the search space and it is difficult to carry out a further search. Additionally,
during the population evolution process, the GA tends to converge, resulting in a

Figure 17. Comparison between MOSGA and GA, with (a) 100 iterations; (b) 200 iterations.

Mathematics 2024, 12, 574 23 of 26

In large-scale problems, the advantages of the MOSGA are further highlighted. The
experimental results indicate that the GA exhibits instability and convergence issues at
60 and 100 iterations, falling into local optima. In Figure 18, compare the GA with the
MOSGA. Among the five runs, the GA at 60 iterations achieves a global optimum once,
and at 100 iterations, it obtains two global optima, with the rest falling into local optima.
In contrast, the MOSGA, with only one run, attains 4 global optima at 60 iterations and
11 global optima at 100 iterations. The proposed MOSGA overcomes the limitations of the
GA in solving complex problems, further enhancing search efficiency. Our experimental
results demonstrate that the MOSGA outperforms the GA significantly, whether in terms
of convergence speed or the quantity of optimal solutions obtained.

Mathematics 2024, 12, x FOR PEER REVIEW 23 of 27

seven times in 200 iterations. In contrast, the MOSGA, in just one run, obtained six global op-
tima at 100 iterations and eight global optima at 200 iterations.

(a) (b)

Figure 17. Comparison between MOSGA and GA, with (a) 100 iterations; (b) 200 iterations.

In large-scale problems, the advantages of the MOSGA are further highlighted. The
experimental results indicate that the GA exhibits instability and convergence issues at 60
and 100 iterations, falling into local optima. In Figure 18, compare the GA with the
MOSGA. Among the five runs, the GA at 60 iterations achieves a global optimum once,
and at 100 iterations, it obtains two global optima, with the rest falling into local optima.
In contrast, the MOSGA, with only one run, attains 4 global optima at 60 iterations and 11
global optima at 100 iterations. The proposed MOSGA overcomes the limitations of the
GA in solving complex problems, further enhancing search efficiency. Our experimental
results demonstrate that the MOSGA outperforms the GA significantly, whether in terms
of convergence speed or the quantity of optimal solutions obtained.

(a) (b)

Figure 18. Comparison between MOSGA and GA, with (a) 60 iterations; (b) 100 iterations.

Observing the convergence plot reveals that the GA quickly falls into a local opti-
mum, and increasing the number of iterations fails to bring about significant improve-
ments. This phenomenon arises due to the complexity of the problem, leading to a larger
search space for solutions. When the optimization iteration of the GA reaches a certain
optimal value, the fitness value is already high. The individuals with better fitness are less
distributed in the search space and it is difficult to carry out a further search. Additionally,
during the population evolution process, the GA tends to converge, resulting in a

Figure 18. Comparison between MOSGA and GA, with (a) 60 iterations; (b) 100 iterations.

Observing the convergence plot reveals that the GA quickly falls into a local optimum,
and increasing the number of iterations fails to bring about significant improvements. This
phenomenon arises due to the complexity of the problem, leading to a larger search space
for solutions. When the optimization iteration of the GA reaches a certain optimal value,
the fitness value is already high. The individuals with better fitness are less distributed
in the search space and it is difficult to carry out a further search. Additionally, during
the population evolution process, the GA tends to converge, resulting in a reduction in
population diversity. This decrease in diversity makes it difficult for the GA to undergo
mutations and explore beyond the current local optimum. Therefore, further enhancements
are needed to address the limitations of GAs.

Table 11 clearly demonstrates that the ASFP method proposed in this paper effectively
addresses the practical re-optimization issues encountered during the assembly process.
This approach is utilized in situations where assembly sequences need to be readjusted
due to unforeseen constraints encountered during the assembly process, thereby avoiding
the waste of manufacturing resources and improving assembly efficiency. Initially, the
MOSGA is used to plan the global optimum solutions for the products requiring assembly.
Throughout each step of the assembly process, flexible planning is applied based on the
actual conditions in the factory. If a sudden problem arises, the assembly sequence must
be readjusted. In cases of installation issues with any part, the assembly sequence can be
re-planned, allowing for the development and optimization of multiple unique solutions
to select the optimal sequence that aligns most closely with the actual assembly situation.
By doing so, the factory continues its assembly operations with reduced waiting and total
assembly times, consequently lowering manufacturing costs.

