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Abstract: A model of a single-server queuing-inventory system (QIS) with a limited waiting buffer for
consumer customers (c-customers) and catastrophes has been developed. When a catastrophe occurs,
all items in the system’s warehouse are destroyed, but c-customers in the system are still waiting
for replenishment. In addition to c-customers, negative customers (n-customers) are also taken into
account, each of which displaces one c-customer (if any). The policy (s, S) is used to replenish stocks.
If, when a customer enters, the system warehouse is empty, then, according to Bernoulli’s trials, this
customer either leaves the system without goods or joins the buffer. The mathematical model of
the investigated QIS is constructed in the form of a continuous-time Markov chain (CTMC). Both
exact and approximate methods for calculating the steady-state probabilities of constructed CTMCs
are proposed and closed-form expressions are obtained for calculating the performance measures.
Numerical evaluations are presented, demonstrating the high accuracy of the developed approximate
formulas, as well as the behavior of performance measures depending on the input parameters.
In addition, an optimization problem is solved to obtain the optimal value of the reorder point to
minimize the expected total cost.

Keywords: queuing-inventory system; catastrophes; finite waiting room; steady-state probabilities;
space merging method; calculation algorithm
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1. Introduction

To increase the adequacy of the developed mathematical models of real queuing-
inventory systems (QISs), it is necessary to consider the possibility of various risks. Among
these risks, catastrophes (disasters) that lead to the destruction of all (or parts) of inventories
are more important. Generally speaking, in real systems, catastrophes are rare events.
However, the rate of catastrophes is not so rare that it should not be taken into account
when developing mathematical models of real QISs. In other words, catastrophes are rare
events, but they must be taken into account since they significantly affect the performance
of the system. Unfortunately, this real risk is not taken into account in the vast majority of
works devoted to QIS models.

Note that in the available literature, the issues of the impact of catastrophes on the
operation of classical queuing systems have been studied in detail; see, for instance, [1–7].
These issues have been studied in connection with assessing the reliability of servers in
queuing systems since, in them, catastrophes are interpreted as failure of the system servers;
see [8,9] and their reference lists.

The catastrophes in a QIS warehouse give rise to new problems, and these prob-
lems have been poorly studied in the available literature. Models of a QIS with random
catastrophes that destroy only one item in a warehouse were developed in [10], in which
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catastrophes are interpreted as destructive customers. Recently, ref. [11] considered QIS
models with the possibility of a disaster destroying all inventory in a warehouse. The
vast majority of works, including the mentioned papers [10,11] devoted to models with
catastrophes, study QIS models with an infinite queue. To analyze such models, the matrix
geometric method (MGM) introduced in the well-established classical book [12] is often
used; for more detailed descriptions and applications of the MGM, see recent two-volume
books [13,14] as well as book [15]. However, models with an infinite queue are not adequate
for the real situation, since in real QISs, as a rule, there is a finite waiting room. However,
models of QISs with finite waiting rooms for c-customers have been poorly studied; see
works [16–22].

Another risk in QIS is associated with consumer customers (c-customers) leaving
the system without purchasing items. This can usually be interpreted as some outsider
encouraging the c-customer to buy the product from another seller. To model such a
risk, the concept of a negative customer (n-customer) was used in [11]. In other words,
n-customers are not received in order to buy items but in order to lure c-customers into
the system.

This work continues the research that was started in the above work [11]. Namely,
here, we study a Markov QIS model with catastrophes that destroy the entire warehouse
and with a finite buffer for waiting c-customers. In addition, in order to improve the
adequacy of the proposed model, n-customers are also taken into account. As far as we
know, until now in the available literature, models of the finite QIS with both types of
risks (i.e., catastrophes and negative customers) have not been considered. Studying such
a model will allow QIS managers to make correct decisions regarding the operation of
the system. In particular, the QIS manager can correctly determine the reorder point
for replenishment, as well as predict the characteristics of the system depending on the
intensity of disasters as well as the load parameters of the system (i.e., rate of customers,
service time, lead time, etc.). Note that imposing a restriction on the size of the buffer
for c-customers leads to a fundamental change (compared to the infinite model) in the
methodology for studying the system. In addition, new characteristics of the system appear
here. We understand that the Poisson/exponential assumption is a rough approximation of
the real situation, but, first, this paper is one of the first works in this direction, and, second,
a methodology for studying these systems is proposed here.

