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Abstract: The negative–positive transformation (NPT) is a widely employed technique for encrypting
images on pixel blocks, commonly integrated into cryptosystems compatible with compression algo-
rithms. The existing literature on NPT analysis can be categorized into two types: theoretical analyses
with results that apply to any image, primarily focused on compression compatibility, and numerical
analyses that report empirical results from specific images, some without explaining the causes of the
security results, while others are only related to the compression performance. Consequently, there is
a significant gap in understanding the implications of applying the NPT for data protection. For that
reason, this paper conducts a theoretical statistical analysis, presenting, demonstrating, and verifying
six theorems to understand the security contributions of NPT. Two theorems examine the shape of
the image histogram and the scatter plot of adjacent pixels after the NPT application. The subsequent
four theorems explore the influence of NPT on the mean, variance, covariance, and correlation within
each pixel block. The findings indicate that the NPT generates images with symmetrical histograms,
the correlation of pixel blocks remains invariant, and distinct vertical and horizontal reflections
manifest on the scatter plot. These theorems are verified by encrypting the Lena image with four
pixel-block sizes. The histogram symmetry passed the goodness-of-fit test at a significance level of
5%, revealing consistent results. The correlation of pixel blocks remained unchanged, and the scatter
plot exhibited an x-shaped pattern. Therefore, as the NPT alone does not achieve desirable encryption
results, such as uniform histograms, scatter plots, and decreasing correlation, cryptosystems should
complement it with additional techniques.

Keywords: encryption-then-compression; JPEG encryption; negative–positive transformation;
statistical analysis

MSC: 68P25

1. Introduction

The negative–positive transformation (NPT) is a commonly utilized encryption op-
eration for securing images, particularly in compatible cryptosystems with compression
techniques [1,2]. Notably, the NPT is employed in the encryption scheme of JPEG images,
featuring prominently in various proposals [3–7]. In all of these instances, the NPT operates
at the pixel block level [8] and applies to both color and grayscale images [9,10]. Moreover,
the NPT finds applications beyond JPEG image encryption, extending its utility to hybrid
methods like compressed sensing. In such applications, the NPT plays a role in achieving
effective results for compressing encrypted images, as it can mask the original image before
compression [11]. In addition, the versatility of the NPT is established in video encryption,
particularly in MJPEG files [12]. In this context, it can replace video blocks within the
original frames.
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In its essence, the NPT finds application in the realm of data protection [13]. For
instance, it is utilized to generate learnable transformed images, subsequently employed
in convolutional neural network models. The objective is to control access to trained
models [14]. Furthermore, various adaptations and versions based on the NPT have
been developed. These proposals often strike a balance between security levels and the
efficiency of compression savings [15]. One example is the injected negative–positive
transformation (NINPT) [16] designed for compressed sensing. It is integrated into the
encoding process to resist known plain-text attacks. Another variant is the double negative–
positive transformation (DNPT) [17], which applies the NPT twice to encrypt images from
a pixel matrix.

On the other hand, evaluating the security of algorithms designed to protect data is
of paramount importance [18]. For image encryption algorithms, various measures and
analyses are employed. One crucial aspect involves statistical analysis, often incorporating
tools such as histograms, correlation assessments, and scatter plots [19,20]. The histogram
illustrates the distribution of intensity levels among encrypted pixels in an image. Addi-
tionally, the histogram of the encrypted image is ideally uniform [21,22]. In cryptography,
the goal is to introduce disparities between the original pixel values and the encrypted ones.
The more evenly distributed the pixel values are, the more resilient the algorithm is against
statistical attacks [23]. The correlation coefficient measures the relation between pixel
values. Frequently, plain digital images tend to exhibit high correlation among adjacent
pixels, capturing image features in specific regions [24]. In this way, the scatter plot is
part of correlation analysis, plotting pairs of adjacent pixels to visualize the distribution of
correlation in a specific direction [25].

However, the scope of analyses related to the NPT is limited, classifiable into theoretical
and numerical works, where the former yields results applicable to any image, and the latter
provides outcomes specific to certain images. The existing theoretical analyses primarily
explore the relationship between pixels after NPT encryption. For instance, one study
focuses on the Euclidean distance and the inner product of pixel vectors [26], aiming to
assess image compatibility with machine learning models. In contrast, our work evaluates
the NPT effects on the image histogram to analyze its statistical security. Other theoretical
analyses in the EtC domain concentrate on preserving image properties for an effective
compression process [27]. Differing from these theoretical analyses focused on preserving
compatibility, ours is grounded in security considerations.

In the realm of numerical analysis, studies address security concerns related to encryp-
tion quality, using statistical parameters such as the correlation coefficient. However, these
analyses are numerical and specifically reported from certain images [28], in contrast to
the theorems presented in this study, which have applicability to any image. While other
works mention that each pixel block in images encrypted with EtC exhibits almost the
same correlation as the original images [29,30], they lack a demonstration of the underlying
causes, a gap addressed in our work. Moreover, a comprehensive statistical analysis is
often absent in this genre of research, which typically focuses solely on compression re-
sults [31]. Hence, our proposed study emphasizes a security analysis. Understanding the
security implications of the NPT is crucial, particularly as it serves as the final step in some
cryptosystems [32], and its outcomes can directly impact the encrypted information.

Therefore, it is necessary to explore the contribution of the NPT to the cryptosystem’s
security. This paper theoretically analyzes the NPT through one of the most essential studies:
statistical analysis. Within this analysis, six theorems are presented, each accompanied by
its respective demonstration and subsequently validated through computer simulations.

1.1. Motivation

Given the regular application of the NPT in encryption schemes compatible with
compression, there is a need to explore its individual security performance. Existing security
analyses are limited, and other studies primarily concentrate on compression performance.
To understand the limitations of the technique, it is crucial to move beyond a mere numerical
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study and conduct a theoretical analysis. An individual analysis of the NPT can offer
insights into its specific contribution to security. This knowledge is essential for the design
of new encryption techniques aimed at enhancing results in encryption and compression
schemes and complementing the application of the NPT with other procedures.

