

Article Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization

Zheng-Guo Lv, Li-Han Zhang, Xiao-Yuan Wang and Ji-Bo Wang *🗅

School of Computer, Shenyang Aerospace University, Shenyang 110136, China; lvzhengguo@stu.sau.edu.cn (Z.-G.L.); zhanglihan@stu.sau.edu.cn (L.-H.Z.); 20012302@sau.edu.cn (X.-Y.W.) * Correspondence: wangjibo@sau.edu.cn

Abstract: In this paper, we investigate a single machine scheduling problem with a proportional job deterioration. Under release times (dates) of jobs, the objective is to minimize the total weighted completion time. For the general condition, some dominance properties, a lower bound and an upper bound are given, then a branch-and-bound algorithm is proposed. In addition, some meta-heuristic algorithms (including the tabu search (*TS*), simulated annealing (*SA*) and heuristic (*NEH*) algorithms) are proposed. Finally, experimental results are provided to compare the branch-and-bound algorithm and another three algorithms, which indicate that the branch-and-bound algorithm can solve instances of 40 jobs within a reasonable time and that the *NEH* and *SA* are more accurate than the *TS*.

Keywords: scheduling; single machine; proportional job deterioration; release dates; total weighted completion time

MSC: 90B35

1. Introduction

The classical scheduling models assume that the job processing time is a fixed constant. However, in many real-life situations (e.g., scheduling derusting operations (see Gawiejnowicz et al. [1]), and timely medical treatment (Wu et al. [2])), the job processing time is an increasing function of its starting time, i.e., this is the deterioration effect (for more detail on deteriorating jobs, see Mosheiov [3], Gawiejnowicz [4], Oron [5]). Lee et al. [6] and Wang et al. [7] considered single-machine two-agent problems with deteriorating jobs. Wu et al. [8] scrutinized single-machine scheduling with a truncated linear deteriorating effect. For the makespan minimization with ready times, they proposed a branch-and-bound algorithm and some heuristic algorithms. Yin and Kang [9] studied flow shop scheduling with proportional deterioration. They proved that some special cases of makespan minimization are polynomially solvable. Pei et al. [10] considered the single serial-batching machine with deteriorating jobs. Jafari and Lotfi [11] studied single-machine scheduling with deteriorating jobs. For the maximum tardiness minimization, they proposed branchand-bound and heuristic algorithms. Miao and Zhang [12] discussed the parallel-machine scheduling with step-deteriorating jobs. For the makespan minimization, some NP-hard results were given. Huang [13] investigated the single-machine scheduling problem with deterioration effects. Under the group technology, they proved that the bicriterion minimization problem remains polynomially solvable. Liu et al. [14] studied the single-machine makespan minimization problem with deterioration effects. Under the group technology and ready times, they proposed heuristic and branch-and-bound algorithms. Sun and Geng [15] investigated single-machine scheduling with deteriorating effects. Under machine maintenance, they showed that the makespan and sum of job completion times

Citation: Lv, Z.-G.; Zhang, L.-H.; Wang, X.-Y.; Wang, J.-B. Single Machine Scheduling Proportionally Deteriorating Jobs with Ready Times Subject to the Total Weighted Completion Time Minimization. *Mathematics* **2024**, *12*, 610. https:// doi.org/10.3390/math12040610

Academic Editor: Pavel Novoa-Hernández

Received: 7 January 2024 Revised: 30 January 2024 Accepted: 2 February 2024 Published: 19 February 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). minimizations can be solved in polynomial time. Cheng et al. [16] explored single-machine total completion time minimization with step-deteriorating jobs. They showed that this problem is binary NP-hard, and proposed a dynamic programming algorithm to solve the problem. Li and Lu [17] explored single-machine parallel-batch scheduling problem with job rejection. Under deterioration effects, they proved that the makespan (total weighted completion time) minimization is NP-complete under the total rejection penalty is limited. They also proposed dynamic programming algorithms and FPTASs (i.e., fully polynomial time approximation schemes) to solve the problem. Zhang et al. [18] scrutinized parallelmachine scheduling with deterioration effects. Under machine maintenance activities of the non-resumable case and resumable case, the goal is to minimize the expected sum of completion times. They determined the time complexity of various cases, and proposed pseudo-polynomial time algorithms. Huang et al. [19] considered due window assignment scheduling with deteriorating jobs. He et al. [20] considered parallel-machine problems with deteriorating jobs. Under processor maintenance activities, the objective is to minimize the total completion time (machine load). Qian and Han [21] and Qian and Zhan [22] scrutinized single-machine scheduling with proportional job deterioration. Under duedate and due-window assignments, they showed that some earliness-tardiness problems remain polynomially solvable. Miao et al. [23] studied parallel-machine scheduling with step-deterioration effect, where the job deteriorating dates are identical. They proved that the total (weighted) completion time minimization is NP-hard in the strong sense. They also showed that some special cases of the problem are polynomially solvable. Jia et al. [24] and Sun et al. [25] considered single machine scheduling with deteriorating jobs and a maintenance activity. Miao et al. [26] investigated single machine scheduling with deteriorating jobs and delivery times. Wang et al. [27] studied single-machine resource allocation scheduling with deterioration effect. Zhang et al. [28] delved into due-window scheduling with linear proportional deterioration. Shabtay and Mor [29] discussed the proportionate flow shop problems with step-deteriorating. They proved that the makespan and total load minimizations are NP-hard. A book (resp. survey) on time-dependent (deterioration effect) scheduling problems can be found in Gawiejnowicz [30] (resp. Gawiejnowicz [31]).

Recently, Miao [32] explored a single-machine scheduling problem with the proportional job deterioration. Under different ready times (i.e., release dates), she showed that the total weighted completion time minimization is binary NP-hard. For a special condition, Miao [32] proved that this problem can be solved in polynomial time. For the importance of ready times (please refer to Zhong et al. [33]; Bai et al. [34]; Qian et al. [35]) and deteriorating jobs, in this study, we continue the work of Miao [32], but deal with a general case of Miao [32]. The contributions of this article are: (1) we consider the single machine scheduling with proportionally deteriorating jobs; (2) under ready times, we provide the optimality analysis for the total weighted completion time minimization; (3) under the optimal properties of an optimal schedule, we propose some solution algorithms (including the branch-and-bound, tabu search, simulated annealing and heuristic algorithms).

The remainder of this article is organized as follows. Section 2 presents the problem formulation. In Sections 3 and 4, the branch-and-bound and complex algorithms are proposed. Section 5 gives the computational experiments of randomly generated instances. In the last Section, we conclude this article.

2. Problem Formulation

A set of *n* jobs, $\hat{N} = \{J_1, J_2, ..., J_n\}$, is to be processed (scheduled) on a single machine, and all the jobs are available at time $t_0 > 0$. As in Mosheiov [3], Oron [5] and Miao [32], the following model with the proportional job deterioration will be addressed, i.e., the actual processing time \hat{p}_j of job J_j (j = 1, 2, ..., n) is

$$\hat{p}_j = \hat{b}_j \hat{s}_j,\tag{1}$$

where \hat{b}_j is the deterioration rate of job J_j (i.e., the unit growth rate of its starting processing time), and \hat{s}_j is its starting time. Let $\overline{C}_j = \overline{C}_j(\Psi)$ be the completion time of job J_j under some schedule Ψ . The objective is to find a schedule that minimizes the total weighted completion time $TWCT = \sum_{j=1}^{n} \mu_j \overline{C}_j$, where μ_j is the weight of job J_j . Using the three-field notation (see Gawiejnowicz [30,31]), for problem classification, the problem can be represented as $1|\hat{p}_j = \hat{b}_j \hat{s}_j, r_j|TWCT$, where $r_j \ge 0$ is the release time (date) of job J_j . The comparison with proportional job deterioration is given in Table 1.

Table 1. Summary results of proportional job deterioration.

Problem	Complexity or Algorithms	Reference
$1 \hat{p}_{i} = \hat{b}_{i}\hat{s}_{i}, con, deliv - time \sum_{i=1}^{n} (\alpha E_{i} + \beta T_{i} + \gamma d) \}$	$O(n \log n)$	Qian and Han [21]
$1 \hat{p}_{i} = \hat{b}_{i}\hat{s}_{i}, slk, deliv - time \left\{\sum_{i=1}^{n} (\alpha E_{i} + \beta T_{i} + \gamma q)\right\}$	$O(n \log n)$	Qian and Han [21]
$1 \hat{p}_j = \hat{b}_j \hat{s}_j, dif, deliv - time \sum_{j=1}^n (\alpha E_j + \beta T_j + \gamma d_j)\}$	$O(n \log n)$	Qian and Han [21]
$1 \hat{p}_{j} = \hat{b}_{j}\hat{s}_{j}, conw, deliv - time \sum_{j=1}^{n} (\alpha E_{j} + \beta T_{j} + \gamma d' + \delta(d'' - d'))$	$O(n \log n)$	Qian and Zhan [22]
$1 \hat{p}_j = \hat{b}_j \hat{s}_j, slkw, deliv - time \sum_{j=1}^n (\alpha E_j + \beta T_j + \gamma q' + \delta(q'' - q'))$	$O(n \log n)$	Qian and Zhan [22]
$\frac{1}{ \hat{p}_j = \hat{b}_j \hat{s}_j \overline{C}_{\max}}$	O(n)	Mosheiov [3]
$1 \hat{p}_j = \hat{b}_j \hat{s}_j \sum_{j=1}^n \overline{C}_j$	$O(n\log n)$, $\hat{b}_j \uparrow$	Mosheiov [3]
$1 \hat{p}_j=\hat{b}_j\hat{s}_j L_{\max}$	$O(n \log n), d_j \uparrow$	Mosheiov [3]
$1 \hat{p}_j = \hat{b}_j \hat{s}_j \widetilde{TWCT}$	$O(n\log n)$, $rac{\hat{b}_j}{\mu_j(1+\hat{b}_j)}$ \uparrow	Mosheiov [3]
$1 \hat{p}_j = \hat{b}_j \hat{s}_j \sum_{j=1}^n \sum_{h=j+1}^n (\overline{C}_h - \overline{C}_j)$	open problem	Oron [5]
$1 \hat{p}_j=\hat{b}_j\hat{s}_j f_{ ext{max}}$	O(n)	Gawiejnowicz [30] (Theorem 7.93)
$1 \hat{p}_j = \hat{b}_j \hat{s}_j, r_j \widetilde{TWCT}$	NP-hard	Miao [32]
$1 \hat{p}_j = \hat{b}_j \hat{s}_j, \hat{b}_j = \hat{b}, r_h \le r_j \Rightarrow \mu_h \ge \mu_j \widetilde{TWCT}$	$O(n \log n), r_j \uparrow$	Miao [32]
$1 \hat{p}_j = \hat{b}_j \hat{s}_j, r_j \widetilde{TWCT}$	BB and Meta-heuristic algorithms	This paper