The main contributions of this work are summarized as follows:

• Exact and approximate methods to study a QIS model with finite waiting rooms
are developed.

• High-accuracy, closed-form, approximate formulas for calculating the steady-state
probabilities and performance measures of the investigated QIS in the case of rare
catastrophes are developed.

• By using developed approximate closed-form formulas, the performance measures
of large-scale QISs are calculated and the expected total cost (ETC) is minimized by
choosing the optimal value of reorder point.

This paper is organized as follows. In Section 2, we describe the model of investigated
finite QIS. Both exact and approximate methods to calculate the steady-state probabilities
as well as performance measures are developed in Section 3. The results of numerical
experiments are shown in Section 4. Concluding remarks are given in Section 5.

2. The Model

Consider a single-server finite QIS in which the warehouse has a maximum capacity S.
Arriving homogeneous c-customers are represented by a Poisson flow with intensity λ+.
Customer homogeneity means that each customer requires the same amount of inventory.
The service times of the c-customers are independent identically distributed (i.i.d.) random
variables with an exponential cumulative distribution function (c.d.f.); its mean value
is equal to µ−1 and the inventory level decreases by one unit when c-customer service
ends. The waiting room for queuing c-customers has a finite size R, R < ∞. This means
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that if, when a c-customer arrives, the buffer is completely occupied, then the arriving
new c-customer is lost with probability (w.p.) 1; otherwise, the arriving c-customer will
enter the buffer if the server is busy. A combined sales scheme is applied, i.e., if upon the
arrival of a c-customer, the warehouse is empty, then, in accordance with the Bernoulli
trials, the customer either enters the buffer w.p. φ1 or leaves the system without items w.p.
φ2 = 1 − φ1.

In addition to c-customers, the system also receives negative customers (n-customers)
with intensity λ−. Negative customers require no service or inventory, but upon the
arrival of such customers, one c-customer is pushed out of the system, if any. The detailed
procedure of managing the pushing out of the c-customer is as follows: (1) if there is a
queue of c-customers, then only the c-customer is pushed out of the queue; (2) if there is
no queue of c-customers and only the c-customer is receiving service, then the n-customer
evicts the c-customer, which is located in the server, from the system (in these cases the
inventory level remains the same since items are released after the completion of servicing
a c-customer); (3) if there are no c-customers in the system (in buffer or on the server), then
the arrived n-customer does not impact the operation of the system.

Catastrophes are represented by a Poisson flow with intensity κ, and when a catas-
trophe occurs, all inventory is instantly destroyed. The catastrophe destroys even the
items that are allocated for sale to the c-customer. In this case, the interrupted c-customer
returns to the buffer, i.e., the catastrophe only destroys the items and does not push out the
c-customer from the system. Catastrophes do not affect the operation of the warehouse if it
is empty.

In order to be specific, here, (s, S) is the inventory replenishment policy considered
(sometimes this policy is called “Up to S” as well). This means that when the inventory
level drops to the re-order point s, 0 ≤ s < S, a replenishment order is placed, and upon
replenishment, the inventory level is restored to level S, regardless of how many items
were in inventory.

The lead times of the replenishment’s i.i.d. variables with exponential c.d.f. are
represented by the average value of the lead times, which is equal to ν−1.

The problem is to find the joint distribution of the number of c-customers in the system
and the inventory level in the warehouse, as well as to calculate the main performance
measures: the mean number of items in the warehouse, the mean order size, and the mean
re-order rate, which includes the mean length of the queue and the loss rate of c-customers.

3. Steady-State Analysis

In this section, the Markov model is developed and both exact and approximate
methods to obtain the steady-state probabilities are proposed.