1.2. Contribution

The primary contribution of this work lies in the security study of using the NPT for
image encryption through a theoretical statistical analysis. Six theorems are presented to
elucidate various statistical outcomes after the application of the NPT. Two theorems exam-
ine the shape of the image histogram and the scatter plot of adjacent pixels. The remaining
four theorems delve into the impact of NPT on the mean, variance, covariance, and correla-
tion within each pixel block. In addition to the theoretical demonstration of these theorems,
their computational verification is carried out by encrypting the Lena image using NPT.
The results obtained can be leveraged in the development of future encryption techniques
and implementations of NPT in cryptosystems to enhance security considerations.

The paper’s organization is as follows. Section 2 presents the main concepts of this
work, the NPT, correlation coefficient, binomial distribution, and the goodness of fit test.
Section 3 contains the theoretical statistical analysis of the NPT encryption, presenting the
six theorems and their proofs. Section 4 consists of the encrypted images, graphs, and tables
that verify the theorems. Sections 5 and 6 are the discussion and conclusions sections.

2. Materials and Methods

The encryption-then-compression (EtC) systems, which incorporate block scrambling,
encrypt an image with dimensions W = M × N pixels in blocks of size w = m × n pixels,
where M indicates the number of pixel rows in the image, N denotes the number of pixel
columns, and W represents the total number of pixels in the image. Similarly, in the pixel
block, m indicates the number of pixel rows, n denotes the number of pixel columns, and w
denotes the number of pixels in the block. This scheme incorporates the NPT as one of the
techniques within the EtC systems, as depicted in Figure 1. The NPT is applied to pixel
blocks and all color components of the pixels.

Figure 1. The negative–positive transformation (NPT) as a component of the EtC system for image
encryption [33].

2.1. The Negative–Positive Transformation

The negative–positive transformation (NPT) is an encryption technique applied per
pixel block, selectively transforming some pixel color values while leaving others unaltered.
The NPT randomly employs the XOR binary operation between the pixel color value px(i)
and the number 255. The number 255 corresponds to the case where the number of intensity
levels of a pixel color value is equal to 256. The decision to change the pixel color value,
px(i), to px′(i) = px(i)⊕ 255 or retain its original value, px′(i) = px(i), is determined by
a discrete random variable, X. In summary, the NPT application is defined by Equation (1).
It is necessary to note that this transformation is applied to each pixel block, a, of the
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image, affecting all pixel color values px(i) within the block, a, where 1 ≤ a ≤ W/w and
1 ≤ i ≤ w.

px′(i) =

{
px(i)⊕ 255, if X = 1
px(i), if X = 0

(1)

It is important to note that the variable X is a Bernoulli discrete random variable
(BDRV), as defined in Equation (2). The probability mass function for X is presented in
Table 1.

X =

{
1, if the pixel block a is selected
0, if the pixel block a is not selected

(2)

Table 1. Probability mass function of X in tabular form.

x 0 1

p(x) 0.5 0.5

Additionally, it is noteworthy that Equation (1) can be expressed as Equation (3), as the
XOR operation can be interpreted as the two’s complement of an 8-bit number, which
represents values between 0 and 255.

px′(i) =

{
255 − px(i), if X = 1
px(i), if X = 0

(3)

In summary, an initial random number, X = x, is generated for each pixel block
encryption. Subsequently, the computation of px′(i) takes place for all pixels within the
same pixel block according to the generated number. The process applies to each color
channel, c, in the case of a color image. Below are two examples illustrating the imple-
mentation of the NPT for a color image, where each pixel, i, has three color components,
px(i) = {Ri, Gi, Bi}. Table 2 corresponds to the example when the random number is X = 1,
and Table 3 corresponds to the case when the generated number is X = 0. In both scenarios,
the number of pixels, w, in the block is equal to 3. The original pixel values for Example 1 are
px(1) = {120, 254, 31}, px(2) = {123, 252, 37}, and px(3) = {118, 249, 34}, while for Example
2, the values are px(1) = {10, 41, 55}, px(2) = {19, 42, 53}, and px(3) = {11, 37, 54}.

Table 2. The Negative-Positive Transformation (NPT) application over a color-pixel block of w = 3
pixels and X = 1.

First Pixel Second Pixel Third Pixel
Value R1 G1 B1 R2 G2 B2 R3 G3 B3

px(i) 120 254 31 123 252 37 118 249 34

px′(i) 135 1 224 132 3 218 137 6 221

Table 3. The NPT application over a color-pixel block of w = 3 pixels and X = 0.

First Pixel Second Pixel Third Pixel
Value R1 G1 B1 R2 G2 B2 R3 G3 B3

px(i) 10 41 55 19 42 53 11 37 54

px′(i) 10 41 55 19 42 53 11 37 54

2.2. Correlation Coefficient

The correlation coefficient (ρ) assesses the confusion and diffusion effects in an en-
crypted image by considering pairs of pixels [34]. It is defined by Equation (4). In this
context, let K represent the discrete random variable for the pixel color value in the original
image, and Q denote the adjacent pixel color value in the original image. Throughout this



Mathematics 2024, 12, 908 5 of 23

work, the samples consist of w pixels as elements, where the total number of pixels in an
image is W, and w ≤ W.

ρ(K, Q) =
Cov(K, Q)√

Var(K)
√

Var(Q)
(4)

where the covariance Cov(K, Q), applicable to image encryption [35,36], is shown in
Equation (5). It serves as a measure to evaluate the strength of the relationship between
two random variables, K and Q.

Cov(K, Q) =
1
w

w

∑
i=1

(ki − k)(qi − q) (5)

Also, variance s2
k or Var(K) of a sample is defined in Equation (6).