During the planning process using ASFP, if there is no new optimal assembly sequence
that satisfies the constraints of the already installed parts, the planning is considered

Mathematics 2024, 12, 574 24 of 26

unsuccessful, and the assembly proceeds according to the original assembly sequence.
The experiments in this study addressed situations where the assembly of factory parts
encountered issues twice, and flexible planning was employed to adjust the assembly
sequence. If more unexpected situations are encountered, in the worst case, one or more
instance of flexible planning can be carried out for each part installed until the optimal
assembly sequence in line with the actual production situation is planned. The experimental
results presented in this study confirm the practical feasibility of ASFP, highlighting its
significant guiding implications for assembly sequence planning problems.

8. Conclusions

This paper introduces a novel ASP method suitable for the construction of modular
cabins in large cruise ships. Utilizing four constraint conditions, including geometric
constraints, sequence constraints, assembly changeover times, and tool changeover times,
the method conducts multi-objective optimization. It generates multiple unique optimal
assembly sequences that satisfy specified constraints and improves search efficiency. Simul-
taneously, this paper proposes the ASFP method to tackle practical re-optimization issues
in factory assembly processes, such as material delivery delays, equipment breakdowns,
and transportation damage. When encountering these situations, using ASFP for flexible
planning can lead to the creation of a new assembly plan for workshop production.

The paper provides a detailed description of the algorithm’s steps and core processes,
comparing it with the GA. Illustrated by examples, the innovation of the proposed opti-
mization algorithm is demonstrated. The key contributions of this paper are as follows:

• Overcoming Local Optima in GA: This paper resolves the issue of the GA converging to
local optima when dealing with complex assembly problems. It introduces the MOSGA
method, an improved approach that determines global optimal assembly sequences.

• Diverse Optimal Solutions: Addressing the problem of multiple search algorithms con-
verging to a single optimal solution, the MOSGA not only identifies global optimal so-
lutions but also produces multiple unique optimal solutions in a single solving process.

• ASFP for Flexible Planning: Regarding the ASFP method, this approach, designed to
solve practical re-optimization issues in assembly processes, becomes crucial when un-
foreseen circumstances hinder adherence to the original assembly sequence, necessitat-
ing the re-planning of the optimal assembly sequence. The application of ASFP proves
effective in reducing assembly costs and significantly enhancing assembly efficiency.

• Validation through Experiments: Through experiments with different parameters us-
ing a cabin example, this paper compares the GA and MOSGA, proving the advanced
and innovative nature of the MOSGA. Additionally, flexible planning based on the
cabin example verifies the feasibility of ASFP in solving assembly flexibility planning
problems, achieving the expected results.

Author Contributions: Algorithm and experimental design X.W.; writing—original draft, X.W.;
writing—review and editing, K.L. and Z.K.; visualization, W.Q. All authors have read and agreed to
the published version of the manuscript.

Funding: Project supported by the National Natural Science Foundation of China (Grant
No. 52171311; 52271279).

Data Availability Statement: The datasets generated or analyzed during this study are available
from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Li, S.; Tang, D.; Xue, D.; Wang, Q.; Zhu, H. Assembly sequence planning based on structure cells in open design. Adv. Eng.

