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Abstract: This article presents a modern, data-driven, reinforcement learning-based (RL-based),
discrete-time control methodology for power electronic converters. Additionally, the key advantages
and disadvantages of this novel control method in comparison to classical frequency-domain-derived
PID control are examined. One key advantage of this technique is that it obviates the need to derive
an accurate system/plant model by utilizing measured data to iteratively solve for an optimal control
solution. This optimization algorithm stems from the linear quadratic regulator (LQR) and involves
the iterative solution of an algebraic Riccati equation (ARE). Simulation results implemented on a
buck converter are provided to verify the effectiveness and examine the limitations of the proposed
control strategy. The implementation of a classical Type-III compensator was also simulated to serve
as a performance comparison to the proposed controller.

Keywords: model-free; data-driven control; optimal control; iterative ARE algorithm; reinforcement
learning-based control; nonlinear gain scheduling

MSC: 93B99

1. Introduction

The effects of climate change have expedited the need for more widespread adoption
of green energy solutions. Efforts such as the United Nations Climate Change Conference’s
(UNCCC) COP27 [1] and COP28 help to raise global awareness and create actionable objec-
tives to combat this pertinent issue. One of the main issues highlighted at the Conference
of the Parties (COP) is the continued global over-reliance on fossil fuels. To combat this
issue, the use of renewable energy-based alternatives such as solar- and wind-powered
distributed energy resources (DERs), electric vehicles (EVs) and energy storage solutions
has been presented [2,3]. The introduction of these modern, technological solutions to the
aging power grid, however, presents several challenges [4].

Among these issues are problems involving the control and regulation of these new
technologies. As an example, consider the fact that renewable energy DERs are direct-
current (DC) power sources delivering power to an alternating-current (AC) power grid.
Another example is that of the DC load that a charging EV places on the AC power grid.
Clearly, devices are required to perform the necessary conversions of power. Power elec-
tronic converters are energy conversion devices that convert electrical energy from one
form or level to another form/level. For example, an inverter is a DC-AC power electronic
device able to convert DC power at one level to AC power at another level, while a rectifier
is an AC-DC converter able to convert AC power to DC power. Most power electronic
converters rely on high-frequency switching of silicon-based transistors with control be-
ing achieved via modulation of the control signal feeding these transistors. Frequency
modulation and pulse width modulation (PWM) are popular power electronic control

Mathematics 2024, 12, 671. https://doi.org/10.3390/math12050671 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12050671
https://doi.org/10.3390/math12050671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3854-0793
https://orcid.org/0000-0003-3706-2830
https://orcid.org/0000-0002-3400-4216
https://doi.org/10.3390/math12050671
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12050671?type=check_update&version=2


Mathematics 2024, 12, 671 2 of 22

schemes. Several power electronic converters feature high-frequency (HF) transformers
that are able to transmit AC signals from their primary side(s) to their secondary side(s).
These HF transformers offer galvanic isolation of the input and output sides of the power
electronic converter.

Evidently, power electronic converters are required in both of these cases to allow for
the efficient transfer of power from one form and amplitude to another. The need for grid-
scale power electronics means that suitable converters are required to feature high power
densities and high efficiencies in order to facilitate power transfer at very high power levels.
Therefore, complex, high-frequency switching converters are preferred. A suitable class of
converter is the resonant power electronic converter class [5]. However, such converters
are inherently nonlinear and classical controllers, derived from approximate linear models
of nonlinear resonant converters, are only feasible for a narrow operating range. Our paper
aims to address this control issue by presenting a novel RL-based optimal controller that
does not rely on model dynamics but rather uses measured data along system trajectories
to derive a control solution.

Optimal control involves offline minimization of performance functions, based on
Hamilton–Jacobi–Bellman (HJB) design equations, with complete knowledge of system
dynamics [6]. In contrast, adaptive control involves dynamically learning control solutions
using measured data, online, with no prior knowledge of system dynamics. RL-based
control aims to combine these two control methodologies. In control systems, RL refers to
a family of techniques used to design optimal adaptive controllers with novel structures
that learn the solutions to optimal control performance functions in real time by observing
data along the system trajectories [7]. As seen in Figure 1, RL techniques often feature an
actor–critic structure. The critic evaluates the reward/cost of the current control policy
using feedback from the environment/system of the effect of the current control action.
The critic evaluates the response from the environment by calculating the cost/reward via
a value function. The actor updates/improves the control policy/action and implements
the new/improved control policy. Two RL techniques of note are policy iteration and
value iteration, which evaluate the performance of current control policies and provide
methods for improving those policies [7]. Policy iteration and value iteration use the
Bellman equation to solve optimal control problems forward in time. Using value function
approximation, these methods can be implemented online using standard adaptive control
system identification algorithms such as recursive least squares (RLS) [8].

Figure 1. Actor–critic reinforcement learning structure.

The use of reinforcement learning (RL) techniques to obtain adaptive optimal con-
trollers for output regulation of power electronic converters has become a topic of interest
over the past several years. Gao and Jiang (2015, 2016) presented an algorithm for adap-
tive optimal output regulation of linear systems with unknown system dynamics and
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immeasurable disturbance [9,10]. These papers focused on continuous-time linear systems
but indicated that the algorithms presented were also applicable to nonlinear systems.
Ref. [9] provided simulation results on an LCL-coupled inverter-based distributed genera-
tion system; hence, it provides evidence of the efficacy of RL control for complex power
electronic systems. More recently, a 2023 paper [11] successfully deployed a model-free,
deep reinforcement learning (DRL) algorithm on a three-level neutral point clamped (NPC)
converter. This paper provides irrefutable evidence of the suitability of RL-based controllers
for optimal output regulation of complex, nonlinear power electronic converters.