 $\alpha \ge 0, \beta \ge 0, \gamma \ge 0, \delta \ge 0$ are given integers, E_j (resp. T_j) is the earliness (resp. tardiness) of J_j , \uparrow denotes non-decreasing order, d_j is the due-date of J_j (con denotes the common due-date, i.e., $d_j = d$; slk denotes the slack due-date, i.e., $d_j = \hat{p}_j + q$; dif denotes the different due-dates), $[d'_j, d''_j]$ is the due-window of J_j (conw denotes the common due-window, i.e., $d'_j = d'$ and $d''_j = d''$; slkw denotes the slack due-window, i.e., $d'_j = \hat{p}_j + q'$ and $d''_j = \hat{p}_j + q'', \overline{C}_{max}$ (resp. L_{max}, f_{max}) denotes makespan (resp. lateness, maximum cost), d'' - d' (resp. q'' - q') is the size of the common (resp. slack) due-window, deliv-time denotes a delivery time

3. Branch-and-Bound Algorithm

Miao [32] proved that the problem $1|\hat{p}_j = \hat{b}_j \hat{s}_j, r_j| TWCT$ is binary NP-hard. Hence, a branch-and-bound algorithm (where we need some dominance properties, a lower bound and an upper bound) is a good way to solve $1|\hat{p}_j = \hat{b}_j \hat{s}_j, r_j| TWCT$.

3.1. Dominance Properties

The following dominance properties can efficiently disregard numerous nodes and reduce the computation load. Let $\Psi_1 = (\tau, J_h, J_j, \tau')$ and $\Psi_2 = (\tau, J_j, J_h, \tau')$ be the orders of schedules, i.e., the jobs in the bracket represent an order of schedule, where τ and τ' are partial sequences. Let the completion time of the last job in τ be *s*, to show that Ψ_1 dominates Ψ_2 (i.e., the objective value of the schedule $\Psi_1 = (\tau, J_h, J_j, \tau')$ is less than or equal to the schedule $\Psi_2 = (\tau, J_j, J_h, \tau')$), it is sufficient to show that $\overline{C}_j(\Psi_1) \leq \overline{C}_h(\Psi_2)$, and $\mu_h \overline{C}_h(\Psi_1) + \mu_j \overline{C}_j(\Psi_1) \leq \mu_j \overline{C}_j(\Psi_2) + \mu_h \overline{C}_h(\Psi_2)$.

Proposition 1. For any two jobs J_h and J_j , if $r_h = r_j$, $\frac{\hat{b}_h}{\mu_h(1+\hat{b}_h)} \leq \frac{\hat{b}_j}{\mu_j(1+\hat{b}_j)}$, then Ψ_1 dominates Ψ_2 .

Proof. Under $\Psi_1 = (\tau, J_h, J_j, \tau')$, and $\Psi_2 = (\tau, J_j, J_h, \tau')$, we have

$$\overline{C}_{h}(\Psi_{1}) = \max\{s, r_{h}\} + \hat{b}_{h}\max\{s, r_{h}\} = \max\{s(1+\hat{b}_{h}), r_{h}(1+\hat{b}_{h})\},$$
(2)

$$\overline{C}_{j}(\Psi_{1}) = \max\{\hat{C}_{h}(\Psi_{1}), r_{j}\}(1+\hat{b}_{j}) = \max\{s(1+\hat{b}_{h})(1+\hat{b}_{j}), r_{h}(1+\hat{b}_{h})(1+\hat{b}_{j}), r_{j}(1+\hat{b}_{j})\},$$
(3)

$$\overline{C}_j(\Psi_2) = \max\{s(1+\hat{b}_j), r_j(1+\hat{b}_j)\},\tag{4}$$

$$\overline{C}_{h}(\Psi_{2}) = \max\{s(1+\hat{b}_{j})(1+\hat{b}_{h}), r_{j}(1+\hat{b}_{j})(1+\hat{b}_{h}), r_{h}(1+\hat{b}_{h})\}.$$
(5)

If
$$r_h = r_j \leq s$$
, we have $\overline{C}_j(\Psi_1) = \overline{C}_h(\Psi_2) = s(1 + \hat{b}_j)(1 + \hat{b}_h)$, and

$$\begin{split} & \mu_h C_h(\Psi_1) + \mu_j C_j(\Psi_1) - \mu_j C_j(\Psi_2) - \mu_h C_h(\Psi_2) \\ &= s \mu_h (1 + \hat{b}_h) + s \mu_j (1 + \hat{b}_h) (1 + \hat{b}_j) - s \mu_j (1 + \hat{b}_j) - s \mu_h (1 + \hat{b}_h) (1 + \hat{b}_j) \\ &= s \mu_j \mu_h (1 + \hat{b}_j) (1 + \hat{b}_h) \left[\frac{\hat{b}_h}{\mu_h (1 + \hat{b}_h)} - \frac{\hat{b}_j}{\mu_j (1 + \hat{b}_j)} \right] \\ &\leq 0. \end{split}$$

If $r_h = r_j > s$, we have $\overline{C}_j(\Psi_1) = \overline{C}_h(\Psi_2) = r(1 + \hat{b}_j)(1 + \hat{b}_h)$, and $\mu_h \overline{C}_h(\Psi_1) + \mu_j \overline{C}_j(\Psi_1) - \mu_j \overline{C}_j(\Psi_2) - \mu_h \overline{C}_h(\Psi_2)$

$$= r\mu_{j}\mu_{h}(1+\hat{b}_{j})(1+\hat{b}_{h})\left[\frac{\hat{b}_{h}}{\mu_{h}(1+\hat{b}_{h})}-\frac{b_{j}}{\mu_{j}(1+\hat{b}_{j})}\right]$$

$$\leq 0,$$

the result follows. \Box

Similarly, we have the following propositions:

Proposition 2. For any two jobs J_i and J_j , if $\hat{b}_h = \hat{b}_j$, $r_h \le r_j$, $\mu_h \ge \mu_j$, then Ψ_1 dominates Ψ_2 . **Proposition 3.** For any two jobs J_i and J_j , if $\hat{b}_h \le \hat{b}_j$, $r_h \le r_j$, $\mu_h = \mu_j$, then Ψ_1 dominates Ψ_2 .

3.2. Lower Bound

Lemma 1. (*Rau* [36], *Kelly* [37]) *Term* $\sum_{j=1}^{n} \mu_j \prod_{h=k+1}^{j} (1+\hat{b}_h)$ can be minimized by the non-decreasing order of $\frac{\hat{b}_j}{\mu_j(1+\hat{b}_j)}$, *i.e.*, $\frac{\hat{b}_{<1>}}{\mu_{<1>}(1+\hat{b}_{<1>})} \leq \frac{\hat{b}_{<2>}}{\mu_{<2>}(1+\hat{b}_{<2>})} \leq \ldots \leq \frac{\hat{b}_{<n>}}{\mu_{<n>}(1+\hat{b}_{<n>})}$.