3.1. An Exact Approach

This subsection proposes an exact method for obtaining the steady-state probabilities
and the main performance measures defined above. As in Melikov et al. (2023) [12], let
Xt be the number of c-customers at time t and Yt be the inventory level at time t. So, the
process Zt = {(Xt, Yt), t ≥ 0} forms a two-dimensional continuous-time Markov chain (2D
CTMC) with the following state space:

E =
S⋃

m=0
Em (1)

where Em = {(0, m), (1, m), · · · , (R, m)} is the subset of states in which the inventory level
is equal to m, m = 0, 1, · · · , S.

The transition rate from micro-state (n1, m1) to micro-state (n2 , m2) is denoted by
q((n1, m1), (n2, m2)). By taking into account the assumptions related to operating the
investigated QIS, we obtain the following relations to determine these transition rates:
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q((n1, m1), (n2, m2)) =



λ+φ1, m2 = m1 = 0, n2 = n1 + 1,
λ+, m2 = m1 > 0, n2 = n1 + 1,
λ−, m2 = m1, n2 = n1 − 1,
µ, m2 = m1 − 1, n2 = n1 − 1,
κ, m1 > 0, m2 = 0, n2 = n1,
ν, m1 ≤ s, m2 = S, n2 = n1.

(2)

From relations (2) we conclude that each state of the constructed 2D CTMC can be
reached from any other state through a finite number of transitions, i.e., the considered
chain is an irreducible one. In other words, for each positive value of the loading parameters,
a steady-state regime exists. Let us denote by (n, m) the probability of the state (n, m) ∈ E.
The desired steady-state probabilities are obtained as a solution of the system of balance
equations (SBE), constructed using relations (2).

Case 1: When (n, 0) ∈ E0, the following is true:(
λ+φ1χ(n < R) + λ−χ(n > 0) + ν

)
p(n, 0) = λ+φ1 p(n − 1, 0)χ(n > 0)

+λ−p(n + 1, 0)χ(n < R) + µp(n + 1, 1)χ(n < R) + κ∑S
m=1 p(n, m).

(3)

Case 2: When (n, m) ∈ Em, 0 < m ≤ s, the following is true:(
λ+χ(n < R) + λ−χ(n > 0) + ν+ µ + κ

)
p(n, m) = λ+p(n − 1, m)χ(n > 0)

+λ−p(n + 1, m)χ(n < R) + µp(n + 1, m + 1)χ(n < R).
(4)

Case 3: When (n, m) ∈ Em, s < m < S, the following is true:(
λ+χ(n < R) + λ−χ(n > 0) + µ + κ

)
p(n, m) = λ+p(n − 1, m)χ(n > 0)

+λ−p(n + 1, m)χ(n < R) + µp(n + 1, m + 1)χ(n < R).
(5)

Case 4: When (n, S) ∈ ES, the following is true:(
λ+χ(n < R) + λ−χ(n > 0) + µ + κ

)
p(n, S) = λ+p(n − 1, S)χ(n > 0)

+λ−p(n + 1, S)χ(n < R) + µp(n + 1, m + 1)χ(n < R) + ν∑s
m=0 p(n, m).

(6)

Here and below, χ(A) is the indicator function of the event A, i.e., it is equal to 1 if
A is true; otherwise, it is equal to 0. A normalization condition should be added to SBE
(3)–(6), i.e., the following is true:

∑(n,m)∈E p(n, m) = 1. (7)

The constructed SBE (3)–(7) is a system of linear algebraic equations of dimension
(R + 1)·(S + 1), and it can be solved numerically using known software if the QIS has
moderate buffer and storage sizes.

After determining the steady-state probabilities, the main characteristics of the QIS
under study can be calculated using a standard technique. These characteristics are divided
into two groups: (1) inventory-related performance measures and (2) queuing-related
performance measures. The first group of characteristics includes the mean number of
items in the warehouse (Sav), the mean order size (Vav), and the mean re-order rate (RR).