In their 2019 paper, Jiang et al. presented a data-driven, reinforcement learning-based
approach for solving the output regulation problem for discrete-time systems [12]. Their
paper collected several key RL concepts and featured detailed analysis of mathematical con-
cepts. Their paper presented three optimal feedback control algorithms. Algorithm 1 solved
for an optimal feedback control solution via policy iteration using Hewer’s algorithm [7],
directly finding the solution to the discrete-time algebraic Riccati equation (DARE) offline
with complete knowledge of the system dynamics. Algorithm 2 relaxed the need for knowl-
edge of system dynamics and presented a model-free optimal feedback control approach.
Finally, Algorithm 3 presented a data-driven approach for solving the output regulation
problem. Their paper focused solely on control theory, but the application of this theory to
power electronic converters had not yet been considered. Therefore, using this paper as
a foundation, our previous work, [13], utilized Algorithms 2 and 3 from [12] to obtain an
optimal output control solution for buck and boost converters. Hence, additional evidence
of the efficacy of the proposed RL techniques for control of power electronic converters was
presented. This current paper aims to extend our previous work by introducing new appli-
cation techniques of the proposed RL algorithm, commenting on limitations of the proposed
control method while also further expounding on the underlying mathematical concepts.

2. Materials and Methods
2.1. Derivation of the Composite System for Output Regulation

Consider the discrete-time (DT), linear time-invariant (LTI) system shown in Figure 2
with dynamics

x(k + 1) = Ax(k) + Bu(k) + Eod(k)

y(k) = Cx(k) + Du(k) + Fod(k)
(1)

and with tracking error

e(k) = y(k)− r(k) = Cx(k) + Du(k) + Fod(k)− r(k), (2)

where x ∈ Rnx is the state, u ∈ Rnu is the input, d ∈ Rnd is the disturbance, r ∈ Rnr is
the reference, y ∈ Rny is the output, and ny = nr. A ∈ Rnx×nx , B ∈ Rnx×nu , Eo ∈ Rnx×nd ,
C ∈ Rny×nx , D ∈ Rny×nu , and Fo ∈ Rnx×nd are constant matrices.

Figure 2. Diagram of closed-loop, discrete-time, linear time-invariant system with a power electronic
converter as the controlled plant.
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Let us assume that the disturbance and reference signals are generated by dynamics
described by

r1(k + 1) = Mrr1(k)

r(k) = Gr1(k)

r1(0) = r0,

(3)

where r1 ∈ Rnr1 , Mr ∈ Rnr1×nr1 , G ∈ Rnr×nr1 and

d(k + 1) = Mdd(k)

d(0) = d0,
(4)

where Md ∈ Rnd×nd . These exosystem dynamics can be augmented to give

v(k + 1) =
[

r1(k + 1)
d(k + 1)

]
=

[
Mr1 0

0 Md

][
r1(k)
d(k)

]
= Mv(k), (5)

where M ∈ Rnv×nv , nv = nr1 + nd.
Finally, the composite system can be formulated by combining Equations (1), (2), and (5)

to give

x(k + 1) = Ax(k) + Bu(k) + Ev(k)

v(k + 1) = Mv(k)

e(k) = Cx(k) + Du(k) + Fv(k),

(6)

where E ∈ Rnx×nv = [0 Eo] and F ∈ Rny×nv = [−G Fo].

Equation (6) indicates that the system tracking error, e(k), can be considered the
output of the composite system. Also, including the exosystem dynamics, namely, the
reference and/or disturbance signal dynamics, in the composite model has the benefit
of increasing robustness of the closed-loop system to variations in these signals. For
composite systems of the form shown in Equation (6), the problem of output, y(k), tracking
the reference signal, r(k), as well as the problem of disturbance rejection constitute the
output regulation problem.

2.2. The Linear Optimal Output Regulation Problem

The linear optimal output regulation problem (LOORP) refers to the derivation of
an optimal control input u∗(k) for the system with open-loop dynamics described by
Equation (1) and closed-loop dynamics described by Equation (6) that ensures closed-loop
stability and in which the output y(k) asymptotically tracks the reference, r(k) [12]. The
tracking problem is equivalent to having the error signal, e(k), asymptotically regulated
to zero:

lim
k→∞

e(k) = lim
k→∞

(y(k)− r(k)) = lim
k→∞

(Cx(k) + Du(k) + Fod(k)− Gr1(k)) = 0. (7)

One class of controller suitable for solving the LOORP is the static-state feedback
controller of the form

u∗(k) = −K∗
x x(k) + K∗

vv(k), (8)

where Kx ∈ Rnu×nx and Kv ∈ Rnu×nv . The feedback gain, Kx, is designed to ensure that
(A − BKx) is Schur, meaning all eigenvalues of (A − BKx) are inside the unit circle of
the z-plane, hence ensuring exponential stability of the closed-loop system. The feedfor-
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ward gain, Kv, and unknown constant matrix, X, are designed such that they satisfy the
following equations:

XM = (A − BKx)X + BKv + E

0 = (C − DKx)X + DKv + F,
(9)

where we have applied the optimal controller of Equation (8) to the composite system given
by Equation (6).

Theorem 1. The linear output regulation problem is solvable by a static feedback controller of
Equation (8) iff there exist two constant matrices Kv and X that solve Equation (9).

Proof. The proof of this theorem can be found in the proof of Lemma 1.6 in [14].

We can use the linear transformation[
X
U

]
=

[
Inx 0nx×nu

−Kx Inu

][
X
Kv

]
(10)

where X ∈ Rnx×nv and U ∈ Rnu×nv to reformulate Equation (9) as

XM = AX + BU + E

0 = CX + DU + F,
(11)

which are known as the regulator equations. Hence, Theorem 2 can be formulated as:

Theorem 2. Given that (A − BKx) is exponentially stable, the linear output regulation problem is
solvable by a static feedback controller of Equation (8) iff there exist two constant matrices X and U
that solve Equation (11) with Kv given by

Kv = U + KxX. (12)

Proof. This theorem is proven by the proof of Theorem 1 and the linear transform given in
Equation (10).