Var(K) =
1
w

w

∑
i=1

(ki − k)2 (6)

Finally, the mean k of a sample with w elements is defined in Equation (7).

k =
1
w

w

∑
i=1

ki (7)

2.3. Binomial Distribution

If a distribution is binomial, the following conditions must be satisfied [37]:

1. It has a fixed number of trials n.
2. In each trial, there are two possible outcomes.
3. One outcome is termed as a success with a fixed probability, p, for all the trials.
4. The trials are independent of each other.
5. The random variable Y denotes the number of successes observed after the

n-executed trials.

If all the aforementioned conditions are met, the probability mass function for the
variable Y is given by Equation (8). In addition, if Y follows a binomial distribution, it can
be denoted as Y ∼ B(n, p).

fY(n, p) =
(

n
y

)
py(1 − p)n−y (8)

where y = 0, 1, 2, 3, . . . , n, its expected value is E[Y] = np, and the variance is
Var(Y) = np(1 − p).

2.4. Goodness-of-Fit Test

It is a statistical hypothesis test used to compare if the observed data from a sample of
d elements has an expected distribution. In other words, it assesses the fit of the theoretical
distribution with the collected information [38]. The test is based on proving the null
hypothesis, H0 : The data follow the theoretical distribution. Although not rejecting H0
should not be interpreted as accepting it as verified. The traditional goodness-of-fit test
follows the chi-square test. It works with the χ2 statistic, computed as Equation (9) defines
it. It sums the squared deviations between the observed registers, Oi, and the expected
values, Ei.

χ2 =
d

∑
i=1

(Oi − Ei)
2

Ei
(9)

The χ2 has d − 1 degrees of freedom, where d indicates the number of categories (cells)
into which the data are divided [39]. Additionally, the statistical test has an associated
p-value. Specifically, a histogram of 256 classes follows a theoretical distribution if χ2 < 291
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with a significance level of 0.05 [40]. The preceding information is relevant since the color
images in this work have 256 different intensity levels.

3. Statistical Analysis

In this section, the statistical analysis is conducted through the presentation and
proof of six theorems. Section 3.1 contains the theorem on the histogram. Section 3.2
provides the theorem on the mean, Section 3.3 presents the theorem on variance, and
Section 3.4 addresses the theorem on covariance. Section 3.5 explores the theorem on
correlation. Finally, Section 3.6 delves into the theorem on the scatter plot. The theorems
on the histogram and scatter plot encompass the results of the entire image, while the
remaining theorems focus specifically on the outcomes of pixel blocks. Furthermore,
Sections 3.3–3.5 include two distinct proofs each.

The analysis is based on the following assumptions. Firstly, considering that the NPT
in EtC systems is implemented in the RGB space, the analysis focuses specifically on this
color space. Furthermore, NPT operates by pixel block; hence, the results derived from
the analysis apply to pixel-block encryption. Also, it is assumed that the image width
is a multiple of the block width, and the image height is a multiple of the block height.
While the current examination is conducted on a single color component, it is important
to note that the findings can be extrapolated to any of the three colors in the RGB space.
Subsequently, the upcoming section will perform computer verification for each color,
aligning with the outcomes of this theoretical analysis.

3.1. Histogram

Histograms applied to images serve to depict the frequency distribution of each
color intensity across all pixels. In other words, it quantifies the number of pixels with a
specific intensity value throughout the entire image. This process is replicated for each
color channel, providing statistical insights into its distribution [41]. In the present study,
the number of intensity levels is 256, ranging from 0 to 255, and there are three colors: red,
green, and blue. However, it does not capture information about the spatial position of
individual pixels. Following the application of the NPT procedure, the new pixel color
values, px′(i), lead to a redistribution of the original intensity levels within the image
histogram. In this context, the resulting frequencies of the histogram are analyzed in
Theorem 1.

Theorem 1. The intensity level distribution of any image, after applying the NPT, conforms to a
symmetric histogram.

Proof. The proof involves two probabilistic experiments to examine the modified distribution.

1. Observe the new pixel color value, px′(i), after the NPT, of a pixel with an original
color value equal to h. This analysis applies to all instances of px(i) = h.

2. Observe the new pixel color value, px′(i), after the NPT, of a pixel with an original
color value equal to h ⊕ 255. It is repeated for all instances of px(i) = h ⊕ 255.

Therefore, the observation in experiment number 1 has two possibilities: retaining
its value as px′(i) = h or modifying it to px′(i) = h ⊕ 255. In this context, the BDRV, Si, is
defined in Equation (10) to represent this scenario. Additionally, in experiment two, there
are two possibilities, and to signify them, the BDRV, Ti, is defined in Equation (11).

Si =

{
1, if px′(i) = h
0, if px′(i) = h ⊕ 255

(10)

Ti =

{
1, if px′(i) = h
0, if px′(i) = h ⊕ 255

(11)
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It is important to note that in Equation (11), value h is obtained when px(i) = h ⊕ 255
changes its value to px′(i) = (h ⊕ 255)⊕ 255 = h. Additionally, considering the NPT composi-
tion in Equation (1), the probabilities for both Si and Ti variables are p(0) = p(1) = 0.5.

Another point to consider is that experiment number 1 can only be executed over the
lh ≤ W pixel color values, such that px(i) = h, and similarly, the second experiment can
be performed lh⊕255 times. Consequently, two new discrete random variables are defined,
Stot and Ttot, corresponding to the sum of the variables, Si and Ti, respectively. Both are
presented in Equations (12) and (13).

Additionally, considering that the sum of BDRV converges to a binomial distribu-
tion [42], it follows that Stot ∼ B(lh, 0.5), where the number of trials is lh, and the probability
of success is equal to 0.5. Similarly, Ttot ∼ B(lh⊕255, 0.5), with lh⊕255 trials and a success
probability of 0.5.

Stot =
lh

∑
i=1

Si (12)

Ttot =

l(h⊕255)

∑
i=1

Ti (13)

In other words, the variable Stot corresponds to the number of transformed pixels
px′(i) = h, such that the pixel color component was previously px(i) = h. Similarly,
the variable Ttot represents the number of px′(i) = h occurrences, which was previously
px(i) = h ⊕ 255.