Informatics 2022, 53, 101685. [CrossRef]
2. Xiao, Y.; Zhou, J.; Xing, S.; Zhu, X. Research on Assembly Sequence Optimization Classification Method of Remanufacturing

Parts Based on Different Precision Levels. Processes 2023, 11, 383. [CrossRef]

https://doi.org/10.1016/j.aei.2022.101685
https://doi.org/10.3390/pr11020383

Mathematics 2024, 12, 574 25 of 26

3. Shi, X.; Tian, X.; Gu, J.; Wang, G.; Zhao, D.; Ma, L. A hybrid approach of case- and rule-based reasoning to assembly sequence
planning. Int. J. Adv. Manuf. Technol. 2023, 127, 221–236. [CrossRef]

4. Zheng, Y.; Chen, L.; Wu, D.; Jiang, P.; Bao, J. Assembly sequence planning method for optimum assembly accuracy of complex
products based on modified teaching–learning based optimization algorithm. Int. J. Adv. Manuf. Technol. 2023, 126, 1681–1699.
[CrossRef]

5. de Giorgio, A.; Maffei, A.; Onori, M.; Wang, L. Towards online reinforced learning of assembly sequence planning with interactive
guidance systems for industry 4.0 adaptive manufacturing. J. Manuf. Syst. 2021, 60, 22–34. [CrossRef]

6. Wu, W.; Huang, Z.; Zeng, J.; Fan, K. A decision-making method for assembly sequence planning with dynamic resources. Int. J.
Prod. Res. 2021, 60, 4797–4816. [CrossRef]

7. Wan, W.; Harada, K.; Nagata, K. Assembly sequence planning for motion planning. Assem. Autom. 2017, 38, 195–206. [CrossRef]
8. Ma, H.; Peng, Q.; Zhang, J.; Gu, P. Assembly sequence planning for open-architecture products. Int. J. Adv. Manuf. Technol. 2017,

94, 1551–1564. [CrossRef]
9. Watson, J.; Hermans, T. Assembly Planning by Subassembly Decomposition Using Blocking Reduction. IEEE Robot. Autom. Lett.

2019, 4, 4054–4061. [CrossRef]
10. De Winter, J.; Beckers, J.; Van de Perre, G.; El Makrini, I.; Vanderborght, B. Single assembly sequence to flexible assembly plan by

Autonomous Constraint Generation. Robot. Comput. Manuf. 2023, 79, 102417. [CrossRef]
11. Wang, Y.; Wang, J.; Feng, J.; Liu, J.; Liu, X. Integrated task sequence planning and assignment for human–robot collaborative

assembly station. Flex. Serv. Manuf. J. 2022, 35, 979–1006. [CrossRef]
12. Tseng, H.-E.; Chang, C.-C.; Lee, S.-C.; Huang, Y.-M. Hybrid bidirectional ant colony optimization (hybrid BACO): An algorithm

for disassembly sequence planning. Eng. Appl. Artif. Intell. 2019, 83, 45–56. [CrossRef]
13. Mishra, A.; Deb, S. Assembly sequence optimization using a flower pollination algorithm-based approach. J. Intell. Manuf. 2016,

30, 461–482. [CrossRef]
14. Wang, Z.-Y.; Lu, C. An integrated job shop scheduling and assembly sequence planning approach for discrete manufacturing. J.

Manuf. Syst. 2021, 61, 27–44. [CrossRef]
15. Zhu, X.; Xu, Z.; Wang, J.; Yang, X.; Fan, L. Graph-based assembly sequence planning algorithm with feedback weights. Int. J. Adv.

Manuf. Technol. 2023, 125, 3607–3617. [CrossRef]
16. Qian, J.; Zhang, Z.; Shi, L.; Song, D. An assembly timing planning method based on knowledge and mixed integer linear

programming. J. Intell. Manuf. 2021, 34, 429–453. [CrossRef]
17. Han, Z.; Wang, Y.; Tian, D. Ant colony optimization for assembly sequence planning based on parameters optimization. Front.

Mech. Eng. 2021, 16, 393–409. [CrossRef]
18. Gao, B.; Zhang, S.; Sun, H.; Ma, C. Assembly sequence planning based on adaptive gravitational search algorithm. Int. J. Adv.