Suppose $\Theta = {\Psi_{ps}, \Psi_{pu}}$ is a set of jobs in which Ψ_{ps} is the scheduled part, Ψ_{pu} is a unscheduled part, and there are ζ jobs in Ψ_{ps} , then, the completion time of the $(\zeta + 1)$ th job is

$$\begin{split} \overline{C}_{[\zeta+1]}(\Psi_{pu}) &= \max\{\overline{C}_{[\zeta]}(\Psi), r_{[\zeta+1]}\} + \hat{b}_{[\zeta+1]}\max\{\overline{C}_{[\zeta]}(\Psi), r_{[\zeta+1]}\} \\ &= \max\{\overline{C}_{[\zeta]}(\Psi), r_{[\zeta+1]}\}(1 + \hat{b}_{[\zeta+1]}), \end{split}$$

where $[\zeta]$ denotes some job scheduled in ζ th position. Similarly,

$$\begin{split} \overline{C}_{[\zeta+2]}(\Psi_{pu}) &= \max\{\overline{C}_{[\zeta+1]}(\Psi), r_{[\zeta+2]}\}(1+\hat{b}_{[\zeta+2]}) \\ &= \max\{\overline{C}_{[\zeta]}(\Psi)(1+\hat{b}_{[\zeta+1]})(1+\hat{b}_{[\zeta+2]}), r_{[\zeta+1]}(1+\hat{b}_{[\zeta+1]})(1+\hat{b}_{[\zeta+2]}), \\ &r_{[\zeta+2]}(1+\hat{b}_{[\zeta+2]})\}, \\ &\vdots \\ \overline{C}_{[n]}(\Psi_{pu}) &= \max\{\overline{C}_{[\zeta]}(\Psi)\prod_{h=\zeta+1}^{n}(1+\hat{b}_{[h]}), r_{[\zeta+1]}\prod_{h=\zeta+1}^{n}(1+\hat{b}_{[h]}), r_{[\zeta+2]}\prod_{h=\zeta+2}^{n}(1+\hat{b}_{[h]}), \\ &\dots, r_{[n]}(1+\hat{b}_{[n]})\}. \end{split}$$

The \widetilde{TWCT} is

$$\widetilde{TWCT} = \sum_{j=1}^{n} \mu_j \overline{C}_j$$

$$= \sum_{j=1}^{\zeta} \mu_j \overline{C}_j (\Psi_{ps}) + \sum_{j=\zeta+1}^{n} \mu_{[j]} \overline{C}_{[j]} (\Psi_{pu})$$

$$\geq \sum_{j=1}^{\zeta} \mu_j \overline{C}_j (\Psi_{ps}) + \overline{C}_{[\zeta]} (\Psi_{ps}) \sum_{j=\zeta+1}^{n} \mu_{[j]} \prod_{h=k+1}^{j} (1+\hat{b}_{[h]}).$$
(6)

Obviously, the terms $\sum_{j=1}^{\zeta} \mu_j \overline{C}_j(\Psi_{ps})$ and $\overline{C}_{[\zeta]}(\Psi_{ps})$ on the right hand side of Equation (6) are fixed. From Lemma 1, we obtain the first lower bound

$$\widehat{LB_{1}} = \sum_{j=1}^{\zeta} \mu_{j} \overline{C}_{j}(\Psi_{ps}) + \overline{C}_{[\zeta]}(\Psi_{ps}) \sum_{j=\zeta+1}^{n} \mu_{} \prod_{h=k+1}^{j} (1+\hat{b}_{}),$$
(7)

where $\frac{\hat{b}_{<\zeta+1>}}{\mu_{<\zeta+1>}(1+\hat{b}_{<\zeta+1>})} \leq \frac{\hat{b}_{<\zeta+2>}}{\mu_{<\zeta+2>}(1+\hat{b}_{<\zeta+2>})} \leq \ldots \leq \frac{\hat{b}_{<n>}}{\mu_{<n>}(1+\hat{b}_{<n>})}$ is a nondecreasing order of $\frac{\hat{b}_j}{\mu_j(1+\hat{b}_j)}$ for the remaining unscheduled jobs.

However, if the ready times are large, then this lower bound may not be tight. To overcome this situation, we need to take the ready times into consideration. In general, we have

$$\widetilde{TWCT} = \sum_{j=1}^{\zeta} \mu_j \overline{C}_j(\Psi_{ps}) + \sum_{j=\zeta+1}^n \mu_{[j]} \overline{C}_{[j]}(\Psi_{pu})$$
$$\geq \sum_{j=1}^{\zeta} \mu_j \overline{C}_j(\Psi_{ps}) + \sum_{j=\zeta+1}^n \mu_{[j]} r_{[j]}(1+b_{[j]}).$$
(8)

It is noticed that the first term (i.e., $\sum_{j=1}^{\zeta} \mu_j \overline{C}_j(\Psi_{pu})$) on the right hand side of Equation (8) is fixed, and $\sum_{j=\zeta+1}^{n} \mu_{[j]} r_{[j]} (1 + \hat{b}_{[j]}) = \sum_{j \in \Psi_{pu}} \mu_j r_j (1 + \hat{b}_j)$ is a constant. Consequently, we obtain the second lower bound

$$\widehat{LB_2} = \sum_{j=1}^{\zeta} \mu_j \overline{C}_j(\Psi_{ps}) + \sum_{j \in \Psi_{pu}} \mu_j r_j (1 + \hat{b}_j).$$
(9)

In addition, we have

$$\widetilde{TWCT} \ge \sum_{j=1}^{\zeta} \mu_j \overline{C}_j(\Psi_{ps}) + r_{[\zeta+1]} \sum_{j=\zeta+1}^n \mu_{[j]} \prod_{h=\zeta+1}^j (1+\hat{b}_{[h]}).$$
(10)

Let $r_{\min} = \min\{r_i | j \in \Psi_{pu}\}$, from Equation (10), we have the third lower bound:

$$\widehat{LB_{3}} = \sum_{j=1}^{\zeta} \mu_{j} \overline{C}_{j}(\Psi_{ps}) + r_{\min} \sum_{j=\zeta+1}^{n} \mu_{} \prod_{h=\zeta+1}^{j} (1+\hat{b}_{}).$$
(11)

where $\frac{\hat{b}_{<\zeta+1>}}{\mu_{<\zeta+1>}(1+\hat{b}_{<\zeta+1>})} \leq \frac{\hat{b}_{<\zeta+2>}}{\mu_{<\zeta+2>}(1+\hat{b}_{<\zeta+2>})} \leq \ldots \leq \frac{\hat{b}_{<n>}}{\mu_{<n>}(1+\hat{b}_{<n>})}$. To make the lower bound tighter, the maximum value of Equations (7), (9) and (11) is

To make the lower bound tighter, the maximum value of Equations (7), (9) and (11) is selected as a lower bound for $1|\hat{p}_j = \hat{b}_j \hat{s}_j, r_j| \widetilde{TWCT}$, i.e., the lower bound for $1|\hat{p}_j = \hat{b}_j \hat{s}_j, r_j| \widetilde{TWCT}$ is

$$\widetilde{LB} = \max\{\widetilde{LB_1}, \widetilde{LB_2}, \widetilde{LB_3}\}.$$
(12)

3.3. Upper Bound

From Section 3.1, the following Algorithm 1 is given as the upper bound (denoted by *UB*) of problem $1|\hat{p}_j = \hat{b}_j \hat{s}_j, r_j| \widetilde{TWCT}$.

Algorithm 1: UB

(Step 1). Arrange the jobs by the non-decreasing order of r_j , i.e., $r_1 \le r_2 \le ... \le r_n$ (call the obtained schedule Ψ^1). (Step 2). Arrange the jobs by the non-decreasing order of \hat{b}_j , i.e., $\hat{b}_1 \le \hat{b}_2 \le ... \le \hat{b}_n$ (call the obtained schedule Ψ^2).

(Step 3). Arrange the jobs by the non-decreasing order of $\frac{b_j}{\mu_i(1+\hat{b}_i)}$, i.e.,

 $\frac{\hat{b}_1}{\mu_1(1+\hat{b}_1)} \leq \frac{\hat{b}_2}{\mu_2(1+\hat{b}_2)} \leq \ldots \leq \frac{\hat{b}_n}{\mu_n(1+\hat{b}_n)} \text{ (call the obtained schedule } \Psi^3\text{).}$ **(Step 4)**. Arrange the jobs by the non-increasing order of μ_j , i.e., $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_n$ (call the obtained schedule Ψ^4). **(Step 5)**. Find the best schedule from schedules Ψ^1 , Ψ^2 , Ψ^3 and Ψ^4 .

3.4. Branch-and-Bound Algorithm

From Sections 3.1-3.3, the standard branch-and-bound (denoted by *BB*) Algorithm 2 can be proposed as follows.

Algorithm 2: BB

Step 1. Use Algorithm 1 to obtain an initial solution (i.e., *UB*). *Step 2.* In the κ th level node, the first κ positions are occupied by κ specific jobs. Select one of the remaining $n - \kappa$ jobs for the node at level $\kappa + 1$.

Step 3. First apply Propositions 1–3, to eliminate the dominated partial schedules.

Step 4. Calculate the \overrightarrow{LB} for \overrightarrow{TWCT} of the node. If the lower bound for an unfathomed partial schedule of jobs is larger than or equal to the value of \overrightarrow{TWCT} of the initial solution, eliminate the node and all the nodes following it in the branch. Calculate the value \overrightarrow{TWCT} of the completed schedule, if it is less than the initial solution, replace it as the new solution; otherwise, eliminate it.

Step 5. Continue to search all the nodes, and the remaining initial solution is an optimal schedule.

4. Meta-Heuristic Algorithms

4.1. Tabu Search

In this subsection, the tabu search (*TS*) in Algorithm 3 is used to solve $1|\hat{p}_j = \hat{b}_j \hat{s}_j, r_j|TWCT$. The initial schedule used in the *TS* is chosen by using Algorithm 1, and the maximum number of iterations for the *TS* is set at 1000*n*.

Algorithm 3: TS

Step 1. Let the tabu list be empty and the iteration number be zero.

Step 2. Set the initial sequence of the *TS* algorithm, calculate its objective function TWCT and set the current schedule as the best solution Ψ^* .

Step 3. Search the associated neighborhood of the current schedule and resolve if there is a schedule Ψ^{**} with the smallest objective function in associated neighborhoods and it is not in the tabu list.

Step 4. If Ψ^{**} is better than Ψ^* , then let $\Psi^* = \Psi^{**}$. Update the tabu list and the iteration number.

Step 5. If there is not a schedule in associated neighborhoods but it is not in the tabu list or the maximum number of iterations is reached, then output the local optimal schedule Ψ and objective function value \widetilde{TWCT} . Otherwise, update the tabu list and go to Step 3.

4.2. NEH Algorithm

Adapted from Nawaz et al. [38], the *NEH* Algorithm 4 can be adopt to solve $1|\hat{p}_j = \hat{b}_i \hat{s}_i, r_i | \widetilde{TWCT}$.