Furthermore, it can be verified that both variables satisfy the conditions for a binomial
distribution. For example, the verification for the variable Stot is provided below.

1. It has a fixed number of trials lh, which is the original number of pixels that satisfy
px(i) = h.

2. There are only two possible outcomes: px′(i) = h and px′(i) = h ⊕ 255.
3. The success is px′(i) = h with a probability of p = 0.5.
4. The trials are independent because, within a pixel block, there are similar pixel color

values, though not necessarily the same. Then, the NPT is applied independently to
each pixel px(i) = h.

On the other hand, a final discrete random variable is proposed, denoted as F, repre-
senting the number of color pixels with a value equal to h after the NPT. It is defined in
Equation (14) and can be replicated for each color c.

F = Stot + Ttot (14)

With this in mind, the expected value of F is given in Equation (15).

E(F) = E(Stot + Ttot) = E(Stot) + E(Ttot) (15)

Since Stot and Ttot follow a binomial distribution, their expected value is computed as
n × p, resulting in Equation (16). This represents the number of pixel color values equal to
h after the NPT.

E(F) = lh × 0.5 + lh⊕255 × 0.5 =
(lh + lh⊕255)

2
(16)

Now, to estimate the number of pixel color values equal to h ⊕ 255 after the NPT,
the variables S′

tot and T′
tot are defined in Equations (17) and (18), respectively. Here, S′

tot
represents the number of transformed pixels px′(i) = h⊕ 255 that were originally px(i) = h.
Meanwhile, T′

tot considers the number of transformed pixels px′(i) = h ⊕ 255 with the
original color values px(i) = h ⊕ 255.

S′
tot = lh − Stot (17)

T′
tot = lh⊕255 − Ttot (18)
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Thus, the variable F′, as defined in Equation (19), represents the frequency of the
h ⊕ 255 level after the NPT.

F′ = S′
tot + T′

tot (19)

Now, the expected value of F′, indicating the expected frequency of pixel color values
equal to the h ⊕ 255 level, is shown in Equation (20).

E(F′) = E(S′
tot + T′

tot) = E(lh − Stot + lh⊕255 − Ttot) (20)

The expected value can also be expressed as Equation (21) by rearranging and utilizing
the definition of F in Equation (14).

E(F′) = E(lh + lh⊕255 − (Stot+Ttot)) = E(lh + lh⊕255 − F) (21)

Finally, the resultant E(F) from Equation (16) leads to Equation (22).

E(F′) = lh + lh⊕255 − E(F) = lh + lh⊕255 −
(lh + lh⊕255)

2
(22)

Simplifying the expected value of F′, it is presented in Equation (23). This result is
equivalent to the E(F) obtained in Equation (16). In other words, the expected value of the
number of frequencies for the color level h is the same as the color level h ⊕ 255. This is
anticipated for all the intensity levels of the histograms after applying the NPT.

E(F′) =
(lh + lh⊕255)

2
= E(F) (23)

3.2. Arithmetic Mean

The mean k′ calculates the average of the new pixel color values px′(i) after the NPT
application to the w pixels within a pixel block. This is illustrated in Equation (24).

k′ =
1
w

w

∑
i=1

px′(i) (24)

Theorem 2. The mean of the pixels in a block after the NPT is equal to the NPT of its original mean.

Proof. The demonstration considers two cases: when the BDRV X = 1, and X = 0. In the
former, the value px(i) = ki changes to px′(i) = ki ⊕ 255, while Equation (25) illustrates its
mean k′.

k′ =
1
w

w

∑
i=1

(255 − ki) (25)

Equation (25) is split into two sums, resulting in Equation (26).

k′ =
1
w

(
w

∑
i=1

255 −
w

∑
i=1

ki

)
(26)

The first term is a constant sum, and the second one corresponds to Equation (7).
The simplified result is in Equation (27).

k′ = 255 − k (27)

Which is equivalent to Equation (28).

k′ = k ⊕ 255 (28)
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In the case of X = 0, the pixel value remains unchanged, i.e., px′(i) = px(i). Conse-
quently, the mean also remains the same, k′ = k.

In conclusion, in both cases, the mean of pixels in a block after the NPT is equal to the
NPT of its original mean, as shown in Equation (29).

k′ =

{
k ⊕ 255, if X = 1
k, if X = 0

(29)

3.3. Variance

Similarly to the mean, the variance of px′(i) in a pixel block after applying the NPT is
analyzed with Equation (6). Since the pixels might change their values, the mean k′ also
needs to be considered (obtained in Equation (29)). Consequently, the variance s

′2
k , which

includes these considerations, is shown in Equation (30).

s
′2
k =

1
w

w

∑
i=1

(px′(i)− k′)2 (30)

The variance quantifies the degree of dispersion among the elements within a set [41].
It considers the squared distance between a specific value of the set and the mean of the set.
It computes all the distances in this manner for all the elements of the set. Subsequently,
their average is calculated to derive the variance. In this context, the set is the pixel block,
and the elements are the pixel color values. Since the mean can change after the NPT
application, the variance must consider this modification along with the encryption of the
pixel color values. In this way, the Theorem 3 is presented.

Theorem 3. The variance of pixels in a block remains invariant after the NPT.

Proof. The demonstration considers the two following NPT cases: X = 1 and X = 0. When
X = 1, then px′(i) = 255 − ki, and the resulting variance s

′2
k is expressed in Equation (31),

taking into account the mean from Equation (27).

s
′2
k =

1
w

w

∑
i=1

(255 − ki − (255 − k))2 (31)

The simplified form of Equation (31) is presented in Equation (32).

s
′2
k =

1
w

w

∑
i=1

(−ki + k)2 (32)

Finally, it can be observed that Equations (6) and (32) are equivalent, both representing
the same quadratic term.

s
′2
k = s2

k (33)

In the case of X = 0, where the pixel values remain unchanged (px′(i) = px(i)),
the variance remains the same, i.e., s

′2
k = s2

k . In conclusion, the NPT does not alter the
variance of any pixel block in either case.