• The mean number of items in the warehouse (i.e., the average inventory level) is
calculated as a mathematical expectation of the appropriate random variable and is
given by the following:

Sav = ∑S
m=1 m∑R

n=0 p(n, m) . (8)
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• Similar to (8), the average order size (i.e., the average size of replenished items from
external source) is calculated as a mathematical expectation of the appropriate random
variable and is calculated as follows:

Vav = ∑S
m=S−s m∑R

n=0 p(n, S − m) . (9)

• An inventory order is placed in two cases: (1) if the inventory level drops to the
re-order point s after completing customer service in states (n, s + 1) ∈ Es+1, or (2) if
catastrophes occur in the states (n, m) ∈ Em, m > 0. Therefore, the average reorder
intensity is calculated as follows:

RR = µ∑R
n=1 p(n, s + 1) + κ

(
1 − ∑R

n=0 p(n, 0)
)

. (10)

The second group of performance measures includes the average length of the queue
(Lav) and loss rate of c-customers (LR).

• The mean length of the queue is calculated as a mathematical expectation (an average
value) of the appropriate random variable and is given by the following:

Lav = ∑R
n=1 n∑S

m=0 p(n, m) . (11)

• Losing c-customers occurs in three cases: (1) if, at the time the c-customer arrives,
the waiting room is full (with probability 1), i.e., the system is in one of the states
(R, m) ∈ Em, m = 0, 1, · · · , S; (2) if, at the time the c-customer arrives, the inventory
level is zero and the waiting room is not full (with probability φ2), i.e., the system is in
one of the states (n, 0) ∈ E0, n < R; (3) when an n-customer arrives, it displaces one
c-customer. Therefore, the loss rate of c-customers is calculated as follows:

LR = λ+∑S
m=0 p(R, m) + λ+φ2∑R−1

n=0 p(n, 0) + λ−
(

1 − ∑S
m=0 p(0, m)

)
. (12)

As mentioned above, the proposed exact approach is an effective tool for investigating
the QIS model with moderate state space. Computational difficulties arise for large-scale
models, in which case the development of an approximate method for determining steady-
state probabilities is an urgent problem. In the next subsection, we develop an approximate
method for solving this problem that can be used in cases of rare catastrophes.

3.2. An Approximate Approach

In this subsection, we derive the closed-form approximate solution for the steady-state
probabilities of the investigated 2D CTMC by using a space merging approach; see [23].
This approach is highly accurate for systems with rare catastrophes, i.e., it is assumed
that κ ≪ min(λ+, λ−, µ). Note that the last assumption is not extraordinary, since in the
opposite case (i.e., when the rate of catastrophes is close to the rate of c-customers, the
speed of their service, and the rate of n-customers), the QIS under consideration is generally
not effective.

In the case where the above assumption is fulfilled, the basic requirement for an
adequate application of the space-merging method is satisfied. In this case, transition rates
between states in each subset Em (see (1)) are much greater than the transition rates between
states from different subsets. So, in accordance with the space merging algorithm, a subset
of states Em in (1) is combined into one merged state < m >, and the merging function in
the initial state space (1) is defined as follows: U(n, m) =< m >, (n, m) ∈ E. The merged
states constitute the set Ê = {< m >: m = 0, 1, . . . , S}. Then, to calculate the approximate
values of steady-state probabilities, p̂(m, n), we have the following formula:

p̂(n, m) ≈ ρm(n)π(< m >) (13)
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where ρm(n) denotes the probability of state (n, m) within subset Em and π(< m >) denotes
the probability of merged state < m >∈ Ê.

From relations (2), we conclude that the state probabilities ρ0(n), n = 0, 1, · · · , R within
a split model with the state space E0 coincide with the distribution of a finite birth–death
process in which the birth rate is λ+φ1, while the death rate is λ−. In the same way, from
relations (2), we conclude that the state probabilities ρm(n), m > 0, n = 0, 1, · · · , R within a
split model with the state space Em are independent of m and coincide with the distribution
of a finite birth–death process in which the birth rate is λ+, while the death rate is λ−. In
other words, state probabilities within split models are determined as follows:

ρm(n) =

{
θn 1−θ

1−θR+1 , m > 0, n = 0, 1, . . . , R
θn

0
1−θ0

1−θR+1
0

, m = 0, n = 0, 1, . . . , R (14)

where θ0 = λ+φ1/λ− and θ = θ0/φ1.

Note 1. To simplify the notation, for cases m > 0 below, the subscript m is omitted in state proba-
bilities ρm(n). In cases where θ = 1 and/or θ0 = 1, all state probabilities ρm(n) = 1/(R + 1) for
each n, n = 0, 1, . . . , R and m, m = 0, 1, . . . , S.