Algorithm 4: NEH

(Step 1). Arrange all the jobs by Algorithm 1.

(Step 2). Set $\vartheta = 2$. Select the first two jobs from the sorted list (by Step 1) and select the best of the two possible schedules. Do not change the relative positions of these two jobs with respect to each other in the remaining steps of the algorithm. Set $\vartheta = 3$.

(Step 3). Pick the job in the ϑ th position of the list generated in Step 1 and find the best schedule by placing it at all possible ϑ positions in the partial sequence found in the previous step, without changing the relative positions to each other of the already assigned jobs. The number of enumerations at this step is equal to ϑ .

(Step 4). If $\vartheta = n$, STOP; otherwise set $\vartheta = \vartheta + 1$ and go to Step 3.

4.3. Simulated Annealing

In this subsection, the simulated annealing (*SA*) in Algorithm 5 is proposed to solve1 $|\hat{p}_i = \hat{b}_i \hat{s}_i, r_i | \widetilde{TWCT}$ (see Lai et al. [39] and Liu et al. [40]).

Algorithm 5: SA

Step 1. Initial schedule can be obtained by Algorithm 1.

Step 2. Pairwise interchange (PI) neighborhood generation method will be used.

Step 3. When a new schedule is generated (by Step 2), it is accepted if its objective function value (i.e.,

TWCT) is smaller than that of the original schedule; otherwise, it is accepted with some probability that decreases as the process evolves. The probability of acceptance is generated from an exponential distribution,

$$P(accept) = exp(-\psi \times \triangle G),$$

where ψ is a control parameter and $\triangle G$ is the change in the objective function value, ψ in the kth iteration is

$$\psi = \frac{k}{\eta}$$

and η is an experimental constant. After preliminary trials, $\eta = 1$ was used in our experiments. If the objective function value increases as a result of a random pairwise interchange, the new schedule is accepted when $P(accept) > \zeta$, where ζ is randomly sampled from the uniform distribution U(0,1). **Step 4**. Stopping condition: 1000n iterations.

4.4. A Mixed Integer Programming (MIP) Model

Let

 $x_{j,k} = \begin{cases} 1, & \text{if job } J_j \text{ is assigned to position } k, \\ 0, & \text{otherwise.} \end{cases}$

The optimal schedule of $1|\hat{p}_i = \hat{b}_i \hat{s}_i, r_i | \widetilde{TWCT}$ can be written as the following MIP:

$$\operatorname{Min} \quad \sum_{k=1}^{n} \mu_{[k]} \overline{C}_{[k]} \tag{13}$$

s.t.
$$\sum_{j=1}^{n} x_{j,k} = 1, k = 1, 2, \dots, n,$$
 (14)

$$\sum_{k=1}^{n} x_{j,k} = 1, j = 1, 2, \dots, n,$$
(15)

$$\hat{b}_{[k]} = \sum_{j=1}^{r} x_{j,k} \hat{b}_j, k = 1, 2, \dots, n,$$
(16)

$$r_{[k]} = \sum_{j=1}^{r} x_{j,k} r_{j}, k = 1, 2, \dots, n,$$
(17)

$$\mu_{[k]} = \sum_{j=1}^{r} x_{j,k} \mu_j, k = 1, 2, \dots, n,$$
(18)

$$S_{[k]} \ge r_{[k]}, k = 1, 2, \dots, n,$$
 (19)

$$S_{[k]} \ge C_{[k-1]}, k = 1, 2, \dots, n,$$
(20)

$$C_{[k]} \ge S_{[k]}(1+\hat{b}_j)x_{j,k}, j, k = 1, 2, \dots, n,$$
(21)

where (13) is the objective cost of optimization, and (14) and (15) ensure that each job must be processed in a unique position; constraints (16)–(18) denote the deterioration rate the release time and the weight of some job at the *k*th position, respectively; constraint (19) means that the start time of the job at the *k*th position is not later than its release time; constraint (20) means that the start time of some job at the *k*th position is not later than the completion time of some job at the *k* – 1st position; (21) is the completion time constraint.

5. Computational Results

In this section, computational experiments are conducted to evaluate the accuracy and efficiency of the *UB*, *TS*, *NEH*, *SA* and *BB* algorithms. Detailed programming and testing configurations are as follows.

- C++ version: Visual studio 2019, the max memory allowed was restricted to 64G, for the *UB*, *TS*, *NEH*, *SA* and *BB* algorithms.
- Testing computer: One desktop workstation with one AMD R7-4700H CPU (2.9–4.2 GHz, 8 cores, 16 threads) and 128G of physical memory.

The following test parameters are randomly generated:

- 1. \hat{b}_j is uniformly distributed over [0.05, 0.1] (i.e., $\hat{b}_j \in U[0.05, 0.1]$), [0.1, 0.15] (i.e., $\hat{b}_i \in U[0.1, 0.15]$) and [0.05, 0.15] (i.e., $\hat{b}_i \in U[0.05, 0.15]$);
- 2. r_j is uniform integers distributed over [1, 50] (i.e., $r_j \in U[1, 50]$), [50, 100] (i.e., $r_j \in U[50, 100]$) and [1, 100] (i.e., $r_j \in U[1, 100]$);
- 3. μ_i is uniform integers distributed over [1, 10] (i.e., $\mu_i \in U[1, 10]$);
- 4. n = 15, 20, 25, 30, 35, 40.

For each combination of parameters, 20 randomly generated instances were evaluated, and there were 1080 instances tested in total. For the *BB*, the average and maximum numbers of nodes and the average and maximum time (in millisecond) were recorded. For the heuristics, the average and maximum error were recorded. The error of the solution produced by a heuristic was calculated as $\frac{TWCT(HA)}{TWCT(OPT)}$, where $HA \in \{UB, TS, NEH, SA\}$, and *OPT* is the optimal schedule by *BB*. For the CPU time of the *BB*, from Tables 2–4, it should be noted that the CPU time increases when *n* becomes bigger, and the maximum CPU time (i.e., n = 40 and $r_j \in U[1, 100]$) is 39,870,200 milliseconds. In addition, from

Table 2. CPU Results for $\hat{b}_j \in U[0.05, 0.1]$.

	rj	Ε	3B	UB			TS		NEH		SA	
п		Mean	Max	Mean	Max	Mean	Max	Mean	Max	Mean	Max	
	$r_{j} \in U[1, 50]$	122.60	564.00	4.85	9.00	5741.75	54,925.00	2.75	8.00	6.50	11.00	
15	$r_i \in U[50, 100]$	17.10	36.00	6.30	11.00	3667.05	64,462.00	5.90	73.00	8.90	16.00	
	$r_j \in U[1, 100]$	75.70	359.00	5.70	9.00	5987.75	61,622.00	2.20	5.00	8.20	26.00	
	$r_j \in U[1, 50]$	29,084.40	151,879.00	4.40	6.00	25,536.40	165,107.00	3.70	24.00	14.35	22.00	
20	$r_i \in U[50, 100]$	245.60	641.00	6.40	9.00	29,178.70	212,358.00	3.35	5.00	15.65	20.00	
	$r_j \in U[1, 100]$	27,701.60	199,894.00	5.00	11.00	19,955.30	192,863.00	3.10	5.00	18.30	78.00	
	$r_j \in U[1, 50]$	512,311.00	3,726,670.00	4.00	9.00	15,949.60	289,186.00	4.60	22.00	16.55	23.00	
25	$r_i \in U[50, 100]$	1990.10	5876.00	5.25	9.00	40,320.75	433,996.00	5.30	16.00	21.20	31.00	
	$r_j \in U[1, 100]$	122,106.00	106,339.00	4.05	6.00	67,496.10	339,880.00	3.75	6.00	19.40	28.00	
	$r_j \in U[1, 50]$	174,832.00	1,329,940.00	4.70	15.00	145,316.60	749,768.00	5.15	9.00	21.70	40.00	
30	$r_i \in U[50, 100]$	9390.05	17,815.00	4.25	10.00	59,158.80	567,654.00	7.60	50.00	24.30	30.00	
	$r_j \in U[1, 100]$	6,343,906.00	47,881,400.00	3.95	10.00	148,253.20	722,566.00	5.50	10.00	26.6	66.00	
	$r_{j} \in U[1, 50]$	3,148,041.85	9,034,400.00	8.85	71.00	117,052.00	1,359,553.00	6.60	21.00	28.15	46.00	
35	$r_i \in U[50, 100]$	44,630.25	70,439.00	2.35	4.00	57,802.85	1,054,277.00	6.00	16.00	33.00	41.00	
	$r_j \in U[1, 100]$	4,296,541.70	30,627,000.00	3.40	7.00	216,026.10	1,075,473.00	4.80	17.00	22.80	27.00	
	$r_j \in U[1, 50]$	2,150,283.40	10,695,000.00	2.50	8.00	89,874.20	850,713.00	5.50	14.00	29.20	49.00	
40	$r_i \in U[50, 100]$	102,262.90	159,458.00	3.25	7.00	92,418.60	896,981.00	5.90	11.00	23.55	38.00	
	$r_j \in U[1, 100]$	9,961,003.10	39,870,200.00	3.60	13.00	58,957.00	711,500.00	4.90	8.00	34.40	47.00	

Table 3. CPU Results for $\hat{b}_j \in U[0.1, 0.15]$.