Proof. Another method to derive the variance result is through the proposition in Equation (34),
which applies to linear functions of the form aK + b [43].

Var(aK + b) = a2σ2
K (34)



Mathematics 2024, 12, 908 10 of 23

Let the discrete random variable K′ represent the pixel color value in the block after
the NPT. When X = 1, K′ takes the value 255 − K. Therefore, applying the proposition, its
resulting variance is given by Equation (35). In this case, a = −1 and b = 0.

Var(K′) = Var(−K + 255) = (−1)2s2
k = s2

k (35)

Consequently, the variance after the NPT application, whether X = 1 or X = 0,
remains unchanged.

3.4. Covariance

In a similar manner, the covariance is examined after the NPT by employing two
discrete random variables. One is the variable K′ introduced earlier in the variance section,
and another random variable is defined as Q′ : The adjacent pixel color value in the block
after the NPT. The covariance of both variables is computed using Equation (5), resulting
in Equation (36).

Cov(K′, Q′) =
1
w

w

∑
i=1

(k′i − k′)(q′i − q′) (36)

The covariance measures the degree of the relationship between a pair of variables,
denoted as K′ and Q′, within the same sample [41]. In this case, the sample is the pixel
block, and the pairs of variables are defined by the values of adjacent pixels. Similar to the
variance, the covariance assesses the distance of each variable value from its respective
mean, and subsequently multiplies them. Consequently, the sign of the covariance depends
on the variability of one variable relative to the other. A positive covariance indicates a
change in the same direction, while a negative sign suggests an opposite change. Now,
the relationship between these variables is assessed after the NPT application. In this
context, the Theorem 4 is presented.

Theorem 4. The covariance within a pixel block remains invariant after the NPT.

Proof. The NPT, in the case of X = 0, preserves the initial covariance Cov(K′, Q′) = Cov(K, Q),
similar to the mean and variance. Conversely, when the NPT takes the value X = 1,
the alternative definition of the NPT in Equation (3) for k′i and q′i, along with the sample
mean value result of Equation (27), modifies Equation (36) to Equation (37).

Cov(K′, Q′) =
1
w

w

∑
i=1

((255 − ki)− (255 − k))((255 − qi)− (255 − q)) (37)

Simplifying, the result is presented in Equation (38).

Cov(K′, Q′) =
1
w

w

∑
i=1

(−ki + k)(−qi + q) (38)

Consequently, the product can be expressed as shown in Equation (39).

Cov(K′, Q′) =
1
w

w

∑
i=1

(−1)(ki − k)(−1)(qi − q) (39)

Therefore, the final result is shown in Equation (40).

Cov(K′, Q′) =
1
w

w

∑
i=1

(ki − k)(qi − q) (40)

In conclusion, the NPT does not modify the covariance value in a pixel block.

Cov(K′, Q′) = Cov(K, Q) (41)
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Proof. Another approach to validate the covariance result is through the use of the propo-
sition in Equation (42) [43].

Cov(aK + c, Q) = aCov(K, Q) (42)

In the NPT, when X = 1, the discrete random variables K′ and Q′ change to 255 − K
and 255 − Q, respectively, as illustrated in Equation (43).

Cov(K′, Q′) = Cov(−K + 255,−Q + 255) (43)

Therefore, we apply the preposition of Equation (42) to Equation (43) with a = −1 and
b = 255.

Cov(K′, Q′) = (−1)Cov(K,−Q + 255) (44)

Since Cov(K, Q) = Cov(Q, K), applying Equation (42) once more yields Equation (45).

Cov(K′, Q′) = (−1)(−1)Cov(Q, K) (45)

Consequently.
Cov(K′, Q′) = Cov(K, Q) (46)

3.5. Pearson Correlation

The correlation of Equation (4) is rewritten as Equation (47) to denote the NPT application.

ρ(K′, Q′) =
Cov(K′, Q′)√

Var(K′)
√

Var(Q′)
(47)

Theorem 5. The Pearson correlation in a pixel block remains invariant under the NPT.

Proof. Combining the results obtained for variance in Equation (33) and covariance in
Equation (41), the overall result is presented in Equation (48).

ρ(K′, Q′) =
Cov(K, Q)√

Var(K)
√

Var(Q)
(48)

In conclusion, the correlation remains unaltered, i.e., ρ(K′, Q′) = ρ(K, Q).

3.6. Scatter Plot

Given two pixel values denoted as r and s, where one is adjacent to the other, their
representation on a scatter plot can be with the point (r, s). The NPT application shifts
this point in horizontal and vertical directions, as depicted in Figure 2. It is important to
highlight that reflections occur concerning the center at (127, 127).

Below, each of the reflections presented in Figure 2 are described as follows:

1. Vertical reflection. In Figure 2b, the pixel value r remains unchanged after the appli-
cation of the NPT, indicating that it was applied in this block with X = 0. On the
other hand, the adjacent pixel with an original value, s, changes its value to 255 − s,
signifying that it belongs to another (but adjacent) pixel block where the NPT has
been applied with X = 1.

2. Horizontal reflection. In Figure 2d, the pixel value r transforms to 255 − r after the
application of the NPT with X = 1 in its block. Meanwhile, the adjacent pixel with
value s belongs to another pixel block (though adjacent), and in that block, the NPT is
applied with X = 0, resulting in an unchanged value.
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3. Simultaneous vertical and horizontal reflection. This is illustrated in Figure 2c. In con-
trast to the other two cases, this type of reflection arises from two possibilities. Firstly,
both adjacent pixels with values r and s are in the same pixel block, and the NPT is
applied with X = 1 in that pixel block. The second possibility is that both pixel values
are in different pixel blocks, but in both blocks, the NPT is applied with X = 1.