Theorem 3. For all matrices E and F, the regulator equations are solvable iff

rank
([

A − λI B
C D

])
= nx + nv, ∀λ ∈ σ(M).

Proof. The proof of this theorem is given as the proof of Theorem 1.9 in [14].

We shall assume that the requirements of Theorems 2 and 3 are met. We also assume
that the system of Equation (1) is both controllable, which allows arbitrary placement
of closed-loop poles via feedback gain, Kx, and observable, which allows for full state
feedback via the system output, y(k).

Consider, now, the closed-loop system formed by applying the optimal static feedback
controller of Equation (8) to the system whose dynamics are described by Equation (6).

By post-multiplying the regulator equations of Equation (11) by v(k), we obtain

XMv(k) = Xv(k + 1) = AXv(k) + BUv(k) + Ev(k)

0 = CXv(k) + DUv(k) + Fv(k).
(13)
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By subtracting Equation (13) from Equation (6) and omitting exosystem dynamics,
we obtain

x(k + 1)− Xv(k + 1) = A[x(k)− Xv(k)] + B[u(k)− Uv(k)]

e(k) = C[x(k)− Xv(k)] + D[u(k)− Uv(k)].
(14)

Now, by defining the variables x = x(k)− Xv(k) and u = u(k)− Uv(k), we obtain
the error system dynamics:

x(k + 1) = Ax + Bu

e(k) = Cx + Du.
(15)

2.3. Development of the RL Framework
2.3.1. MDPs and the Bellman Equation

Figure 3 depicts a Markov decision process (MDP). MDPs are random/stochastic
sequences/processes of possible states where the probability of a future state depends
solely on the current state of the system and not on other, prior states. MDPs provide
a framework for the development of RL techniques [7,8]. We see in Figure 3 that each
transition from state xi to state xj, and taking input/action ul , where i, j ∈ [1, 3] and
l ∈ [1, 2], is associated with a transition probability, Pul

xixj , and transition cost, Rul
xixj . The

transition probability, Pul
xixj = Pr{xj|xi, ul}, is the conditional probability of the system

transitioning to state xj, given that the system starts at state xi and takes action ul . The
transition cost, Rul

xixj = E{rk|xk = xi, uk = ul , xk+1 = xj}, is the expected value of the stage
cost, rk, at time k.

Figure 3. Markov decision process in the form of a finite-state machine with controlled state transitions
and costs associated with each transition.

The fundamental MDP problem is to find a mapping that gives the conditional proba-
bility π(x, u) = Pr{u|x} ∀x, u of taking action u given that the system/MDP is currently
in state x. Such a mapping is termed a closed-loop control/action strategy or policy [7,8].
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Consider now the deterministic case of the policy π(x, u), where for any given current state,
xi, the only possible action taken by the system is ui. Hence, π(x, u) = Pr{u|x} = µ(x)
is a deterministic function, mapping states to inputs. Such a mapping, µ(x), is a solution
to the linear optimal output regulation problem if it maps the states of an LTI system to
a stabilizing optimal input that minimizes tracking error. The previous assumptions of
controlability and observability of the system described by Equations (1) and (6) allow for
such a closed-loop control policy to be derived.

In order to find the optimal control policy, π∗(x, u) = µ∗(x), we must assess the
performance of each policy by assigning value/cost to each control policy. Firstly, for each
policy, we calculate the discounted sum of future costs over a time period [k, k + T] as

Jk,T =
k+T

∑
i=k

γi−kri, (16)

where 0 < γ ≤ 1 is the discount factor, which ensures that Jk,T remains bounded.
We then formulate a value function as in Equation (17). The value of a policy is

defined as the conditional expected value of future cost when in state x at starting time k
and following policy π(x, u) thereafter [7,8]:

Vπ
k (x) = Eπ{Jk,T |xk = x} = Eπ

{
k+T

∑
i=k

γi−kri|xk = x

}
. (17)

Finally, we find the control policy with the lowest cost/value. In other words, we wish
to find the optimal policy,

π∗(x, u) = arg min
π

Vπ
k (x) = arg min

π
Eπ

{
k+T

∑
i=k

γi−kri|xk = x

}
, (18)

which minimizes the value function and the corresponding optimal value, which is the
minimum of the value function,

V∗
k (x) = min

π
Vπ

k (x) = min
π

Eπ

{
k+T

∑
i=k

γi−kri|xk = x

}
. (19)

It is shown in [7,8] that the value function Vπ
k (x) can be reformulated as

Vπ
k (x) = Eπ

{
k+T

∑
i=k

γi−kri|xk = x

}

= Eπ

{
rk + γ

k+T

∑
i=k+1

γi−(k+1)ri|xk = x

}

= ∑
u

π(x, u)∑
x′

Pu
xx′

[
Ru

xx′ + γEπ

{
k+T

∑
i=k+1

γi−(k+1)ri|xk+1 = x′
}]

= ∑
u

π(x, u)∑
x′

Pu
xx′

[
Ru

xx′ + γVπ
k+1(x′)

]
.