Manuf. Technol. 2021, 115, 3689–3700. [CrossRef]
19. Cheng, H.; Li, Y.; Zhang, K.-F. Efficient method of assembly sequence planning based on GAAA and optimizing by assembly

path feedback for complex product. Int. J. Adv. Manuf. Technol. 2009, 42, 1187–1204.
20. Ab Rashid, M.F.F.; Hutabarat, W.; Tiwari, A. Multi-objective discrete particle swarm optimisation algorithm for integrated

assembly sequence planning and assembly line balancing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 232, 1444–1459.
[CrossRef]

21. Kang, M.; Seo, J.; Chung, H. Ship block assembly sequence planning considering productivity and welding deformation. Int. J.
Nav. Arch. Ocean Eng. 2018, 10, 450–457. [CrossRef]

22. Su, Y.; Mao, H.; Tang, X. Algorithms for solving assembly sequence planning problems. Neural Comput. Appl. 2020, 33, 525–534.
[CrossRef]

23. Che, Z.; Chiang, T.-A.; Lin, T.-T. A multi-objective genetic algorithm for assembly planning and supplier selection with capacity
constraints. Appl. Soft Comput. 2020, 101, 107030. [CrossRef]

24. Liu, Y.; Li, S.; Wang, J. Assembly auxiliary system for narrow cabins of spacecraft. Chin. J. Mech. Eng. 2015, 28, 1080–1088.
[CrossRef]

25. Murali, G.B.; Deepak, B.; Raju, M.; Biswal, B. Optimal robotic assembly sequence planning using stability graph through stable
assembly subset identification. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 5410–5430. [CrossRef]

26. Ying, K.-C.; Pourhejazy, P.; Cheng, C.-Y.; Wang, C.-H. Cyber-physical assembly system-based optimization for robotic assembly
sequence planning. J. Manuf. Syst. 2021, 58, 452–466. [CrossRef]

27. Masehian, E.; Ghandi, S. ASPPR: A New Assembly Sequence and Path Planner/Replanner for Monotone and Nonmonotone
Assembly Planning. Comput. Aided Des. 2020, 123, 102828. [CrossRef]

28. Zhou, B.; Bao, J.; Chen, Z.; Liu, Y. KGAssembly: Knowledge graph-driven assembly process generation and evaluation for
complex components. Int. J. Comput. Integr. Manuf. 2021, 35, 1151–1171. [CrossRef]

29. Wang, Z.; Kennel-Maushart, F.; Huang, Y.; Thomaszewski, B.; Coros, S. A Temporal Coherent Topology Optimization Approach
for Assembly Planning of Bespoke Frame Structures. ACM Trans. Graph. 2023, 42, 1–13. [CrossRef]

30. Gulivindala, A.K.; Bahubalendruni, M.R.; Varupala, S.V.P.; K, S. A heuristic method with a novel stability concept to perform
parallel assembly sequence planning by subassembly detection. Assem. Autom. 2020, 40, 779–787. [CrossRef]

31. Rodriguez, I.; Nottensteiner, K.; Leidner, D.; Kassecker, M.; Stulp, F.; Albu-Schaffer, A. Iteratively Refined Feasibility Checks in
Robotic Assembly Sequence Planning. IEEE Robot. Autom. Lett. 2019, 4, 1416–1423. [CrossRef]

https://doi.org/10.1007/s00170-023-11525-8
https://doi.org/10.1007/s00170-023-11220-8
https://doi.org/10.1016/j.jmsy.2021.05.001
https://doi.org/10.1080/00207543.2021.1937748
https://doi.org/10.1108/AA-01-2017-009
https://doi.org/10.1007/s00170-017-0160-1
https://doi.org/10.1109/LRA.2019.2929995
https://doi.org/10.1016/j.rcim.2022.102417
https://doi.org/10.1007/s10696-022-09479-2
https://doi.org/10.1016/j.engappai.2019.04.015
https://doi.org/10.1007/s10845-016-1261-7
https://doi.org/10.1016/j.jmsy.2021.08.003
https://doi.org/10.1007/s00170-022-10639-9
https://doi.org/10.1007/s10845-021-01819-7
https://doi.org/10.1007/s11465-020-0613-3
https://doi.org/10.1007/s00170-021-07241-w
https://doi.org/10.1177/0954405416673095
https://doi.org/10.1016/j.ijnaoe.2017.09.005
https://doi.org/10.1007/s00521-020-05048-6
https://doi.org/10.1016/j.asoc.2020.107030
https://doi.org/10.3901/CJME.2015.0416.044
https://doi.org/10.1177/0954406219842908
https://doi.org/10.1016/j.jmsy.2021.01.004
https://doi.org/10.1016/j.cad.2020.102828
https://doi.org/10.1080/0951192X.2021.1891572
https://doi.org/10.1145/3592102
https://doi.org/10.1108/AA-01-2020-0017
https://doi.org/10.1109/LRA.2019.2895845