	r _j	Η	3B	u	В		TS	NE	ΞH	S.	A
n		Mean	Max	Mean	Max	Mean	Max	Mean	Max	Mean	Max
	$r_j \in U[1, 50]$	102.85	451.00	1.20	2.00	10,484.90	67,690.00	1.30	3.00	7.30	9.00
15	$r_j \in U[50, 100]$	23.00	47.00	1.35	3.00	7173.15	68,005.00	1.60	3.00	7.15	9.00
	$r_j \in U[1, 100]$	243.90	3067.00	1.45	3.00	430.75	450.00	1.30	4.00	7.30	11.00
	$r_j \in U[1, 50]$	14,573.35	168,203.00	1.25	2.00	8838.95	160,111.00	1.75	2.00	10.15	11.00
20	$r_i \in U[50, 100]$	237.85	509.00	1.35	3.00	28,075.60	215,786.00	1.75	2.00	10.70	18.00
	$r_j \in U[1, 100]$	3487.35	19,283.00	2.10	5.00	43,418.90	215,419.00	1.95	3.00	13.65	17.00
	$r_i \in U[1, 50]$	193,834.35	3,177,120.00	1.50	4.00	22,294.45	414,487.00	2.20	3.00	14.65	23.00
25	$r_i \in U[50, 100]$	1450.20	2885.00	1.45	3.00	32,890.65	315,447.00	2.10	3.00	14.15	15.00
	$r_j \in U[1, 100]$	17,100.45	192,282.00	1.25	3.00	17,350.00	315,937.00	2.00	3.00	14.25	17.00
	$r_i \in U[1, 50]$	87,182.50	536,278.00	1.60	3.00	56,730.20	545,618.00	2.95	4.00	18.40	21.00
30	$r_i \in U[50, 100]$	12,805.85	53,990.00	1.85	4.00	61,176.00	550,356.00	3.20	5.00	21.35	32.00
	$r_j \in U[1, 100]$	201,922.75	1,906,000.00	1.60	4.00	29,775.95	543,595.00	2.55	4.00	18.35	20.00
	$r_i \in U[1, 50]$	1,946,500.25	26,744,000.00	2.35	5.00	78,636.70	1,459,851.00	5.15	13.00	37.25	47.00
35	$r_i \in U[50, 100]$	63,408.45	108,301.00	2.40	5.00	126,142.50	1,208,994.00	4.20	7.00	35.50	47.00
	$r_j \in U[1, 100]$	248,386.05	2,109,800.00	1.45	3.00	175,928.10	874,246.00	3.60	5.00	26.10	39.00
	$r_{j} \in U[1, 50]$	1,773,385.10	11,064,300.00	1.85	3.00	117,793.65	2,193,161.00	5.35	9.00	43.65	65.00
40	$r_i \in U[50, 100]$	206,306.40	406,824.00	3.45	16.00	8535.20	10,565.00	5.35	6.00	43.55	69.00
	$r_{j} \in U[1, 100]$	1,335,705.85	8,545,740.00	3.30	14.00	308,533.45	2,184,809.00	5.00	7.00	41.70	53.00

	r:	B	B	U	B		TS		NEH		4
n	.)	Mean	Max	Mean	Max	Mean	Max	Mean	Max	Mean	Max
15	$r_j \in U[1, 50]$ $r_i \in U[50, 100]$	399.25 25.00	4462.00 43.00	2.75 3.25	5.00 10.00	9524.20 9380.70	90,275.00 88,716.00	1.25 1.20	3.00 2.00	10.35 10.10	14.00 13.00
	$r_j \in U[1, 100]$	185.55	833.00	1.25	2.00	13,540.00	87,656.00	1.05	2.00	8.70	14.00
	$r_j \in U[1, 50]$	28,036.50	205,993.00	1.05	2.00	1035.60	1089.00	1.05	2.00	11.75	12.00
20	$r_i \in U[50, 100]$	391.70	817.00	1.05	2.00	11,391.85	208,018.00	1.05	2.00	12.45	19.00
	$r_j \in U[1, 100]$	473,980.00	558,400.00	3.85	5.00	20,517.15	376,660.00	3.15	5.00	16.15	22.00
	$r_j \in U[1, 50]$	143,789.80	1,284,350.00	3.75	6.00	42,196.80	207,211.00	3.65	5.00	10.55	14.00
25	$r_i \in U[50, 100]$	2369.90	5584.00	3.85	5.00	20,517.15	376,660.00	3.15	5.00	16.15	22.00
	$r_j \in U[1, 100]$	1,427,065.00	2,1728,000.00	3.70	5.00	21,393.85	392,099.00	3.20	6.00	16.00	17.00
	$r_j \in U[1, 50]$	5,066,261.60	25,664,200.00	4.10	6.00	99,544.30	956,083.00	3.20	4.00	31.30	38.00
30	$r_i \in U[50, 100]$	16,604.50	25,070.00	4.00	6.00	4375.70	4461.00	3.60	7.00	31.40	37.00
	$r_j \in U[1, 100]$	601,835.20	3,554,380.00	3.50	5.00	86,111.60	481,486.00	4.60	6.00	16.80	21.00
	$r_j \in U[1, 50]$	4,268,488.70	33,343,700.00	3.70	5.00	309,401.00	1,527,302.00	4.70	6.00	39.70	47.00
35	$r_i \in U[50, 100]$	65,676.20	105,503.00	4.10	6.00	160,268.60	1,546,322.00	4.30	5.00	38.40	47.00
	$r_j \in U[1, 100]$	9,298,598.50	51,121,800.00	3.80	7.00	5772.70	7089.00	4.50	7.00	33.90	41.00
	$r_j \in U[1, 50]$	20,820,497.90	52,642,500.00	2.70	4.00	8565.50	8792.00	7.90	30.00	43.60	54.00
40	$r_i \in U[50, 100]$	190,590.40	368,151.00	3.70	5.00	8691.50	8828.00	5.80	8.00	47.80	63.00
	$r_j \in U[1, 100]$	5,528,939.50	27,787,500.00	3.20	7.00	464,756.60	2,319,506.00	6.40	9.00	48.50	59.00

Table 4. CPU Results for $\hat{b}_j \in U[0.05, 0.15]$.

Table 5. Error results for $\hat{b}_j \in U[0.05, 0.1]$.

	r _j	TWCT	T(UB) (OPT)	$\frac{\widetilde{TWC}}{\widetilde{TWCT}}$	$\frac{\widetilde{TWCT}(TS)}{\widetilde{TWCT}(OPT)}$		(NEH) T(OPT)	$\frac{\widetilde{TWCT}(SA)}{\widetilde{TWCT}(OPT)}$	
п		Mean	Max	Mean	Max	Mean	Max	Mean	Max
15	$r_j \in U[1, 50]$	1.01130	1.03500	1.00577	1.01900	1.00287	1.01980	1.00233	1.01364
	$r_i \in U[50, 100]$	1.09401	1.14836	1.06650	1.10572	1.02484	1.07558	1.01209	1.02651
	$r_j \in U[1, 100]$	1.00714	1.02365	1.00273	1.01707	1.00063	1.01201	1.00047	1.00470
20	$r_j \in U[1, 50]$	1.03847	1.12905	1.02393	1.10072	1.00966	1.04217	1.01025	1.04472
	$r_j \in U[50, 100]$	1.18845	1.34761	1.13616	1.24466	1.06560	1.14771	1.03325	1.05427
	$r_j \in U[1, 100]$	1.02219	1.08104	1.01351	1.06151	1.00662	1.04503	1.00626	1.03186
25	$r_j \in U[1, 50]$	1.07318	1.19098	1.05217	1.15483	1.02053	1.08778	1.03136	1.08909
	$r_j \in U[50, 100]$	1.26706	1.40217	1.20397	1.30864	1.10017	1.18650	1.04449	1.06906
	$r_j \in U[1, 100]$	1.09087	1.24151	1.06270	1.15799	1.03807	1.14498	1.02875	1.06715
30	$r_j \in U[1, 50]$	1.15371	1.30613	1.10994	1.23900	1.05266	1.12934	1.07038	1.12488
	$r_j \in U[50, 100]$	1.35286	1.55295	1.27031	1.45067	1.12680	1.24768	1.05119	1.09875
	$r_j \in U[1, 100]$	1.11996	1.19086	1.09196	1.15247	1.03394	1.06876	1.04819	1.08544
35	$r_j \in U[1, 50]$	1.21194	1.31187	1.16686	1.24187	1.06455	1.12493	1.10517	1.16566
	$r_j \in U[50, 100]$	1.40078	1.51959	1.31443	1.47948	1.11353	1.24715	1.05061	1.06747
	$r_j \in U[1, 100]$	1.23176	1.29278	1.17090	1.15716	1.09055	1.15716	1.07416	1.11478
40	$r_j \in U[1, 50]$	1.27299	1.35269	1.21620	1.28419	1.07545	1.11756	1.11328	1.16429
	$r_j \in U[50, 100]$	1.47695	1.72109	1.38209	1.54249	1.08588	1.23025	1.04938	1.07340
	$r_j \in U[1, 100]$	1.26862	1.40423	1.20602	1.32286	1.09902	1.16624	1.10156	1.13899