(20)

Now, setting the time horizon T to infinity, we obtain the infinite-horizon cost,

Jk =
∞

∑
i=k

γi−kri, (21)

and the Bellman equation,

Vπ(x) = ∑
u

π(x, u)∑
x′

Pu
xx′

[
Ru

xx′ + γVπ(x′)
]
. (22)
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The Bellman equation consists of the one-step cost, ∑
u

π(x, u)∑
x′

Pu
xx′R

u
xx′ , and a current

estimate of discounted future costs, γVπ(x′). Now, assuming ergodicity of the system, the
optimal policy, π∗(x, u), is deterministic. Hence, we obtain the optimal value or Bellman
optimality equation,

V∗(x) = min
u ∑

x′
Pu

xx′
[
Ru

xx′ + γV∗(x′)
]
, (23)

and the optimal control policy,

u∗ = arg min
u

∑
x′

Pu
xx′

[
Ru

xx′ + γV∗(x′)
]
. (24)

2.3.2. The Discrete-Time Bellman Equation

A discrete-time LTI system such as the one described by Equations (1) and (6) can be
considered a deterministic MDP. As a result, the deterministic stage costs are defined in
terms of the linear quadratic regulator (LQR) [6], leading to the infinite-horizon cost,

Jk =
∞

∑
i=k

ri =
∞

∑
i=k

(xT
i Qxi + uT

i Rui), (25)

where Q = QT ≥ 0 and R = RT > 0 are user-defined weighting matrices. The value
function can now be formulated as

V(xk) =
∞

∑
i=k

ri =
∞

∑
i=k

(xT
i Qxi + uT

i Rui)

= xT
k Qxk + uT

k Ruk +
∞

∑
i=k+1

(xT
i Qxi + uT

i Rui)

= xT
k Qxk + uT

k Ruk + V(xk+1),

(26)

where the second and third formulations in Equation (26) are forms of the discrete-time
Bellman equation consisting of a one-step cost term, (xT

k Qxk + uT
k Ruk), and the current

estimate of future costs, V(xk+1) [7,8].
We can now derive an explicit form of the discrete-time Bellman equation. To begin,

assume that the value function at time k is quadratic in terms of the state, x(k), and can be
written as

V(xk) = xT
k Pxk (27)

for some matrix, P = PT > 0. We may now combine Equations (26) and (27) to give

V(xk) = xT
k Pxk = xT

k Qxk + uT
k Ruk + xT

k+1Pxk+1. (28)

Substituting xk+1 from Equation (1) into Equation (28), we obtain

xT
k Pxk = xT

k Qxk + uT
k Ruk + (Axk + Buk)

T P(Axk + Buk), (29)

and applying a stabilizing static feedback control input, uk = −Kxk,

xT
k Pxk = xT

k Qxk + xT
k KT RKxk + xT

k (A − BK)T P(A − BK)xk. (30)

Now, equating the two sides of Equation (30), we obtain the Bellman equation in the
form of a Lyapunov equation as

(A − BK)T P(A − BK)− P + Q + KT RK = 0. (31)

The discrete-time Hamiltonian function [7,8,15] can be formulated using Equation (29) as

H(xk, uk) = xT
k Qxk + uT

k Ruk + (Axk + Buk)
T P(Axk + Buk)− xT

k Pxk (32)
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and by using the fact that for vector x⃗ and matrix A, ∂Ax⃗
∂x⃗ = A, ∂x⃗T A

∂x⃗ = AT , and that for a

symmetrical matrix A, ∂x⃗T Ax⃗
∂x⃗ = 2x⃗T A, the optimal feedback control input can be found via

∂H(xk ,uk)
∂uk

= 0 as

ũ∗
k = −K∗

k xk = −(R + BT PB)−1BT PAxk. (33)

By substituting for uk into Equation (29), we obtain the familiar form of the discrete-
time algebraic Riccati equation (DARE) as

AT PA − P + Q − AT PB(BT PB + R)−1BT PA = 0. (34)

2.3.3. The Discrete-Time Linear Optimal Output Regulation Problem

As previously mentioned, the solution to the LOORP should both stabilize the closed-
loop system and asymptotically track a reference output signal. The optimal control policy,
u∗ = µ(x), that achieves both of these requirements is obtained by solving two optimization
problems [9,10,12].

Problem 1. We solve the static optimization problem of Equation (35) in order to find solutions
to the regulator equations stated in Equation (11), thus assuring the asymptotic tracking of the
reference signal.

min
(X,U)

trace(XTQ̃X + UT R̃U)

s.t. XM = AX + BU + D

0 = CX − E

(35)

where Q̃ = Q̃T > 0 and R̃ = R̃T > 0.

Problem 2. We solve the dynamic optimization problem of Equation (36) in order to find the
optimal feedback control policy, u∗ = −K∗

x x(k), thus assuring stability and satisfactory transient
performance of the closed-loop system. Problem 2 minimizes the discrete-time Bellman equation of
Equation (26).

min
ũ

V(k) =
∞

∑
i=k

(xT
i Qxi + uT

i Rui)

s.t. x(k + 1) = Ax + Bu

e(k) = Cx + Du

(36)

where, again, Q ≥ 0 and R > 0.

Therefore, the optimal static state feedback controller of Equation (8) is obtained by
first solving Problem 2 to find K∗

x , then solving Problem 1 to obtain (X, U), from which K∗
v

can be obtained via Equation (12). In order to solve Problems 1 and 2, we utilize the RL
algorithms of [9,10,12].

In Algorithm 1 of [12], provided that the system dynamics are completely known, a
policy iteration algorithm can be used. The iterative form of the Lyapunov equation (31)
used for policy evaluation is given by

Pj+1 = (A − BK j)T Pj+1(A − BK j) + Q + (K j)T RK j. (37)
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The iterative optimal feedback gain used for policy improvement can be obtained
using Equation (33) as

uj+1
k = arg min (xT

k Qxk + uT
k Ruk + xT

k+1Pj+1xk+1)

= −K j+1xk

= −(R + BT Pj+1B)−1BT Pj+1 Axk.

(38)

Algorithm 1 of [12], or Hewer’s algorithm, involves the solution of the DARE at every
iterative step. This algorithm can therefore be summarized as (Algorithm 1):

Algorithm 1 Offline Hewer’s PI Algorithm with Known System Dynamics
Initialization: Start with a stabilizing control policy K0

x. For step index j, iterate Steps 1 and 2 until
convergence in Step 3.

Step 1: Policy Evaluation: Solve for Pj+1 using

Pj+1 = (A − BK j)T Pj+1(A − BK j) + Q + (K j)T RK j.

Step 2: Policy Improvement: Update the policy using

K j+1 = −(R + BT Pj+1B)−1BT Pj+1 Axk.