Let us denote the transition rate from the merged state < m1 > to the merged state
< m2 > by q(< m1 >,< m2 >). Then, taking into account relations (2) and (14), we propose
the following formulas for determining these rates (all other transition rates are zero):

Case 0 ≤ m ≤ s :

q(< m >,< S >) = ν∑R
n=0 ρm(n) = ν. (15)

Case m > 0 :

q(< m >,< 0 >) = κ∑R
n=0 ρm(n) = κ; (16)

q(< m >,< m − 1 >) = µ∑R
n=1 ρm(n) = µ(1 − ρ(0)). (17)

In other words, the merged model represents a one-dimensional Markov chain in state
space Ê where transition rates between merged states are calculated via Formulas (15)–(17).
Using the approach proposed in [11], we develop the following closed-form formulas for
calculating the probabilities of merged states:

π(0) =
1 + bc
1 + dc

, (18)

π(1) = dπ(0)− b, (19)

π(m) = amπ(1), 2 ≤ m ≤ S, (20)

where the following statements are true:

d = ν+κ
µ(1−ρ(0)) , b = κ

µ(1−ρ(0)) ,

c = ∑S
m=1 am, am =

{
(1 + d)m−1, if 1 ≤ m ≤ s + 1,

(1 + d)s(1 + b)m−s−1, if s + 1 < m ≤ S.

Eventually, taking into account Formulas (13), (14), and (18)–(20), we conclude that the
approximate values of performance measures (8)–(12) can be calculated using the following
explicit formulas:

Sav = ∑S
m=1 mπ(m); (21)

Vav = ∑S
m=S−s mπ(S − m); (22)

RR = µ(1 − ρ(0))π(s + 1) + κ(1 − π(0)); (23)

Lav = ∑R
n=1 n(ρ0(n)π(0) + ρ(n)(1 − π(0))); (24)



Mathematics 2024, 12, 906 7 of 19

LR = λ+φ2π(0)(1 − ρ0(0)) + λ+ρ0(R)π(0) + λ+(1 − π(0))ρ(R)+
λ−(π(0)(1 − ρ0(0)) + (1 − π(0))(1 − ρ(0)))

(25)

4. Numerical Experiments

Below, we demonstrate the results of numerical experiments with three objectives:
(1) assess the accuracy of the proposed approximate formulas; (2) study the behavior of
the performance indicators depending on the re-order point and loading parameters; and
(3) solve the optimization problem.

4.1. Accuracy of the Developed Approximate Formulas

The accuracy of the proposed approximate formulas is investigated via numerical
evaluations. For this purpose, exact values of the steady-state probabilities (SSP) are
determined from SBE (3)–(7) for the QIS with a maximum capacity of warehouse S = 50
and buffer size R = 30, where the dimension of SBE is equal to 1581. The accuracy of
the developed approximate formulas can be estimated using several norms, e.g., cosine
similarity, Euclidean distance, Jaccard norm, etc. To be specific, here, we use a simple
norm, that is, the maximum errors when calculating SSPs. Some results of numerical
evaluations are shown in Table 1. In this table, along with an indication of the accuracy
of calculating the SSPs, results are given that indicate the accuracy of calculating the
performance measures (8)–(12). From this table, we conclude that the accuracy of the
proposed approximate formulas for calculating SSPs and performance indicators is high
for engineering applications. From this table, it is also clear that the accuracy of calculating
the SSPs is greater than the accuracy of calculating performance indicators. This was to be
expected, since the performance indicators are calculated through SSPs using operations
of multiplication by large numbers; see Formulas (8)–(12) and (21)–(25). We conducted a
large number of experiments and summarize only a small part of them here. An interesting
result of these experiments is that the larger the system size (i.e., increasing S and R), the
higher the accuracy of the approximate results obtained.