		TWC	Г(UB)	TWC	T(TS)	TWCT	(NEH)	TWC	T(SA)
	rj	TWCT	r(OPT)	TWCT	$\overline{\widetilde{TWCT}(OPT)}$		r(OPT)	TWCT	r(OPT)
п		Mean	Max	Mean	Max	Mean	Max	Mean	Max
	$r_i \in U[1, 50]$	1.05674	1.20623	1.03471	1.16052	1.01539	1.07773	1.00858	1.05591
15	$r_i \in U[50, 100]$	1.21500	1.48927	1.13875	1.32034	1.06802	1.20538	1.00852	1.02564
	$r_j \in U[1, 100]$	1.05543	1.16365	1.03285	1.10070	1.01011	1.06412	1.00527	1.01993
	$r_i \in U[1, 50]$	1.12471	1.33094	1.08136	1.26717	1.03191	1.08737	1.03051	1.03702
20	$r_i \in U[50, 100]$	1.36101	1.49677	1.22776	1.34897	1.08376	1.24973	1.01623	1.02495
	$r_j \in U[1, 100]$	1.12802	1.31321	1.08137	1.23608	1.03908	1.12404	1.02079	1.04593
	$r_i \in U[1, 50]$	1.20745	1.47668	1.12907	1.34243	1.10286	1.75250	1.04990	1.08146
25	$r_i \in U[50, 100]$	1.33965	1.59951	1.22889	1.36198	1.09476	1.27622	1.01893	1.03304
	$r_j \in U[1, 100]$	1.21767	1.35760	1.14856	1.27145	1.07122	1.14937	1.03475	1.08024
	$r_i \in U[1, 50]$	1.33229	1.88696	1.23170	1.62900	1.11628	1.30541	1.08435	1.17439
30	$r_i \in U[50, 100]$	1.44481	1.79102	1.26830	1.51501	1.07284	1.38083	1.01785	1.02863
	$r_j \in U[1, 100]$	1.28357	1.49579	1.19603	1.35222	1.10025	1.25002	1.04630	1.09886
	$r_i \in U[1, 50]$	1.43892	1.77995	1.31996	1.56567	1.16249	1.40452	1.09702	1.24194
35	$r_i \in U[50, 100]$	1.50847	1.81016	1.33659	1.54965	1.04960	1.26749	1.01678	1.02205
	$r_j \in U[1, 100]$	1.51732	1.85319	1.38176	1.65955	1.19011	1.39431	1.04774	1.10317
	$r_i \in U[1, 50]$	1.60847	1.99279	1.44337	1.75120	1.21726	1.45192	1.08691	1.13249
40	$r_i \in U[50, 100]$	1.54510	1.91770	1.32820	1.56574	1.00914	1.02892	1.01318	1.01880
	$r_j \in U[1, 100]$	1.62767	1.93104	1.46706	1.70305	1.22651	1.40117	1.04229	1.06242

Table 6. Error results for $\hat{b}_j \in U[0.1, 0.15]$.

Table 7. Error results for $\hat{b}_j \in U[0.05, 0.15]$.

	r_j	TWC	T(UB)	TWC	$\frac{\widetilde{TWCT}(TS)}{\widetilde{TWCT}(OPT)}$		$\frac{(NEH)}{(OPT)}$	$\frac{\widetilde{TWCT}(SA)}{TWCT(OPT)}$	
n		Mean	Max	Mean	Max	Mean	Max	Mean	Max
15	$r_j \in U[1, 50]$	1.03603	1.14926	1.01966	1.09956	1.00647	1.02747	1.00515	1.02818
	$r_j \in U[50, 100]$	1.16703	1.31754	1.10459	1.18828	1.07194	1.21232	1.01479	1.04807
	$r_j \in U[1, 100]$	1.17680	1.02650	1.09727	1.01306	1.07298	1.00554	1.02797	1.05021
20	$r_j \in U[1, 50]$	1.08338	1.22684	1.05476	1.16968	1.02351	1.10015	1.02158	1.05933
	$r_j \in U[50, 100]$	1.28262	1.45748	1.18372	1.37350	1.10098	1.20654	1.02341	1.04308
	$r_j \in U[1, 100]$	1.40915	1.56852	1.27367	1.44357	1.11325	1.24789	1.03637	1.04900
25	$r_j \in U[1, 50]$	1.15285	1.26169	1.10954	1.20068	1.04805	1.11419	1.05521	1.10118
	$r_j \in U[50, 100]$	1.40915	1.56852	1.27367	1.44357	1.11325	1.24789	1.03637	1.04900
	$r_j \in U[1, 100]$	1.15196	1.28620	1.10511	1.21874	1.04765	1.17361	1.04341	1.09800
30	$r_j \in U[1, 50]$	1.26896	1.44796	1.20095	1.33424	1.09360	1.15919	1.10978	1.16231
	$r_j \in U[50, 100]$	1.38812	1.59121	1.27372	1.51491	1.07134	1.20100	1.03321	1.04538
	$r_j \in U[1, 100]$	1.25045	1.35469	1.17607	1.25551	1.08704	1.20058	1.06258	1.09529
35	$r_j \in U[1, 50]$	1.40779	1.77403	1.29813	1.55328	1.13990	1.23679	1.12537	1.16885
	$r_j \in U[50, 100]$	1.49615	1.63735	1.28232	1.51277	1.10967	1.33036	1.03519	1.04811
	$r_j \in U[1, 100]$	1.33965	1.67159	1.24468	1.51793	1.11782	1.31976	1.07395	1.13762
40	$r_j \in U[1, 50]$	1.51804	1.05095	1.39466	1.84225	1.18314	1.36730	1.14527	1.20916
	$r_j \in U[50, 100]$	1.51672	1.65812	1.37005	1.52064	1.02675	1.06001	1.02962	1.04718
	$r_j \in U[1, 100]$	1.49732	1.85312	1.37096	1.69225	1.18359	1.33773	1.07696	1.11406

To demonstrate the superiority of the *BB* algorithm, experiments were conducted between the *BB* algorithm and the mathematical programming model, where the mathematical programming model (13)–(17) is solved by CPLEX (IBM ILOG Optimization Stdio, version 12.10), n = 20, 25, 30, and 10 testing instances were generated for each combination. In order to make the comparative experiments more objective and simple, we assign special values to each instance, without too much sorting, but only for comparison. This is also the reason why CPU time in the comparative experiment is shorter than that in the previous experiments. Results reported in Tables 8–10 are the objective values and CPU times. In terms of the CUP time, when $r_j \in U[50, 100]$, the B&B algorithm dominates CPLEX significantly for about 92.22% (83 out of 90) of the examples.

Table 8. Results of *BB* and CPLEX for $\hat{b}_j \in U[0.05, 0.1]$.

		$r_j \in U[1,$	50]	$r_j \in U[50,$	100]	$r_j \in U[1]$	$r_j \in U[1, 100]$		
п	Instance	Optimal Value	CPU Time (ms) BB/CPLEX	Optimal Value	CPU Time (ms) BB/CPLEX	Optimal Value	CPU Time (ms) BB/CPLEX		
	1	1877.64 1877.641	19 74	11,767.39 11,767.391	1 62	5032.861 5032.862	42 67		
	2	2230.077 2230.069	662 73	9018.022 9018.023	51168	4381.909 4381.91	76 74		
	3	2331.78 2331.72	213 70	6552.248 6552.223	31165	6676.791 6676.791	354 60		
	4	1930.146 1930.147	220 69	9691.73 9691.738	2 72	5332.758 5332.777	105 86		
20	5	2584.912 2584.915	14 65	9536.494 9536.497	2 59	4078.021 4078.03	1054 75		
20	6	1916.657 1916.632	262 63	8971.364 8971.365	4 69	4770.602 4770.602	876 88		
	7	2349.085 2349.09	109 72	12,743.678 12,743.678	1 76	3044.157 3044.158	686 68		
	8	2626.915 2626.91	458 82	9792.175 9792.177	61155	3592.465 3592.457	156 56		
	9	3304.571 3304.571	62 66	11,234.99 11,234.99	21159	4284.786 4284.787	253 63		
	10	3213.249 3213.25	201177	8078.607 8078.611	31163	6258.689 6258.689	11 73		
	1	2440.8766 2440.8766	29 78	13501.21 13,501.21	51175	8185.514 8185.515	1825 75		
	2	3651.772 3651.773	32 82	17,962.842 17,962.843	1 76	8021.395 8021.396	682 88		
	3	3599.892 3599.889	33,846 75	12,834.31 12,834.32	24 80	5102.548 5102.549	21,541 72		
	4	2668.11 2668.11	1741 75	13,387.565 13,387.542	51176	7913.71 7913.717	213 83		
25	5	2929.49 2929.6	40 72	14,708.966 14,708.977	15 98	5360.984 5360.985	5017 70		
25	6	3571.392 3571.39	408 77	13,661.573 13,661.58	78 73	4762.564 4762.542	35 85		
	7	3402.194 3402.194	614 78	14,761.3 14,761.3	3 73	5567.564 5567.56	34 70		
	8	2098.52 2098.525	12,589 73	16,402.6 16,402.63	3 71	5397.842 5397.885	96,618 89		
	9	3081.57 3081.562	74,684 88	15,497.219 15,497.22	30 88	5549.425 5549.423	28,735 87		
	10	3054.281 3054.288	571169	12,570.492 12,570.488	3 77	7384.72 7384.724	16 59		
	1	4761.895 4761.895	13,576 80	20,825.46 20,825.468	21185	7114.616 7114.615	4587 95		
	2	3930.492 3930.493	474,584 78	23,541.618 23,541.618	72 85	5594.15 5594.158	15,516 84		
	3	5184.257 5184.258	3145 82	21,762.827 21,762.828	51183	10,639.97 10,639.97	78,565 89		
	4	3445.295 3445.295	448 98	19,283.161 19,283.162	51193	6635.125 6635.151	35,242 82		
30	5	5420.63 5420.645	3586 82	21,259.49 21,259.457	51183	8109.199 8109.192	5334 97		
50	6	3352.281 3352.267	91198	22,234.591 22,234.587	1 76	4331.347 4331.378	87,785 87		
	7	3452.28 3452.281	81135	17,115.157 17,115.15	14 78	6708.094 6708.051	15,5681 76		
	8	3800.062 3800.063	27,475 98	19,162.501 19,162.503	6 89	7251.21 7251.22	958,872 79		
	9	5389.884115389.885	27,512 78	19,553.989 195,53.989	1 86	6495.424 6495.424	419 84		
	10	3226.581 3226.52	8755 86	16,351.4 16,351.4	10 85	7976.82117976.82	987,8551192		

Table 9. Results of *BB* and CPLEX for $\hat{b}_j \in U[0.1, 0.15]$.