Step 3: Termination:
||Pj+1 − Pj||2 ≤ ϵ

for some small positive ϵ. Otherwise, increment index j and return to Step 1.

The main drawback of Algorithm 1 is the requirement of complete knowledge of
system dynamics. As previously mentioned, we may utilize Algorithm 3 of [12] to obviate
the need for knowledge of system dynamics, instead relying on measured state data to
solve for an optimal control solution. Hence, LOORP problems 1 and 2 can both be solved
via Algorithm 3 of [12].

Using the first equation in Equation (11), we define a Sylvester map [16] Ω : Rnx×nv →
Rnx×nv as

Ω(X) = XM − AX. (39)

Now, using the second equation in Equation (11) and assuming that the matrix D = 0,
we can find a suitable form for the solution, X, to this equation by first selecting a constant
matrix X1 ∈ Rnx×nv such that CX1 + F = 0. Next, we select Xi ∈ Rnx×nv , i ∈ 2, 3, . . . , m + 1,
such that the vectors vec(Xi), ∀Xi form a basis for ker(Inv ⊗ C), where m = (nx − nr)nv is
the dimension of ker(Inv ⊗ C). Therefore, CXi = 0, ∀Xi and X can be written as

X = X1 +
m+1

∑
i=2

αiXi, αi ∈ R. (40)

We now utilize the error system dynamics of Equation (15) and matrices Xi from
Equation (40) to define a new state xi(k) as

xi(k) = x(k)− Xiv(k), (41)

and using Equations (6) and (41), we define the dynamics of this new state as

xi(k + 1) = x(k + 1)− Xiv(k + 1)

= Ax(k) + Bu(k) + (E − Xi M)v(k).
(42)

By reformulating Equation (41) as x(k) = xi(k) + Xiv(k) and substituting into
Equation (42), we obtain
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xi(k + 1) = Axi(k) + Bu(k) + (E − Xi M + AXi)v(k). (43)

Then, by adding and subtracting the term Bui(k) = −BKj
xxi(k) and using Equation (39),

we obtain

xi(k + 1) = (A − BK j
x)xi(k) + B(u(k) + K j

xxi(k)) + (E − Ω(Xi))v(k). (44)

We now define π(Xi) = Ω(Xi)− E and substitute into Equation (44) to give

xi(k + 1) = (A − BK j
x)xi(k) + B(u(k) + K j

xxi(k))− π(Xi)v(k). (45)

From Equation (28), we obtain

xT
i (k)Qxi(k) + uT

i (k)Rui(k) = xT
i (k + 1)Pj+1xi(k + 1)− xT

i (k)Pj+1xi(k). (46)

By substituting xi(k + 1) from Equation (45) into Equation (46), we obtain a system
of equations that forms the foundation of RL algorithms that solve for optimal control
solutions with unknown system dynamics [9,10,12].

As per [12] and using properties of the Kronecker product, we can now define
the following:

Lj+1
1 = AT Pj+1B

Lj+1
2 = BT Pj+1B

Lj+1
3i = π(Xi)

T Pj+1π(Xi)

Lj+1
4i = AT Pj+1π(Xi)

Lj+1
5i = BT Pj+1π(Xi)

(47)

ϕ
j
i (k) =



(
xT

i (k)⊗ xT
i (k)

)
vec

(
−Q − (K j

x)
T RK j

x

)
(

xT
i (k + 1)⊗ xT

i (k + 1)
)
vec

(
−Q − (K j

x)
T RK j

x

)
...(

xT
i (k + s)⊗ xT

i (k + s)
)
vec

(
−Q − (K j

x)
T RK j

x

)

 (48)

where s ≥ [ ([nx × (nx + 1)]/2) + ([nu × (nu + 1)]/2) + ([nv × (nv + 1)]/2) + nx(nu +
nv) + (nu × nv)− 1],

ψ
j
i (k) =


Φ11 Φ12 Φ13 · · · Φ16
Φ21 Φ22 Φ23 · · · Φ26

...
...

...
. . .

...
Φs1 Φs2 Φs3 · · · Φs6

 (49)
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where

Φl1 =
(

xT
i (k + l + 1)⊗ xT

i (k + l + 1)
)
−

(
xT

i (k + l)⊗ xT
i (k + l)

)
Φl2 = −2

((
K j

xxi(k + l) + u(k + l)
)T

⊗ xT
i (k + l)

)
Φl3 = −

((
K j

xxi(k + l) + u(k + l)
)T

⊗
(
−K j

xxi(k + l) + u(k + l)
)T

)
Φl4 = −vT(k + l)⊗ vT(k + l)

Φl5 = 2
(

vT(k + l)⊗ xT
i (k + l)

)
Φl6 = 2

(
vT(k + l)⊗ uT(k + l)

)

(50)

Equations (47)– (50) can be used as in [12] to obtain the linear equation

ψ
j
i (k)

[
Pj+1, Lj+1

1 , Lj+1
2 , Lj+1

3i , Lj+1
4i , Lj+1

5i

]
= ϕ

j
i (k), (51)

which can be solved using least squares to obtain[
Pj+1, Lj+1

1 , Lj+1
2 , Lj+1

3i , Lj+1
4i , Lj+1

5i

]
= ([ψ

j
i (k)]

Tψ
j
i (k))

−1[ψ
j
i (k)]

Tϕ
j
i (k). (52)

The feedback gain is updated during the policy improvement step of the RL algorithm
as

K j+1
x = (R + Lj+1

2 )−1(Lj+1
1 )T . (53)

which iteratively converges to the optimal feedback gain, K∗
x , hence solving Problem 2.

The least-squares solution from Equation (52) is used to obtain a solution to Problem 1
as follows.