Table 1. Dependence of the absolute error of the SSPs and performance measures vs. s; λ+ = 15,
λ− = 1, µ = 2, κ = 0.1, ν = 1, φ1 = 0.4.

s Max of Error
for SSPs

Error for

Sav Vav RR Lav LR

0 1.17 × 10−3 7.01× 10−2 1.12× 10−1 1.23× 10−2 1.41× 10−1 1.54× 10−2

5 1.02 × 10−3 6.05× 10−1 1.13× 10−2 1.05× 10−2 1.02× 10−1 1.27× 10−2

10 2.15 × 10−3 3.11× 10−2 2.29× 10−2 1.91× 10−2 1.17× 10−1 1.36× 10−2

15 8.77 × 10−4 4.02× 10−2 3.01× 10−2 5.14× 10−2 1.43× 10−1 1.78× 10−2

20 7.01 × 10−4 3.18× 10−1 6.08× 10−2 4.02× 10−2 2.01× 10−1 2.15× 10−2

25 3.73 × 10−3 5.02× 10−2 7.11× 10−2 2.72× 10−2 2.02× 10−1 3.01× 10−2

30 2.16 × 10−3 1.08× 10−2 4.33× 10−2 5.05× 10−2 1.04× 10−1 2.02× 10−2

35 2.41 × 10−3 3.13× 10−1 1.02× 10−1 1.92× 10−2 1.51× 10−1 1.32× 10−2

40 1.24 × 10−3 1.02× 10−1 8.12× 10−2 1.82× 10−2 1.11× 10−1 1.03× 10−2

45 3.45 × 10−3 1.03× 10−1 2.01× 10−1 1.09× 10−2 1.21× 10−1 1.17× 10−2

4.2. Behavior of Performance Measures versus Reorder Point

Performance measures are computed and numerically evaluated for different sets of
values for the loading parameters and the reorder point. In all experiments, the values
of the following parameters are fixed: S = 50, N = 30, φ1 = 0.4, κ = 0.1. So, Figure 1
shows the dependence of performance indicators on reorder point s for the three different
values of λ+, where µ = 2, ν = λ− = 1. From these plots, we conclude that inventory-
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related performance measures are almost independent of the rate of c-customers but
significantly dependent on the reorder point, see Figure 1a–c. Note that all inventory-
related performance measures are increasing functions versus reorder points. Measure Sav
is an increasing function versus s, and this fact was expected; see Figure 1a. At first glance,
the increase in Vav versus s seems unexpected; see Figure 1b. However, this fact has the
following explanation: as s increases, the reorder rate increases (see Figure 1c), and as a
result, the average order size increases. The RR is an increasing function with respect to s
because as s increases, the probability that the inventory level is positive also increases and,
hence, RR becomes an increasing function; see Formula (10) as well. For the selected data,
the rate of its increase becomes very high at large (possible) values of the reorder point, see
Figure 1c. In contrast, the queuing-related performance measures are almost independent
of the reorder point, see Figure 1d,e. For selected initial data, the mean number of consumer
customers in systems (Lav) for all values of λ+ are very close to the buffer size (R = 30);
see Figure 1d. Therefore, the loss rate (LR) is very close to λ+; see Figure 1e.
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first glance, the increase in 𝑉  versus 𝑠 seems unexpected; see Figure 1b. However, 
this fact has the following explanation: as 𝑠 increases, the reorder rate increases (see 
Figure 1c), and as a result, the average order size increases. The 𝑅𝑅 is an increasing 
function with respect to 𝑠 because as 𝑠 increases, the probability that the inventory 
level is positive also increases and, hence, 𝑅𝑅 becomes an increasing function; see For-
mula (10) as well. For the selected data, the rate of its increase becomes very high at 
large (possible) values of the reorder point, see Figure 1c. In contrast, the queu-
ing-related performance measures are almost independent of the reorder point, see Fig-
ure 1d,e. For selected initial data, the mean number of consumer customers in systems 𝐿  for all values of   are very close to the buffer size (𝑅 = 30); see Figure 1d. There-
fore, the loss rate 𝐿𝑅  is very close to  ; see Figure 1e. 
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The dependence of performance measures on s and λ− is shown in Figure 2, where
λ+ = 15, µ = 2, and ν = 1. It is interesting to note that here, the behavior of the mea-
sures, including the absolute values of the inventory-related performance measures (see
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Figure 2a–c), is the same as in Figure 1a–c. From Figure 2d, we conclude that Lav is almost
independent of s and the rate of its decrease versus λ− is very small, i.e., increasing λ−