		$r_j \in U[1]$	L, 50]	$r_j \in U[50,$	100]	$r_j \in U[1, 100]$		
n	Instance	Optimal Value	CPU Time (ms) BB/CPLEX	Optimal Value	CPU Time (ms) BB/CPLEX	Optimal Value	CPU Time (ms) BB/CPLEX	
	1	3224.206 3224.205	6 72	13,078.051 13,078.052	3 78	4581.808 4581.808	211 75	
	2	1920.143 1920.144	72 76	14,416.229 14,416.23	2 67	5984.757 5984.757	17 77	
	3	1791.398 1791.398	26 73	16,763.404 16,763.404	14 75	4306.999 4307.001	1 76	
	4	3194.432 3194.433	199 78	13,161.205 13,161.189	1 69	5299.028 5299.029	11 69	
20	5	2599.284 2599.284	2 70	16,456.45 16,456.45	6 78	7654.312 7654.311	19 76	
20	6	2309.754 2309.753	17 73	15,081.528 15,081.527	355 80	6500.897 6500.875	86 70	
	7	2352.418 2352.418	10 69	16,248.781 16,248.783	8 75	6551.345 6551.352	3 78	
	8	3382.56 3382.558	2 72	13,478.75 13,478.778	4 83	6473.928 6473.917	18 72	
	9	3103.121 3103.121	4 70	16,133.258 16,133.257	996 77	5987.109 5987.11	10 68	
	10	2467.09 2467.092	28 71	15,250.86 15,250.87	7 70	5011.23 5011.230	77 77	
	1	3381.737 3381.739	224 73	24,283.305 24,283.274	1 71	7095.573 7095.567	10 70	
	2	4686.301 4686.296	51174	37,005.444 37,005.441	2 75	6754.407 6754.412	2 82	
	3	6456.931 6456.932	1 69	24,295.173 24,295.174	1 73	6870.603 6870.608	91176	
	4	4357.681 4357.682	130 66	25,835.513 25,835.527	3 76	7434.996 7434.992	216 75	
25	5	5452.679 5452.684	103 77	31,347.823 31,347.787	1 70	7352.652 7352.653	58 76	
25	6	7397.109 7397.108	183 72	24,678.259 24,678.27	4 72	8575.343 8575.338	15 73	
	7	5200.723 5200.718	39 69	22,434.802 22,434.803	1 78	8431.151 8431.15	90 87	
	8	3852.579 3852.578	464 67	28,767.763 28,767.782	1 74	7703.809 7703.809	11 72	
	9	6625.675 6625.675	58 68	36,563.797 36,563.786	3 77	9380.949 9380.949	8 87	
	10	3153.421 3153.422	4 63	28,022.863 28,022.806	1 70	5833.467 5833.467	27 89	
	1	3785.294 3785.295	49,995 78	55,855.796 55,855.714	1 88	22,799.14 22,799.116	452 76	
	2	4185.165 4185.165	73 90	35,568.274 35,568.261	9 82	7981.994 7981.978	673 73	
	3	4877.96 4877.96	1617 79	57,761.936 57,761.94	1 75	15,434.62 15,434.639	19 80	
	4	5692.011 5692.012	51169	44,756.236 44,756.236	2 74	19,177.76 19,177.758	3 80	
20	5	7250.617 7250.618	5 79	37,478.351 37,478.332	3 72	15816.347 15,816.335	37 73	
30	6	5247.79 5247.79	34 88	55,426.436 55,426.501	1 77	25,672.837 25,672.852	307 73	
	7	6364.644 6364.644	141 84	45,668.881 45,668.846	5 70	12,609.977 12,609.978	673 76	
	8	6525.450 6525.450	4 76	54,463.341 54,463.341	1 77	11,243.774 11,243.772	16 70	
	9	5198.277 5198.277	26,756 82	56,327.158 56,327.19	2 75	21,031.685 21,031.685	525 75	
	10	5735.88 5735.88	113 72	37,847.965 37,847.972	1 77	7605.592 7605.592	8665 89	

		$r_j \in U[$	1, 50]	$r_j \in U[50,$	100]	$r_j \in U[1, 1]$	100]
п	Instance	Optimal Value	CPU Time (ms) BB/CPLEX	Optimal Value	CPU Time (ms) BB/CPLEX	Optimal Value	CPU Time (ms) BB/CPLEX
	1	3143.66 3143.668	1272 74	10,023.477 10,023.48	1 70	6838.891 6838.892	27 62
	2	3170.929 3170.931	448 74	12,336.148 12,336.15	1 72	9484.171 9484.173	57 64
	3	3210.143 3210.145	254 72	12,840.194 12,840.195	2 68	5133.177 5133.176	4777 65
	4	2251.857 2251.857	18 70	8797.323 8797.323	2 75	6765.709 6765.709	35 67
20	5	2091.515 2091.51	2 78	12,620.946 12,620.946	1 64	4780.693 4780.693	11 64
20	6	3006.8 3006.803	2401 66	14,114.352 14,114.351	31168	4873.354 4873.354	1051 64
	7	2740.521 2740.521	381 75	10,801.699 10,801.706	1 61	6112.412 6112.412	210 62
	8	2257.812 2257.813	40 70	13,489.863 13,489.864	2 68	6112.412 6112.412	209 72
	9	2507.171 2507.171	102 66	12,856.903 12,856.906	1 66	4763.482 4763.48	581169
	10	2620.089 2620.09	42 65	13,178.881 13,178.881	3 76	3380.259 3380.258	2023 66
	1	2857.342 2857.343	2768 87	16,125.897 16,125.9	1 69	5816.16 5816.158	19,384 86
	2	5265.281 5265.281	51178	20,263.138 20,263.151	1515 69	6627.122 6627.125	2093 81
	3	2914.465 2914.465	59,283 68	18,216.342 18,216.342	2 73	8545.714 8545.714	7720 77
	4	3698.654 3698.656	6 75	16,756.839 16,756.838	3 77	7557.438 7557.44	12,560 82
25	5	3012.074 3012.07	27 80	21,526.798 21,526.798	57 70	10,129.488 10,129.48	855 79
25	6	6086.928 6086.931	3 67	16,461.209 16,461.21	43 72	6686.74 6686.739	27 85
	7	4097.154 4097.154	81168	14,856.578 14,856.587	1 66	6686.74 6686.739	23 84
	8	2242.35 2242.355	13575 70	23,343.777 23,343.791	15 69	5613.54 5613.538	75,757 80
	9	4191.34 4191.34	45123 71	17,754.949 17,754.95	2 79	7486.88 7486.88	14,548 72
	10	3572.956 3572.957	44 70	19,581.42 19,581.412	2 90	8447.198 8447.198	605 76
	1	5761.119 5761.122	7679 85	25,379.136 25,379.138	1 80	7612.346 7612.344	92 78
	2	2694.968 2694.957	78,897 75	28,587.885 28,587.905	8 77	8778.962 8778.963	9968 84
	3	4941.414 4941.418	1140 80	26,516.25 26,516.251	3777 83	8861.97 8861.976	8861 89
	4	4327.01 4327.012	11,250 94	31,780.398 31,780.403	2 73	12,951.088 12,951.089	235 102
20	5	3777.884 3777.885	4769 95	27,277.598 27,277.589	6 72	9645.175 9645.182	239 94
50	6	7943.162 7943.168	157 90	32,927.444 32,927.447	75,888 86	9645.175 9645.17	234 86
	7	3849.75 3849.75	27,377 96	25,798.781 25,798.775	1 78	26,305.916 26,305.917	797 86
	8	4951.373 4951.374	2541 97	28,156.49 28,156.489	4 77	24,538.923 24,538.936	2 70
	9	4717.61 4717.614	78881195	22,417.729 22,417.734	8678 81	11,439.549 11,439.549	261 88
	10	4389.528 4389.531	84 90	24,675.208 24,675.207	3 78	12,783.488 12,783.492	4258 86

Table 10. Results of *BB* and CPLEX for $\hat{b}_i \in U[0.05, 0.15]$.

6. Conclusions

This paper studies single-machine scheduling with proportional deterioration and ready times simultaneously. The objective function is to minimize \widetilde{TWCT} . For the general condition of the problem, we propose the branch-and-bound algorithm and some meta-heuristic algorithms. Experimental study demonstrate that the *BB* algorithm can solve instances of 40 jobs in less than 39,870,200 milliseconds, and the algorithms of NEH and SA are more accurate than TS. Further research should further explore the \widetilde{TWCT} , where \hat{a}_j is the normal processing time of job J_j), extend our model to problems with scenario-dependent processing times (Wu et al. [41] and Wu et al. [42]), or consider the extension to parallel machines and hybrid flow shop setting (Yu et al. [43]).

Author Contributions: Methodology, J.-B.W.; writing—original draft, Z.-G.L.; writing—review and editing, Z.-G.L., L.-H.Z., X.-Y.W. and J.-B.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Science Research Foundation of the Educational Department of Liaoning Province (LJKMZ20220532).