Firstly, let

Λ =

[
vec(Lj+1

42 − Lj+1
40 ) · · · vec(Lj+1

4(m+1) − Lj+1
40 ) 0 −Inv ⊗ Lj+1

1
vec(X2) · · · vec(Xm+1) −Inx×nv 0

]

=

[
Λ11 Λ12
Λ21 Λ22

] (54)

and

ξ =

[
ξ1
ξ2

]
=

[
vec(−Lj+1

41 )
−vec(X1)

]
. (55)

Now, define
Π = −Λ11Λ−1

21 Λ22 + Λ12 (56)

and
Ψ = −Λ11Λ−1

21 ξ2 + ξ1. (57)

We can now obtain matrices (X, U) via least squares by solving the equation

Π
[

vec(X)
vec(U)

]
= Ψ. (58)

The off-policy RL algorithm for solving both Problems 1 and 2 can be summarized as
(Algorithm 2)
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Algorithm 2 Data-driven Algorithm for Iterative Solution of LOORP
Initialization: Bring the system to steady state by utilizing a stabilizing initial control policy,
û = u + ê(k) = K j

xx(k) + ê(k), where ê(k) is injected perturbation noise, j = 0, and i = 0. Also,
supply weighting matrices Q and R.

Problem 1: Step 1: Policy Evaluation: Use circular buffers to collect samples of state,
input, and reference signals in order to build matrices ϕ

j
i (k) and ψ

j
i (k).

Solve for
[

Pj+1, Lj+1
1 , Lj+1

2 , Lj+1
3i , Lj+1

4i , Lj+1
5i

]
using Equation (52).

Step 2: Policy Improvement: Update the control policy using Equation (53):

K j+1
x = (R + Lj+1

2 )−1(Lj+1
1 )T .

Step 3: Termination: If ||K j+1
x − K j

x||2 ≤ ϵ for some small positive constant ϵ,
go to Step 4. Otherwise, set j = j + 1 and return to Step 1.

Problem 2: Step 4: Set j = j∗ and i = i + 1 and solve for Lj+1
4i using Equation (52), repeat-

ing this step until i = m + 1.

Step 5: Find matrices (X, U) by solving Equation (58).

Solution: Using the solutions to Problems 1 and 2, we obtain the optimal control solution, u∗(k),
from Equations (8) and (12) as

K∗
v = U + K∗

x X
u∗(k) = −K∗

x x(k) + K∗
v v(k).

Stop.

2.4. System Architecture

In order to assess the performance of the proposed model-free RL algorithm, it was
incorporated into the simulation of a closed-loop power electronic system consisting of
a buck converter as the system plant. An ideal buck converter, without parasitics, was
utilized. Considering parasitics, such as the equivalent series resistance (ESR) of the
capacitor, rC, would mainly add a high-frequency left-half-plane zero to the converter
dynamics. Being at high frequency, 1

CrC
, this zero would not significantly alter the resulting

controller design ([17], p. 410).
The schematic of the buck converter is depicted in Figure 4. The buck converter is a

pulse-width-modulated(PWM), DC-DC, non-isolated power electronic converter topology
that steps-down/bucks an input voltage down to a lower output voltage [17]. The circuit
parameters for the simulated buck converter plant are given in Table 1.

Figure 4. Schematic of buck converter topology.
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Table 1. Circuit parameters for buck converter plant.

Parameter Value

Filter Capacitance, C/ESR 50 µF/0 Ω
Filter Inductance, L/ESR 220 µH/0.1 Ω
Switching Frequency, fs 50–500 kHz

Input Voltage, vin 40 V
Output Voltage, vo 12 V

Output Resistance, RL 10 Ω

Simulations were carried out using Simulink. All simulations were run at an arbitrary
switching frequency of 80 kHz before being re-run at switching frequencies ranging from
50 to 500 kHz, hence assuring the resilience of the RL algorithm to switching frequency
changes. The Simulink model of the buck power converter simulation is shown in Figure 5.
Algorithm 2 is implemented in the DSP subsystem of the model. An in-depth view of the
algorithm implementation is shown in Figure 6.

Figure 5. Simulink model used for buck converter simulations.

As seen in Figure 6, Algorithm 2 is implemented using three subsystems, namely,
the Collection, Learning and Learnt subsystems, with an additional Relearn subsystem at
the top of the figure. Algorithm 2 is able to learn an optimal control solution at a specific
operating point. In order to allow the system to respond to changes in operating conditions
(line/load variations), a relearning mechanism was developed to learn a new optimal
control solution if an error threshold was surpassed [13]. This means that the relearning
mechanism deployed in the Relearn subsystem allows the system to respond to errors in the
output just as a classical PID controller would. Additionally, provided that the relearning
algorithm was able to converge to new control solutions fast enough, the performance of
the RL-based controller could potentially be on par with that of a classical PID controller.

Data memory stores are used to transfer data, such as intermediate matrices and gains,
among the various subsystems with each subsystem containing code-based, discrete-time
MATLAB function blocks. The switch in the upper-right quadrant of Figure 6 is used to
switch between the initial input û of Algorithm 2 and the learnt optimal control input u∗(k).
As detailed in the Initialization of Algorithm 2, û is formed from the combination of the
initial input u and injected random noise ê(k), with initial input u being supplied via the
data memory store read U_pert. Also, the user-defined weighting matrices Q and R are
given as inputs Qbar and Rbar, respectively, to the Learning subsystem.
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Figure 6. Implementation of RL algorithm in Simulink model.

The Delay Function block is used, as the name suggests, to create a delay that allows
for the system to reach steady-state before the collection of data commences. The Collection
subsystem is then used to implement circular buffers to collect samples of state, input,
and reference signals in order to build matrices ϕ

j
i (k) and ψ

j
i (k), as described in Step 1 of

Algorithm 2. The lengths of these buffers is given by the col_pts constant block. Once the
required matrices have been formulated, we solve for

[
Pj+1, Lj+1

1 , Lj+1
2 , Lj+1

3i , Lj+1
4i , Lj+1

5i

]
using the Learning subsystem. Steps 2–5 of Algorithm 2 are also implemented in the Learning
subsystem, from which we obtain the optimal gains K∗

x and K∗
v . Finally, we obtain the

optimal control input by implementing the equation u∗(k) = −K∗
x x(k) + K∗

vv(k) in the
Learnt subsystem and switch to using u∗(k) as the input to the buck converter plant.