even by ten times leads to a change in the value of Lav in the second digit after the decimal
point. Similarly, from Figure 2e, we conclude that LR is also almost independent of s, but,
here, the rate of its decrease compared to λ− is noticeable.
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The dependence of performance measures on s and µ is shown in Figure 3, where
λ+ = 15 and ν = λ− = 1. An increase in Sav with respect to s is obvious, since when s
increases, the rate of filling the warehouse to its maximum size also increases; see Figure 3a;
on the other hand, Sav is a decreasing function versus µ because as µ increases, the rate
of inventory sales increases. Sav decreases with respect to µ, therefore, Vav increases with
respect to µ; see Figure 3b; an increase in s leads to increasing the probability that the
inventory level drops to zero due to catastrophes, i.e., the average order size is also an
increasing function versus s. Measure RR is an increasing function with respect to s, since
increasing s leads to increasing the probability that the inventory level is positive, i.e.,
the rate of replenishment of stocks due to catastrophes also increases; see Figure 3c; this
measure is also an increasing function with respect to µ, since an increase in µ leads to an
increase in the probability that the inventory level drops to the re-order point s, i.e., the rate
of replenishment increases (see Formula (9) also). From Figure 3d, we conclude that Lav is
an increasing function versus s and a decreasing function versus µ. And, for large values
of s, i.e., s > 25, the value of Lav is practically independent of µ. These facts are expected.
Measure LR is a decreasing function versus both s and µ; see Figure 3e. The decrease in
this function with respect to s is obvious, but its decrease relative to µ is not evident at first
glance. The last fact has the following explanation: an increase in µ leads to an increase in
the probability that the inventory level is zero, i.e., the loss probability of arriving consumer
customers also increases, and, hence, the measure LR becomes an increasing function.
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However, the rate of increasing LR versus µ is very small, i.e., increasing µ even by three
times leads to a change in the value of LR in the second digit after the decimal point.
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The dependence of performance measures on s and ν is shown in Figure 4, where
λ+ = 15, µ = 2, λ− = 1. The measure Sav increases both in s and ν, see Figure 4a. Indeed,
an increase in s and ν leads to an increase in the rate of filling the warehouse to its maximum
size. Measure Vav is increasing versus s, while it is a decreasing function versus ν. Here Vav
is decreasing versus ν, since Sav is an increasing function with respect to ν; see Figure 4b;
the increase in Vav with respect to s is explained as above, i.e., as s increases, the probability
that the inventory levels fall to zero due to catastrophes also increases, so the average order
size is also an increasing function versus s. Measure RR is an increasing one with respect
to both s and ν, since an increase in both s and ν leads to an increase in the probability
that the inventory level is positive; hence, the rate of replenishment of inventory due to
catastrophes also increases; see Figure 4c. From Figure 4d, we conclude that the Lav is
almost constant (does not decrease) depending on s and ν; only for small values of s, i.e.,
s < 10, we observe insignificant differences between the values of Lav for different values of
ν. Measure LR is a decreasing function versus both s and ν, see Figure 4e. This behavior
of this measure is expected, since an increase in both s and ν leads to an increase in the
average inventory level and, as a result, to a decrease in LR.
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We also numerically studied the impact of catastrophe rate on system performance
measures (see Figure 5), where S = 50, R = 30, λ+ = 15,λ− = 1,µ = 2,ν = 1, and φ1 = 0.4.
When s changes from zero and 28, the average inventory levels (Sav) are higher at higher
catastrophe intensity values, and for s greater than 28, the opposite picture is observed; see
Figure 5a. At first glance, such behavior of function Sav is unexpected, since the higher
the intensity of catastrophes, the lower the average level of inventory should be. However,
this is only so at first glance. At a low intensity of catastrophe, the available inventories
of a high level are used by c-customers, and as a result, the average inventory level turns
out to be lower than at a high intensity of catastrophe. It is important to note that these
explanations apply only to selected input parameter values, i.e., with other values of the
input parameters, observations of a different picture are possible. In other words, the
behavior of Sav versus the intensity of catastrophes significantly depends on the values
of other parameters. Here Vav is increasing function versus both s and κ, and its value
significantly depends on the value of catastrophe intensity, but very slowly changed versus
s; see Figure 5b. The behavior of RR depending on s and κ is similar to Vav, but here, the
growth rate of RR is moderate in both parameters; see Figure 5c. Note that for selected
values of initial parameters, both queuing-related performance measures, Lav and LR, are
practically independent of κ; see Figure 5d,e.
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4.3. Optimization Problem