Data Availability Statement: The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Gawiejnowicz, S.; Kurc, W.; Pankowska, L. Pareto and scalar bicriterion scheduling of deteriorating jobs. *Comput. Oper. Res.* 2006, 33, 746–767. [CrossRef]
- Wu, Y.; Dong, M.; Zheng, Z. Patient scheduling with periodic deteriorating maintenance on single medical device. *Comput. Oper. Res.* 2014, 49, 107–116. [CrossRef]
- 3. Mosheiov, G. Scheduling jobs under simple linear deterioration. Comput. Oper. Res. 1994, 21, 653–659. [CrossRef]

- 4. Gawiejnowicz, S. Scheduling deteriorating jobs subject to job or machine availability constraints. *Eur. J. Oper. Res.* 2007, 180, 472–478. [CrossRef]
- 5. Oron, D. Single machine scheduling with simple linear deterioration to minimize total absolute deviation of completion times. *Comput. Oper. Res.* 2008, *35*, 2071–2078. [CrossRef]
- Lee, W.-C.; Wang, W.J.; Shiau, Y.R.; Wu, C.-C. A single-machine scheduling problem with two-agent and deteriorating jobs. *Appl. Math. Model.* 2010, 34, 3098–3107. [CrossRef]
- Wang, Z.Y.; Wei, C.M.; Wu, Y.B. Single machine two-agent scheduling with deteriorating jobs. *Asia-Pac. J. Oper. Res.* 2016, 33, 1650034. [CrossRef]
- 8. Wu, C.-C.; Wu, W.-H.; Wu, W.-H.; Hsu, P.-H.; Yin, Y.; Xu, J. A single-machine scheduling with a truncated linear deterioration and ready times. *Inf. Sci.* 2014, 256, 109–125. [CrossRef]
- 9. Yin, N.; Kang, L. Minimizing makespan in permutation flow shop scheduling with proportional deterioration. *Asia-Pac. J. Oper. Res.* **2015**, *32*, 1550050. [CrossRef]
- Pei, J.; Liu, X.B.; Pardalos, P.M.; Fan, W.J.; Yang, S.L. Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. *Ann. Oper. Res.* 2017, 249, 175–195. [CrossRef]
- Jafari, A.A.; Lotfi, M.M. Single-machine scheduling to minimize the maximum tardiness under piecewise linear deteriorating jobs. Sci. Iran. 2018, 25, 370–385. [CrossRef]
- 12. Miao, C.X.; Zhang, Y.Z. Scheduling with step-deteriorating jobs to minimize the makespan. J. Ind. Manag. Optim. 2019, 15, 1955–1964. [CrossRef]
- 13. Huang, X. Bicriterion scheduling with group technology and deterioration effect. *J. Appl. Math. Comput.* **2019**, *60*, 455–464. [CrossRef]
- 14. Liu, F.; Yang, J.; Lu, Y.-Y. Solution algorithms for single-machine group scheduling with ready times and deteriorating jobs. *Eng. Optim.* **2019**, *51*, 862–874. [CrossRef]
- 15. Sun, X.; Geng, X.-N. Single-machine scheduling with deteriorating effects and machine maintenance. *Int. J. Prod. Res.* **2019**, 57, 3186–3199. [CrossRef]
- 16. Cheng, T.C.E.; Kravchenko, S.-A.; Lin, B.M.T. Scheduling step-deteriorating jobs to minimize the total completion time. *Comput. Ind. Eng.* **2020**, *144*, 106329. [CrossRef]
- 17. Li, D.-W.; Lu, X.-W. Parallel-batch scheduling with deterioration and rejection on a single machine. *Appl. Math. J. Chin. Univ.* **2020**, *35*, 141–156. [CrossRef]
- 18. Zhang, X.; Liu, S.-C.; Lin, W.-C.; Wu, C.-C. Parallel-machine scheduling with linear deteriorating jobs and preventive maintenance activities under a potential machine disruption. *Comput. Ind. Eng.* **2020**, *145*, 106482. [CrossRef]
- 19. Huang, X.; Yin, N.; Liu, W.-W.; Wang, J.-B. Common due window assignment scheduling with proportional linear deterioration effects. *Asia-Pac. J. Oper. Res.* 2020, *37*, 1950031. [CrossRef]
- He, H.; Hu, Y.; Liu, W.-W. Scheduling with deteriorating effect and maintenance activities under parallel processors. *Eng. Optim.* 2021, 53, 2070–2087. [CrossRef]
- 21. Qian, J.; Han, H. The due date assignment scheduling problem with the deteriorating jobs and delivery time. *J. Appl. Math. Comput.* 2022, 67, 2173–2186. [CrossRef]
- 22. Qian, J.; Zhan, Y. The due window assignment problems with deteriorating job and delivery time. *Mathematics* **2022**, *10*, 1672. [CrossRef]
- 23. Miao, C.; Kong, F.; Zou, J.; Ma, R.; Huo, Y. Parallel-machine scheduling with step-deteriorating jobs to minimize the total (weighted) completion time. *Asia-Pac. J. Oper. Res.* **2023**, *40*, 2240011. [CrossRef]
- 24. Jia, X.; Lv, D.-Y.; Hu, Y.; Wang, J.-B.; Wang, Z.; Wang, E. Slack due-window assignment scheduling problem with deterioration effects and a deteriorating maintenance activity. *Asia-Pac. J. Oper. Res.* **2022**, *39*, 2250005. [CrossRef]
- Sun, X.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optional maintenance activity. J. Sched. 2023, 26, 251–266. [CrossRef]
- Miao, C.; Song, J.; Zhang, Y. Single-machine time-dependent scheduling with proportional and delivery times. *Asia-Pac. J. Oper. Res.* 2023, 40, 2240011. [CrossRef]
- 27. Wang, J.-B.; Wang, Y.-C.; Wan, C.; Lv, D.-Y.; Zhang, L. Controllable processing time scheduling with total weighted completion time objective and deteriorating jobs. *Asia-Pac. J. Oper. Res.* **2023**, 2350026. [CrossRef]
- Zhang, L.-H.; Geng, X.-N.; Xue, J.; Wang, J.-B. Single machine slack due window assignment and deteriorating jobs. J. Ind. Manag. Optim. 2024, 20, 1593–1614. [CrossRef]
- 29. Shabtay, D.; Mor, B. Exact algorithms and approximation schemes for proportionate flow shop scheduling with step-deteriorating processing times. *J. Sched.* **2022**. [CrossRef]
- 30. Gawiejnowicz, S. Models and Algorithms of Time-Dependent Scheduling; Springer: Berlin, Germany, 2020.
- Gawiejnowicz, S. A review of four decades of time-dependent scheduling: Main results, new topics, and open problems. J. Sched. 2020, 23, 3–47. [CrossRef]
- 32. Miao, C. Complexity of scheduling with proportional deterioration and release dates. *Iran. J. Sci. Technol. Trans. A Sci.* 2018, 42, 1337–1342. [CrossRef]
- 33. Zhong, X.L.; Pan, Z.M.; Jiang, D.K. Scheduling with release times and rejection on two parallel machines. J. Comb. Optim. 2017, 33, 934–944. [CrossRef]

- 34. Bai, D.Y.; Xue, H.; Wang, L.; Wu, C.-C.; Lin, W.-C.; Abdulkadir, D.H. Effective algorithms for single-machine learning-effect scheduling to minimize completion-time-based criteria with release dates. *Expert Syst. Appl.* **2020**, *156*, 113445. [CrossRef]
- 35. Qian, J.; Lin, H.X.; Kong, Y.F.; Wang, Y.S. Tri-criteria single machine scheduling model with release times and learning factor. *Appl. Math. Comput.* **2020**, *387*, 124543. [CrossRef]
- 36. Rau, G. Minimizing a function of permutations of n integers. Oper. Res. 1971, 19, 237–240. [CrossRef]
- 37. Kelly, F.-P. A remark on search and sequencing problems. Math. Oper. Res. 1982, 7, 154–157. [CrossRef]
- 38. Nawaz, M.; Enscore, J.E.E.; Ham, I. A heuristic algorithm for the *m*-machine, *n*-job flow-shop sequencing problem. *Omega* **1983**, 11, 91–95. [CrossRef]
- 39. Lai, K.; Hsu, P.-H.; Ting, P.-H.; Wu, C.-C. A truncated sum of processing-times-based learning model for a two-machine flowshop scheduling problem. *Hum. Factors Ergon. Manuf. Serv. Ind.* **2014**, *24*, 152–160. [CrossRef]
- 40. Liu, S.; Wu, W.-H.; Kang, C.-C.; Lin, W.-C.; Cheng, Z. A single-machine two-agent scheduling problem by a branch-and-bound and three simulated annealing algorithms. *Discret. Dyn. Nat. Soc.* **2015**, 2015, 681854. [CrossRef]
- Wu, C.-C.; Bai, D.; Zhang, X.; Cheng, S.-R.; Lin, J.-C.; Wu, Z.-L.; Lin, W.-C. A robust customer order scheduling problem along with scenario-dependent component processing times and due dates. J. Manuf. Syst. 2021, 58, 291–305. [CrossRef]
- Wu, C.-C.; Bai, D.; Chen, J.-H.; Lin, W.-C.; Xing, L.; Lin, J.-C.; Cheng, S.-R. Everal variants of simulated annealing hyper-heuristic for a single-machine scheduling with two-scenario-based dependent processing times. *Swarm Evol. Comput.* 2021, 60, 100765. [CrossRef]
- 43. Yu, Y.; Pan, Q.; Pang, X.; Tang, X. An attribution feature-based memetic algorithm for hybrid flowshop scheduling problem with operation skipping. *IEEE Trans. Autom. Sci. Eng.* **2024**. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.