2.5. Design of Classical Controller

A conventional Type-III compensator was designed using standard methods to serve
as a comparison for the performance of the RL algorithm presented. A detailed design
procedure for such a compensator can be found in [18]. The Type-III compensator is
designed to provide a boost in phase at a desired crossover frequency, as depicted in the
Bode plot in Figure 7. This differs from the tuning methods of a PID controller, where
gains are adjusted to meet transient performance requirements. The transfer function of the
small-signal buck converter model was derived using the state-space averaging method as

G(s) =
4.364 × 109

s2 + 2459s + 9.183 × 107 . (59)

The corresponding Bode plot of the buck converter plant is depicted in Figure 8.
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Figure 7. Bode plot of Type-III compensator.

Figure 8. Bodeplot of buck converter plant/system.

The Type-III compensator was designed with a desired crossover frequency of 8 kHz or
∼ 50 krad/s and a phase margin of 53◦. The transfer function of the designed compensator
is given in Equation (60) and the corresponding Bode plot in Figure 7.

C(s) =
9.076 × 105s2 + 1.605 × 1010s + 7.095 × 1013

s3 + 5.715 × 105s2 + 8.165 × 1010s
(60)

The Bode plot of the controller–plant combination is shown in Figure 9. The vertical
red line indicates the crossover frequency is at roughly 50 krad/s as designed.

Figure 9. Bode plot of controller–plant combination.
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3. Results

Figure 10 depicts the line regulation ability of the RL algorithm with relearning
enabled. The output voltage waveform is shown in blue and the one-third-scale input
voltage waveform in red. As described in [13], the start-up transient occurs in Period 1
and data samples are collected and the optimal control solution corresponding to the 40 V
input voltage are learnt during Period 2 before being applied in Period 3. At the beginning
of Period 4, the input voltage increases to 48 V and the relearning process is triggered.
Hence, the control input is changed to û and data samples are collected before learning a
new control solution. The new control solution corresponding to an input voltage of 48 V
is applied in Period 5 and the output voltage returns to the reference value of 12 V. The
system response to additional step-changes in the input voltage to 60 V and 36 V is also
depicted in Periods 6–9.

Figure 10. Plot of output voltage response to line variation.

The system’s ability to respond to load variations is depicted in Figure 11. The system
is allowed to reach a steady state before data collection and learning begins at t = 0.00425 s.
The learnt solution is then implemented at t = 0.00625 s. The load then changes to 5 Ω
at t = 0.007 s and the relearning mechanism triggered. The input is changed to û, data
samples are collected, and the optimal control solution is learnt. The new learnt optimal
solution is then implemented at t = 0.0085 s. At t = 0.0125 s, the load changes to 10 Ω and
the relearning mechanism is triggered. Again, û is used and data samples are collected
before the new optimal control solution is learnt. Finally, the learnt solution is implemented
at t = 0.014 s. Figures 10 and 11 show that the RL algorithm is able to successfully respond
to line and load variations. Next, we compare the performance of the RL algorithm to that
of a classical controller.

Figure 11. Plot of output voltage response to load variation.
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Figure 12 compares the line regulation ability of the proposed RL algorithm to that of
the designed Type-III compensator. The one-third-scale input voltage waveform is depicted
in blue, the output voltage response of the system using the RL algorithm is depicted in red,
and the output voltage response of the system with the Type-III compensator is depicted
in yellow. From the figure, it is clear that a conventional controller has a faster response
time than the RL algorithm with relearning enabled. Hence, in our previous work [13],
we concluded that the RL algorithm is feasible but does not surpass the performance of
conventional compensators if deployed using the proposed relearning mechanism. The
RL algorithm’s response time is impacted by the number of data samples collected, the
sampling period, and the number of iterations until convergence. On the other hand, the
classical controller was designed to have a crossover frequency of 8 kHz and relatively fast
response times.

Figure 12. Comparison of line regulation performance of RL algorithm and Type-III compensator.

After conducting further research, a different approach to implementing the RL algo-
rithm was developed. Firstly, it was observed that the response time of the RL algorithm
was being severely impacted by the collection of data samples and the iterative learning
process. By storing the optimal control gains learnt at a previous point in time for a particu-
lar operating point and applying these gains as soon as the system starts up, the output
voltage is able to quickly settle at the reference voltage. Figure 13 provides clear evidence
of the feasibility of this approach. Depicted are the output voltage step responses of the RL
algorithm in red and the designed Type-III compensator in blue with a load of 10 Ω and
input voltage of 40 V. The figure shows that the step-response transient characteristics of the
RL-based controller using pre-learnt gains surpasses that of the conventional controller. In
particular, the pre-learnt controller has less overshoot and a faster settling time. Specifically,
the overshoot decreased from 35% to 23% and the settling time decreased by 0.3 s.

In order to expand the pre-learnt approach over several operating points, learnt
gains for a vast range of operating points can either be stored in a look-up table (LUT) or
functionally mapped over a control surface. This will, however, require the input voltage
and load conditions to be constantly monitored in order to map the current operating point
to the corresponding control gains. Storing gains in a large LUT and using interpolation and
extrapolation techniques would produce an accurate control solution; however, this would
not be easily implemented on a run-of-the-mill microcontroller. Alternatively, by fitting a
nonlinear polynomial function to the pre-learnt gains, the required gains for a particular
operating point can be easily calculated and applied. This approach is easy to implement
on a microcontroller; however, it introduces fitting errors, which manifest as small errors in
the output voltage level. Provided that these errors are small and acceptable to the user,
nonlinear gain scheduling can be utilized to make the RL algorithm more competitive.
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Figure 13. Comparison of step response of pre-learnt gains from RL algorithm and Type-III compensator.