The third goal of performing numerical experiments is solving the optimization
problem. To be specific, here, the minimization of Expected Total Cost (ETC) is considered.
In this problem, it is assumed that all load parameters and structural parameters of the QIS
are fixed, and the only controllable parameter is the reorder point. Similar to Melikov et al.
(2023) [11], ETC is defined as follows:

ETC(s) = (K + cr·Vav)·RR + ch·Sav + cps·κ·Sav + cl ·LR + cw·Lav (26)

where K is the fixed price of one order, cr is the unit price of the order size, ch is the unit
item storage price per unit of time, cps is the price of unit item destruction, cl is the cost
for a single consumer customer loss, and cw is the price per unit time of delay for a single
consumer customer.

The problem is to find a value (optimal) of s that minimizes (26). For any values
of initial parameters, this problem has a solution, since the admissible set for values
of s is finite and discrete, i.e., 0 ≤ s ≤ S − 1. Coefficients in (26) for the hypothetical
model are selected as K = 10, cr = 15, ch = 10, cl = 450, cw = 400, and cps = 15. Some
results of the minimization of (26) are demonstrated in Table 2. Here, we assume that
N = 30, φ1 = 0.4, λ+ = 15, λ− = 1, κ = 0.1, µ = 2, and ν = 1. The optimal solution
for indicated values of S is s∗ = 0. For completeness, Table 2 shows the values of the



Mathematics 2024, 12, 906 18 of 19

performance measures in the optimal solution, as well as the minimum value of the
expected total cost that is denoted by ETC∗.

Table 2. Optimization problem results.

S Sav Vav RR Lav LR ETC*

50 28.07176 1.439081 0.172690 29.92832 13.98755 18,981.34

55 31.23721 1.493466 0.162924 29.92834 13.98755 19,059.21

60 34.46487 1.548604 0.154860 29.92835 13.98755 19,138.86

65 37.75379 1.604545 0.148112 29.92836 13.98755 19,220.23

70 41.10292 1.661316 0.142398 29.92837 13.98755 19,303.25

5. Conclusions

The model of QIS with one server, catastrophes in the warehouse, and a finite waiting
room for consumer customers was proposed. When a catastrophe occurs, the entire
inventory, including the items that were in the status of release to the consumer, are instantly
destroyed. However, catastrophes do not push out consumers. It is assumed that if the
inventory level upon arrival of the consumer customer is zero, then, in accordance with the
Bernoulli trials, it either joined the buffer of infinite size or left the system unserved. In the
system, the “Up to S” replenishment policy is applied. In addition to c-customers, negative
customers also enter the system. When a negative customer arrives, one of the consumers,
if any, is pushed out. The mathematical model of the investigated QIS is constructed as a
two-dimensional continuous-time Markov chain. Both exact and approximate methods for
calculating steady-state probabilities and performance indicators of the QIS under study
are proposed. The exact method is based on balance equations, while the approximate
method is based on the space merging approach. It is noted that the proposed approximate
method has high accuracy in the case of rare catastrophes. Closed-form formulas for
calculating the performance indicators were proposed. The results of numerical evaluations
are demonstrated.

For brevity, only the QIS model with the “Up to S” replenishment policy is considered
here. A direction for further research is to explore a similar model with other commonly
used replenishment policies, e.g., (s, Q), Q = S − s > s, (S − 1, S) or a randomized replen-
ishment policy. These studies will make it possible to compare the performance of various
replenishment policies, and, thus, choose the optimal (in a certain sense) replenishment
policy. Another direction for further research should be the study of similar models with
MAP flows of c-customers and/or n-customers, as well as with the PH distribution of
service times for c-customers and/or lead times.
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