Mathematics 2024, 12, 574 26 of 26

32. Yang, X.; Xie, H.; Chen, L.; Gao, M.; Li, C.; Li, J. Assembly sequence planning and evaluating for deep oil and gas corer based on
graph theory. Geoenergy Sci. Eng. 2023, 231, 212386. [CrossRef]

33. Gunji, B.M.; Deepak, B.B.V.L.; Biswal, B.B. Effect of Considering Secondary Parts as Primary Parts for Robotic Assembly Using
Stability Graph. Arab. J. Sci. Eng. 2019, 45, 743–764. [CrossRef]

34. Tariki, K.; Kiyokawa, T.; Nagatani, T.; Takamatsu, J.; Ogasawara, T. Generating complex assembly sequences from 3D CAD
models considering insertion relations. Adv. Robot. 2020, 35, 337–348. [CrossRef]

35. Gao, Y.; Meng, J.; Shu, J.; Liu, Y. BIM-based task and motion planning prototype for robotic assembly of COVID-19 hospitalisation
light weight structures. Autom. Constr. 2022, 140, 104370. [CrossRef]

36. Xia, L.; Lu, J.; Lu, Y.; Gao, W.; Fan, Y.; Xu, Y.; Zhang, H. Semantic knowledge-driven A-GASeq: A dynamic graph learning
approach for assembly sequence optimization. Comput. Ind. 2024, 154, 104040. [CrossRef]

37. Rehal, A.; Sen, D. An Efficient Disassembly Sequencing Scheme Using the Shell Structure. Comput. Des. 2023, 154, 103423.
[CrossRef]

38. Ab Rashid, M.F.F.; Tiwari, A.; Hutabarat, W. Integrated optimization of mixed-model assembly sequence planning and line
balancing using Multi-objective Discrete Particle Swarm Optimization. Artif. Intell. Eng. Des. Anal. Manuf. 2019, 33, 332–345.
[CrossRef]

39. Zhang, J.; Wang, P.; Zuo, M.; Li, Y.; Xu, Z. Automatic assembly simulation of product in virtual environment based on interaction
feature pair. J. Intell. Manuf. 2015, 29, 1235–1256. [CrossRef]

40. Ji, W.; Yin, S.; Wang, L. A Virtual Training Based Programming-Free Automatic Assembly Approach for Future Industry. IEEE
Access 2018, 6, 43865–43873. [CrossRef]

41. Tao, S.; Wang, D.-Y.; Zhang, S.-W. A feature and optimized RRT algorithm-based assembly path planning method of complex
products. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023. [CrossRef]

42. Zhang, N.; Liu, Z.; Qiu, C.; Hu, W.; Tan, J. Optimizing assembly sequence planning using precedence graph-based assembly
subsets prediction method. Assem. Autom. 2019, 40, 361–375. [CrossRef]

43. You, H.; Ye, Y.; Zhou, T.; Zhu, Q.; Du, J. Robot-Enabled Construction Assembly with Automated Sequence Planning Based on
ChatGPT: RoboGPT. Buildings 2023, 13, 1772. [CrossRef]

44. Rodriguez, I.; Nottensteiner, K.; Leidner, D.; Durner, M.; Stulp, F.; Albu-Schaffer, A. Pattern Recognition for Knowledge Transfer
in Robotic Assembly Sequence Planning. IEEE Robot. Autom. Lett. 2020, 5, 3666–3673. [CrossRef]