Figure 2. Possible reflections of a pixel value pair (r, s) after NPT. (a) Original position. (b) Vertical
reflection across the abscissa axis. (c) Reflection over both axes. (d) Horizontal reflection across the
ordinate axis.

Theorem 6. The NPT results in reflections in a scatter plot, occurring over either the horizontal,
vertical, or both axes, with the point of origin set at (127, 127).

Proof. The demonstration evaluates the distance of the new point to the origin (127, 127)
in various directions after applying the NPT compared to the original distances.

In the horizontal direction, let d = |127 − r| represent the distance to the center before
the NPT. If the NPT, applied to its corresponding pixel, has X = 1, then
d = |127 − (255 − r)| = | − 128 + r| = |128 − r|. Otherwise, it does not alter its value,
and the distance remains unchanged.

Similarly, the distance to the center in the vertical direction is d = |127 − s|. If it
modifies its value, the distance becomes d = |127− (255− s)| = | − 128+ s| = |128− s|.

4. Computer Verification

In this section, we validate the six theorems by implementing the NPT and applying
it to encrypt the Lena image (Figure 3). Furthermore, the original histograms and scatter
plots are displayed in Figure 4. As the NPT operates on pixel blocks, and although the
theorems are demonstrated for any size, we present the results of four different block sizes.
The encryption results in sizes of 2 × 2, 4 × 4, 8 × 8, and 16 × 16 are shown in Figure 5.

Concerning the execution time for encrypting the Lena color image of 512 × 512 pixels,
it is 120.03 ms for a pixel block size of 2 × 2, 82.05 ms for a size of 4 × 4, 78.80 ms for a block
size of 8 × 8, and finally, 78.64 ms for a size of 16 × 16.

Figure 3. The Lena image, measuring 512 × 512 pixels, is utilized in this section for encryption, using
the NPT to validate the presented theorems.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Lena’s original histograms and scatter plots. (a) Histogram of the red channel. (b) Histogram
of the green channel. (c) Histogram of the blue channel. (d) Scatter plot of the red channel. (e) Scatter
plot of the green channel. (f) Scatter plot of the blue channel.

(a) (b)

(c) (d)

Figure 5. Encryption results of the Lena image using the NPT for various block sizes. (a) Pixel block
size of 2 × 2. (b) Pixel block size of 4 × 4. (c) Pixel block size of 8 × 8. (d) Pixel block size of 16 × 16.
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4.1. Histogram

The histograms in Figure 5 display a symmetric shape, with the center around intensity
levels of 127–128. Additionally, each color histogram is presented for the four different pixel
block sizes. The red color histogram is depicted in Figure 6, while Figures 7 and 8 showcase
the green and blue color histograms, respectively. By comparing the observed values from
the histograms with the expected frequencies obtained in Equation (23), a goodness-of-fit
test is conducted. The degree of resemblance between the experimental and theoretical
values is quantified and summarized in Table 4. Notably, the pixel blocks of size 2 × 2 and
4 × 4 successfully pass the test for their 256 intensity levels in each color.

(a) (b)

(c) (d)

Figure 6. Resultant histograms of the red channel from Figure 5. (a) Red channel histogram from
Figure 5a. (b) Red channel histogram from Figure 5b. (c) Red channel histogram from Figure 5c.
(d) Red channel histogram from Figure 5d.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Resultant histograms of the green channel from Figure 5. (a) Green channel histogram from
Figure 5a. (b) Green channel histogram from Figure 5b. (c) Green channel histogram from Figure 5c.
(d) Green channel histogram from Figure 5d.

(a) (b)

(c) (d)

Figure 8. Resultant histograms of the blue channel from Figure 5. (a) Blue channel histogram from
Figure 5a. (b) Blue channel histogram from Figure 5b. (c) Blue channel histogram from Figure 5c.
(d) Blue channel histogram from Figure 5d.

Table 4. Results of the goodness-of-fit test (✓ Accept, x Reject), with α = 0.01.

Color 2 × 2 4 × 4 8 × 8 16 × 16

Red 213.8/✓ 284.5/✓ 597.8/x 1824.5/x
Green 215.0/✓ 238.5/✓ 370.8/x 1702.7/x
Blue 222.3/✓ 240.8/✓ 459.2/x 1456.8/x

4.2. Correlation Coefficient

Calculating the correlation coefficient involves considering the mean, variance, and
covariance, all of which were addressed in the preceding section through various theorems.
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Now, the empirical values are presented to validate each of these properties for four
different block sizes, mirroring the approach taken in the histogram section. Tables 5–8
provide the statistical outcomes both before and after encrypting two pixel blocks for each
size. The first pixel block is encrypted by NPT with X = 1, and the second with X = 0. The
results are detailed in the following points.

1. In the first pixel block, the original mean, k, changes to its complement to 255, whereas,
in the second one, it remains unaltered, i.e., k = k′. This outcome aligns with
Theorem 2, asserting that the arithmetic mean of a pixel block after the NPT cor-
responds to the NPT of the original mean.

2. The variance (Var), covariance (Cov), and correlation coefficient (ρ) of each pixel block
remain unaltered in both NPT cases, thereby affirming the validity of Theorems 3–5.
Here, for Tables 5–8, SK and SQ represent the original variances in the pixel block,
while SK′ and SQ′ denote the resultant variances after the NPT application. A similar
notation is maintained for the covariance, transitioning from Cov(K, Q) to Cov(K′, Q′),
and the correlation, progressing from ρ(K, Q) to ρ(K′, Q′).

3. The second pixel block in Table 5 exhibits a variance equal to zero since all its pixels
share the same value for the blue color. Consequently, computing the correlation is
not feasible.

Table 5. Results for two pixel blocks of 2 × 2, before and after the NPT in its two cases.