Having taken the exosystem (reference) dynamics into account while formulating the
model-free RL algorithm, it is expected that the closed-loop system should asymptotically
track a given reference signal. This tracking ability is depicted in Figure 14. Using the same
optimal controller gains

K∗
x =

[
0.2545
0.1327

]
K∗

v = 0.1834

at all reference levels, the reference voltage is varied from 6 to 30 V. The system is able
to successfully track the reference with no tracking error, provided that the line and load
conditions remain constant.

Figure 14. Reference tracking performance of RL algorithm.

4. Discussion

This paper focuses on a novel RL-based control algorithm for power electronic con-
verters. A key benefit of the proposed algorithm is that the controller does not require
knowledge of the system dynamics. Additionally, although the system under investigation
is a single-input, single-output (SISO) system, the algorithm is just as applicable to linear
discrete-time multiple-input, multiple-output (MIMO) systems. The detailed derivation of
the RL control technique is provided in Section 2, with the RL algorithm summarized as
Algorithm 2.

Figure 6 presents the implementation of the RL algorithm in Simulink. It was shown
that this RL-based control algorithm was able to achieve line and load regulation; how-
ever, the performance of the proposed controller was shown to be inferior to a more
conventional power electronic controller when using the relearning mechanism. This
relearning mechanism was developed as a means of allowing the RL algorithm to mimic
the behavior of conventional closed-loop controllers; however, due to having to change
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control inputs, collect data samples, and allow the algorithm to converge, the response
time of the RL algorithm with relearning enabled is much slower than that of conventional
PID-based controllers.

The RL algorithm was tested at several operating points and it was observed that
the algorithm would converge to a control input of u∗(k) = 0 when the inductor current,
iL, entered discontinuous conduction mode (DCM). This makes theoretical sense, as the
underlying value function of the RL algorithm is an energy minimization function acting
on the states and inputs of the system. The minimum energy state of the inductor current in
DCM is 0; hence, the algorithm converges to the zero state. Extension of the algorithm into
the DCM region is currently being investigated. While the inductor current is in continuous
conduction mode, CCM, the RL algorithm is able to successfully converge to the optimal
control solution. However, the relationship between the control gains and the inductor
current is nonlinear and the gain function “levels-off”/flattens as the inductor current
increases. Therefore, there is a maximum achievable control gain that limits the operating
range of the algorithm. This control gain limit appears to be dependent on the perturbation
noise frequency and amplitude as well as on the values of the Q and R weighting matrices.
This means that the operating range is dependent on one end on DCM and on the other
end on the variable maximum achievable control gain.

The optimal controller gains vary based on the operating point of the converter. The
operating point for this converter refers to the input voltage and load conditions. By pre-
learning controller gains over a wide range of operating points and fitting a multi-variable
polynomial function to the operating surface, the RL algorithm is able to respond much
faster to changes in operating conditions. It is shown in Figure 13 that the step-response of
the RL algorithm using pre-learnt gains surpasses the conventional controller in terms of
transient performance. Inaccuracies in the fitting function would, however, lead to small
stead-state errors.

By deploying this RL algorithm on a physical control system, the user would only
have to supply weighting matrices Q and R and start with a stabilizing control input û in
order to achieve closed-loop control of their power electronic converter. This is a significant
improvement to more involved, conventional methods, which require measurement and
analysis of the frequency-domain characteristics of the physical system or its linear model in
order to design a closed-loop controller. This would mean that a power electronic engineer
would only be concerned with designing the hardware to meet open-loop requirements
and all closed-loop control would be handled automatically. The learning process of the RL
algorithm, however, is computationally intensive, which impacts the ease of deployment
of the algorithm. Deployment of the RL algorithm is currently being investigated and
experimental validation of the simulated controller will be presented in a future paper.

Future work will involve experimental verification of the findings of this paper. This
work will also be extended to other power electronic converters whose accurate models
are difficult to obtain. These converters include grid-connected inverters and resonant
converters in wireless power transfer (WPT) systems.

5. Conclusions

This paper presents an in-depth analysis of the mathematical theory of reinforcement
learning-based control systems. While our previous work [13] presented RL-based control
as a novel control strategy for power electronics, this paper expounds on the underlying
mathematical theory used to develop reinforcement learning control techniques.

Additionally, an alternative to the relearning mechanism introduced in our previous
paper is presented. While the relearning mechanism was not able to compete with the
performance of a conventional PID-based controller, the pre-learnt-gains approach pre-
sented in this paper provides an avenue through which the developed RL-based control
algorithm can potentially outperform more conventional controllers. This was achieved by
pre-learning gains over a wide range of operation points and fitting a multi-variable poly-
nomial function to the operating surface. This allows the required gains to be calculated
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based on the current operating point of the system and applied to obtain the optimal control
input. This approach is not very computationally intensive and can easily be implemented
on a suitable microcontroller.

The limitation of using this nonlinear gain-scheduling technique is that small fitting
errors introduced by the nonlinear polynomial function lead to small steady-state errors
in the output. An additional limitation of the RL-based control presented is the compu-
tationally intensive nature of the matrix manipulations in the RL algorithm. This limits
the learning algorithm to be only suitable for deployment on advanced microprocessors.
The pre-learning of gains aims to address this but with the trade-off of small errors in the
steady state.

Finally, the sensitivity of the algorithm to the amplitude and frequency of injected
perturbation noise and the values of the Q and R weighting matrices limit the ability to
generalize RL-based control. This issue is currently under investigation. These parameters
are currently tuned via trial and error to find values that allow for control over the desired
operating surface. Improved methods based on system analytics are currently being
pursued. One improvement being considered is the modification of the underlying value
function used to derive the RL algorithm such that steady-state error and heat loss are
also minimized.
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