45. Sadeghi Tabar, R.; Wärmefjord, K.; Söderberg, R.; Lindkvist, L. Critical joint identification for efficient sequencing. J. Intell. Manuf.
2021, 32, 769–780. [CrossRef]

46. Li-li, L.; Kun, C.; Jian-min, G.; Jun-kong, L.; Zhi-yong, G.; Hong-wei, D. Research on optimizing-assembly and optimizing-
adjustment technologies of aero-engine fan rotor blades. Adv. Eng. Inform. 2022, 51, 101506. [CrossRef]

47. Wang, Z.; Gan, Y.; Dai, X. Assembly-Oriented Task Sequence Planning for a Dual-Arm Robot. IEEE Robot. Autom. Lett. 2022, 7,
8455–8462. [CrossRef]

48. Masehian, E.; Ghandi, S. Assembly sequence and path planning for monotone and nonmonotone assemblies with rigid and
flexible parts. Robot. Comput. Manuf. 2021, 72, 102180. [CrossRef]

49. Shahi, V.J.; Masoumi, A.; Franciosa, P.; Ceglarek, D. A quality-driven assembly sequence planning and line configuration selection
for non-ideal compliant structures assemblies. Int. J. Adv. Manuf. Technol. 2019, 106, 15–30. [CrossRef]

50. Abidi, M.H.; Al-Ahmari, A.M.; Ahmad, A.; Darmoul, S.; Ameen, W. Semi-Immersive Virtual Turbine Engine Simulation System.
Int. J. Turbo Jet-Engines 2017, 35, 149–160. [CrossRef]

51. Abdullah, A.; Ab Rashid, M.F.F.; Ponnambalam, S.; Ghazalli, Z. Energy efficient modeling and optimization for assembly sequence
planning using moth flame optimization. Assem. Autom. 2019, 39, 356–368. [CrossRef]

52. Liu, C.; Zhang, F.; Zhang, H.; Shi, Z.; Zhu, H. Optimization of assembly sequence of building components based on simulated
annealing genetic algorithm. Alex. Eng. J. 2023, 62, 257–268. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.geoen.2023.212386
https://doi.org/10.1007/s13369-019-04143-8
https://doi.org/10.1080/01691864.2020.1863258
https://doi.org/10.1016/j.autcon.2022.104370
https://doi.org/10.1016/j.compind.2023.104040
https://doi.org/10.1016/j.cad.2022.103423
https://doi.org/10.1017/S0890060419000131
https://doi.org/10.1007/s10845-015-1173-y
https://doi.org/10.1109/ACCESS.2018.2863697
https://doi.org/10.1177/09544054231203069
https://doi.org/10.1108/AA-02-2019-0031
https://doi.org/10.3390/buildings13071772
https://doi.org/10.1109/LRA.2020.2979622
https://doi.org/10.1007/s10845-020-01660-4
https://doi.org/10.1016/j.aei.2021.101506
https://doi.org/10.1109/LRA.2022.3183786
https://doi.org/10.1016/j.rcim.2021.102180
https://doi.org/10.1007/s00170-019-04294-w
https://doi.org/10.1515/tjj-2017-0004
https://doi.org/10.1108/AA-06-2018-091
https://doi.org/10.1016/j.aej.2022.07.025

	Introduction
	Mathematical Model of Assembly Sequence
	Design of Constraint Matrix
	Number of Assembly Direction Changes
	Number of Assembly Tool Changes
	Geometric Constraints of Assembly
	Sequence Constraints of Assembly
	Objective Function and Fitness Function

	Improvement Principle
	Principle Analysis
	Improving Search Efficiency and Avoiding Local Optima
	Establishment of Multiple Unique Optimal Solutions
	Assembly Sequence Flexible Planning
	Problem Analysis
	Process of ASFP

	MOSGA and ASFP
	Encodings
	Crossover and Mutation
	Overall Solution and Selection Steps

	Experimental Case Study
	Small-Scale Experiments
	GA Solved 10 Times
	MOSGA Solved Once

	Large-Scale Experiments
	GA Solved Five Times
	MOSGA Solved Once

	ASFP Case Study
	Discussion
	Conclusions
	References