First Pixel Block Second Pixel Block
RedX=1 GreenX=1 BlueX=1 RedX=0 GreenX=0 BlueX=0

k 210.5 114.5 100.0 183.0 72.5 81.0

k′ 44.5 140.5 155.0 183.0 72.5 81.0

s2
K 110.25 240.25 100.0 4.0 2.25 0.0

s
′2
K 110.25 240.25 100.0 4.0 2.25 0.0

s2
Q 110.25 240.25 100.0 4.0 2.25 0.0

s
′2
Q 110.25 240.25 100.0 4.0 2.25 0.0

Cov(K, Q) −110.25 −240.25 −100.0 −4.0 −2.25 0.0

Cov(K′, Q′) −110.25 −240.25 −100.0 −4.0 −2.25 0.0

ρ(K, Q) −1.0 −1.0 −1.0 −1.0 −1.0 —

ρ(K′, Q′) −1.0 −1.0 −1.0 −1.0 −1.0 —

Table 6. Results for two pixel blocks of 4 × 4, before and after the NPT in its two cases.

First Pixel Block Second Pixel Block
RedX=1 GreenX=1 BlueX=1 RedX=0 GreenX=0 BlueX=0

k 224.5 136.75 127.75 88.313 24.438 59.688

k′ 30.5 118.25 127.25 88.313 24.438 59.688

s2
K 2.25 0.188 10.688 26.215 17.371 6.465

s
′2
K 2.25 0.188 10.688 26.215 17.371 6.465

s2
Q 2.25 0.188 15.688 28.426 21.879 6.848

s
′2
Q 2.25 0.188 15.688 28.426 21.879 6.848

Cov(K, Q) 1.125 −0.063 −1.063 11.102 6.031 −0.375

Cov(K′, Q′) 1.125 −0.063 −1.063 11.102 6.031 −0.375

ρ(K, Q) 0.5 −0.333 −0.082 0.407 0.309 −0.056

ρ(K′, Q′) 0.5 −0.333 −0.082 0.407 0.309 −0.056
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Table 7. Results for two pixel blocks of 8 × 8, before and after the NPT in its two cases.

First Pixel Block Second Pixel Block
RedX=1 GreenX=1 BlueX=1 RedX=0 GreenX=0 BlueX=0

k 225.844 134.828 121.109 199.234 109.594 104.906

k′ 29.156 120.172 133.890 199.234 109.594 104.906

s2
K 3.788 10.580 41.347 1641.992 1499.334 420.054

s′2K 3.788 10.580 41.347 1641.992 1499.334 420.054

s2
Q 4.086 11.297 42.042 1933.309 1729.037 457.635

s′2Q 4.086 11.297 42.042 1933.309 1729.037 457.635

Cov(K, Q) 1.507 0.321 22.953 1683.994 1451.319 357.024

Cov(K′ , Q′) 1.507 0.321 22.953 1683.994 1451.319 357.024

ρ(K, Q) 0.383 0.029 0.551 0.945 0.901 0.814

ρ(K′ , Q′) 0.383 0.029 0.551 0.945 0.901 0.814

Table 8. Results for two pixel blocks of 16 × 16, before and after the NPT in its two cases.

First Pixel Block Second Pixel Block
RedX=1 GreenX=1 BlueX=1 RedX=0 GreenX=0 BlueX=0

k 105.922 41.102 74.863 117.160 38.113 65.895

k′ 149.078 213.898 180.137 117.160 38.113 65.895

s2
K 330.931 461.927 324.845 553.291 216.515 84.087

s′2K 330.931 461.927 324.845 553.291 216.515 84.087

s2
Q 374.225 545.479 380.137 619.509 232.891 86.422

s′2Q 374.225 545.479 380.137 619.509 232.891 86.422

Cov(K, Q) 298.760 422.537 299.807 563.409 200.191 53.260

Cov(K′ , Q′) 298.760 422.537 299.807 563.409 200.191 53.260

ρ(K, Q) 0.849 0.842 0.853 0.962 0.892 0.625

ρ(K′ , Q′) 0.849 0.842 0.853 0.962 0.892 0.625

4.3. Scatter Plot

In this section, Figures 9–11 show the scatter plots for red, green, and blue pixel colors
after the application of the NPT in four distinct block sizes. The horizontal axis represents
the current pixel value at position i, while the vertical axis indicates the adjacent pixel value
one place to the right. The adjacent pixels are extracted from the first column to the last
pixel column. Additionally, the various reflections over the vertical and horizontal axes
can be observed, confirming Theorem 6. The three reflection combinations, along with the
original positions, create an “x” figure, which is more prevalent in small pixel block sizes
such as 2 × 2 and 4 × 4.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. Resultant scatter plots of the red channel from Figure 5. (a) Red channel scatter plot from
Figure 5a. (b) Red channel scatter plot from Figure 5b. (c) Red channel scatter plot from Figure 5c.
(d) Red channel scatter plot from Figure 5d.

(a) (b)

(c) (d)

Figure 10. Resultant scatter plots of the green channel from Figure 5. (a) Green channel scatter plot
from Figure 5a. (b) Green channel scatter plot from Figure 5b. (c) Green channel scatter plot from
Figure 5c. (d) Green channel scatter plot from Figure 5d.

(a) (b)

Figure 11. Cont.
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(c) (d)

Figure 11. Resultant scatter plots of the blue channel from Figure 5. (a) Blue channel scatter plot from
Figure 5a. (b) Blue channel scatter plot from Figure 5b. (c) Blue channel scatter plot from Figure 5c.
(d) Blue channel scatter plot from Figure 5d.

5. Discussion

Following the results obtained from NPT encryption, a discussion of the findings is
presented below.

• The histogram graph of an image after the NPT application displays a symmetric shape,
centered around the intensity levels of 127–128. This symmetry arises because, for each
pair of symmetric intensity levels (e.g., intensities 0 and 255), the expected values of
their frequencies are identical. Furthermore, the expected value is equal to the average
of the original frequencies of the two intensity levels before the NPT application.

• The theorem of the symmetric histogram assumes that the NPT is independently ap-
plied. However, in larger pixel block sizes, particularly those of 8 × 8 and greater, this
independence is not rigorously maintained. The increased occurrence of pixels with
the same intensity value in larger blocks may influence the independent application
of the NPT. In such cases, multiple pixels sharing the same intensity level simulta-
neously are subject to the same single NPT application, resulting in a diminished
symmetric appearance.

• The arithmetic mean of an encrypted pixel block using the NPT corresponds to the
NPT of the original mean. Specifically, when X = 1, the new value becomes the
complement of 255, considering both the integer and decimal parts of the mean.
Conversely, if X = 0, the average remains unchanged.

• The variance, covariance, and correlation of a pixel block remain invariant under the
NPT for any block size and magnitude measure. This was theoretically demonstrated
and experimentally verified.

• Reflections are observed by plotting points of adjacent pixel values on a scatter plot
after the NPT application. These reflections appear along one or two axes, specifically
delimited by x = 127 and y = 127, with the origin point being (127, 127). The double
reflection occurs when the NPT is applied with X = 1 to both adjacent pixels. A single
reflection occurs when the NPT operates with X = 1 over only one of the two adjacent
pixels, and they belong to different pixel blocks.

• Given that plain images exhibit a high linear correlation, the pairs of adjacent pixels
are similar to a line y = x on the scatter plot. After the NPT application, a graph in
the form of “x” emerges on the scatter plot, resulting from vertical and/or horizontal
reflections. Points on the line y = −x indicate a single reflection, and this occurs only
in pixel pairs from different blocks. As the number of blocks decreases (and the block
size increases), the number of pixels over this line also decreases.

• The single application of NPT preserves the initial correlation within each pixel block,
even though NPT can alter pixel values. As a technique for image encryption by
pixel blocks, it proves insufficient for safeguarding data when there is initially high
correlation. Additional encryption procedures must be applied afterward to modify
pixel values and concurrently reduce correlation.
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• Conversely, the NPT does not affect the efficacy of image compression algorithms
such as JPEG, where a high correlation is desirable in pixel blocks. Therefore, this
encryption technique can be incorporated into cryptosystems that are compatible
with compression.

Limitations and Future Directions

Conducting a theoretical analysis of the individual security of an encryption technique
encounters limitations in deriving results that can apply to any image. The study of these
limitations allows for a more informed understanding of the technique’s applicability
and the expected outcomes. The present work specifically examined the NPT within EtC
systems, providing results on the histogram, mean, variance, covariance, and correlation
that apply to any image, contrary to numerical analysis that reports results for specific
images. However, it is crucial to acknowledge these limitations in future research works.
Below, we describe some of them.

1. Entropy. The conclusion regarding a symmetric histogram in the image after the NPT
may prompt further research into other measures based on the histogram, such as
entropy. However, this obtained result alone cannot provide a complete theoretical
analysis of entropy after the NPT application. Since information entropy considers
the probability, p(I = h), that a pixel color value, I, has a specific intensity level h,
this work has demonstrated that the frequencies of intensity level, h, are the same
as the intensity level l ⊕ h, and are equal to the average of these two. Therefore,
the probability would tend to p(I = h) = p(I = h⊕ 255) = (lh + lh⊕255)/(2×W × H).
Consequently, the Shannon entropy would transition from E(I) = −∑255

i=0 p(I =
i) log2 p(I = i) to approximately E(I) = −2 ∑127

i=0 p(I = i) log2 p(I = i). This result
does not offer clear information to conclude a reduction or increase in entropy.

2. Image correlation. The correlation result obtained in this work applies to pixel blocks,
as the NPT operates at the pixel block level. Extending this procedure to obtain the
pixel correlation of the entire image presents a challenge. While the correlation of
pixel blocks remains consistent before and after encryption, it does not necessarily
imply this behavior for the correlation of the entire image. If pixel-block values
change post-encryption, even with invariant individual correlations, the correlation
of the entire image considers all the image pixels. The difficulty is located in the
neighborhood pixels across different pixel blocks. Particularly, when a pixel block is
encrypted with X = 1 and an adjacent block with X = 0, the correlation between pixel
blocks may change, as their values do not necessarily change in the same direction.
This dynamic interaction between pixel blocks makes it challenging to compute the
theoretical correlation of the entire image.

3. New encryption techniques. In the field of encryption schemes compatible with com-
pression, there are two primary considerations: the security outcomes of the employed
techniques and the impact of altering pixel values on compression performance. In the
case of JPEG compression, it operates at the pixel block level. Preserving the corre-
lation of the original image within pixel blocks is advantageous for its compression
algorithm. This is why the NPT is employed for JPEG encryption, as it maintains pixel
block correlations while altering the original values. However, it is noteworthy that
the resulting distribution of pixel values does not approximate a uniform histogram.
Producing new encryption techniques has the challenge of improving security and
maintaining compression compatibility.

6. Conclusions

This paper presents a statistical analysis of encrypted images using the NPT technique,
highlighting six theorems. These theorems were demonstrated and verified computation-
ally to comprehend the security implications of applying the NPT. The resulting histogram
of the image exhibits a symmetric shape because the expected frequencies of each pair
of symmetric intensity levels are equal. Therefore, to achieve a uniform distribution, it is
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required that the sum of frequencies for each pair of symmetric intensities be the same.
Additionally, horizontal and vertical reflections occur for couples of adjacent pixels on
the scatter plot. Furthermore, the NPT preserves the initial correlation within each pixel
block. This observation is significant, given that the primary objective of cryptography is to
disassociate information. Consequently, it is imperative to incorporate operations, either
before or after the NPT application, which reduces correlation, as the NPT itself does not
alter it. However, this weakness makes it compatible with EtC algorithms, as they operate
effectively when the correlation remains high. In conclusion, the NPT exhibits security
vulnerabilities when employed for image encryption at the pixel block level. It is necessary
to incorporate additional encryption techniques alongside the NPT that not only modify
pixel values but also decrease correlation and generate uniform histograms. The challenge
lies in ensuring that these techniques are also compatible with compression.
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