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Abstract: This article shows a method for the statistical analysis of signals. Firstly, this method was
applied to analyze the processing of signs generated by an acquisition card for pulse measurement
using the synchronous demodulation method. The application of the method allowed the study of
each signal consisting of a descriptive statistical analysis, followed by the analysis of the trend and
dynamics of the movement using the augmented Dickey–Fuller test and Hurst exponent, respectively.
Secondarily, the method presented here supported the comparison between the pulse signals obtained
by synchronous demodulation and plethysmography methods. In addition, the residuals from the
pulse comparison of both methods were analyzed. To quantify the differences between the signals,
these were compared using the mean-squared error, the root-mean-square error, the mean absolute
error, the mean error, the mean absolute percentage error, and the mean percentage error. After
this research, it was possible to analyze the signals knowing characteristics such as the following:
the presence of normal, exponential, lognormal, and uniform distributions, stationary trend, and
dynamic movement anti-persistent. The novelty that this article proposes is the use of concepts
traditionally used in the study of time series and models of demand administration, now focused
on supporting improvements over the different stages of design and conceptualization of signal
processing devices.

Keywords: augmented dickey-fuller test; hurst exponent; quantile-quantile plot; distribution
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1. Introduction

There are many different types of human signals, such as electrocardiograms, elec-
troencephalograms, seismocardiography, and photoplethysmograms, among others [1–6].
These have an important role in pathological diagnostic processes. To process these signals,
noise elimination, feature extraction, and classification are common.

In recent decades, the use of portable devices that allow the acquisition of vital
parameters through signals has increased significantly. Miniaturized technologies and
powerful signal processing applications make them a non-invasive, cost-effective, and
time-saving tool for cardiac monitoring [5]. The physiological signals that are traditionally
used to extract information about the cardiovascular system are pulse, blood pressure,
arterial oxygen saturation, and respiration, among others. Pulse rate is an essential indicator
of cardiovascular health in living beings. It can predict the incidence, progression, and
mortality associated with cardiovascular disease. Adequate monitoring can contribute to
the prevention, rehabilitation, and evaluation of their behavior.

Wearable devices were the top trend in an electronic survey of health and fitness
trends in 2022: they have been estimated to be a $100 billion industry in the US [5]. Market
research forecasts growth of heavy future investment in terms of industrial research, to
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improve the sensors in terms of flexibility, motion, and smart textiles. Within the state of
the art, there is a large number of devices whose purpose is the use of signals [7–11]. In
addition to health devices, other devices based on the use of signals are being integrated
into critical applications, to name a few: remote patient monitoring, space exploration,
industry, detection, control, and monitoring systems. As a result of this, other tools must
be migrated to the signal monitoring environment and its characterization [12–18].

For this study, an acquisition card (AC) designed for pulse measurement, obtained as part
of the basic science Project with reference to number 0000000287237 CB-2016-01, was used [19].
Within this work, the signals of the time series generated by AC for an environmental signal
are analyzed, this signal was taken under normal conditions of pressure and temperature.
These signals range from their collection to obtaining pulse measurements. Additionally, the
method of synchronous demodulation [20–24] and plethysmography [25–31] were compared.

The novelty of this document lies in the fact that topics of high statistical impor-
tance have been united to develop an accessible and supportive method for developers
of biomedical and other concepts based on signals. This research was inspired by the use
of statistical tools currently used for the description and comparison of time series and
models for demand administration. Considering that the signals studied here are also time
series, it was decided to apply some concepts in this new field. We consider it important to
mention that we have not identified a document that integrates the topics and scope that
this proposes.

The importance of this work lies in analyzing the evolution of the signal with statistical
tools according to the treatments it receives. Describing the signal, evaluating its trend,
and knowing its movement dynamics allowed the AC developers to support decision-
making on features, such as the following: (1) the assignment, integration, or elimination of
electronic components, (2) filtering techniques and selection of readings, (3) and the use of
external components among others (these aspects will be documented in the design work of
the AC system in a document independent of this). The added value of the results obtained
lies in the findings on the robustness of the statistical parameters applied here, as well as in
the following, in which these allow scrutinizing the characteristics of the signals studied.

The statistical method proposed in this document is formed by three steps which are
mentioned below: Step 1. Dataset description and preparation; Step 2. Data processing;
and Step 3. Signal characterization.

The descriptive statistical analysis consisted of the use of statistical parameters of
tendency and dispersion [32–35]. Several of the components of the time series signals were
analyzed, these were the following:

1. Trend analysis, based on the augmented Dickey–Fuller test [36,37];
2. Dynamics of movement, from the Hurst exponent [38–40].

Additionally, this research addresses some of the most commonly used metrics in
measuring the error between two series [41–46]. The nomenclature used in this document
can be seen in the index presented in Abbreviations.

The rest of the article is presented as follows. Section 2 presents the statistical method
for the analysis of the signals step by step. Section 3 presents the results obtained from
each of the signals studied as well as the comparison of the pulse signal between the
direct synchronization and plethysmography methods. Section 4 discusses the results of
the present study, as well as a visualization of future perspectives in light of the findings
presented here. And finally, in Section 5 shows the conclusions.

1.1. Methods for Measuring Pulse

Pulse waves and pulse rate are important indicators of cardiovascular health. Several
developments in contactless methods have been documented. Table 1 contains some of the
many exciting ones.
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Table 1. Several developments for pulse measurement: description, advantages, disadvantages in recent years.

Development Description Advantages Disadvantages Year/References

Cardiac pulse detection by a pulse
train using the synchronous
Demodulation Technique.

In this document, the operating
principle is presented, together with
the mathematical demonstration of
the theory on which the method for
the treatment and recovery of the

heart rate signal is based.

The method is presented in
mathematical form.

The number of dates must
be expanded.

2023/Project with reference to
number 0000000287237 CB-2016-01

This method uses a low-power
millimeter wave radar system.

It uses a low-power millimeter wave
radar system with a transmission

power of less than 6 dBm.

In a 20 min monitoring experiment,
96.96% accuracy is reached by

this method.

These low-power devices make it
impossible to maintain the echo

intensity at an optimal level, making
accurate and reliable monitoring.

2023/[10]

Use of facial videos.
Robust pulse rate measurements

from facial videos in
diverse environments.

The method stably detects faces by
removing high-frequency

components of face coordinate
signals derived from noise factors.

The method uses the average of
interval values between detected

peak points.
2022/[7]

Several capacitive
coupling methods.

The system is composed of a set of
capacitive electrodes manufactured
on a standard printed circuit board.

The system may cause
inconvenience, such as foreign

body sensations.

This presents weak
detection signals. 2021/[8]

The method is to use microwave or
millimeter wave Doppler radar as a

non-contact hear-rate
measurement system.

This method uses ultra-wideband or
millimeter wave signals and focuses

on detection on the skin surface.

This method can obtain information
about the diastole and systole of the

heart, as well as the surface of
the skin.

Their effectiveness in vehicle
environments remains unclear. 2021/[9]

Non-contact, automated cardiac
pulse measurements using video

imaging and blind source
separation.

The authors used bland-Altman and
correlation analysis, to compare the

cardiac pulse rate extracted from
videos recorded by a basic webcam
to an FDA-approved finger blood

volume pulse sensor.

High precision and correlation were
achieved (even with the

presence of motion).

It is possible that the linearity
assumed is not representative of the

true underlying mixture
in the signals.

2010/[11]
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1.2. Pulse by the Synchronous Demodulation

The synchronous detection method is based on the theory of radio communication,
where the phase of an unknown signal is recovered by the correlation of this signal with a
sinusoidal signal of the same frequency [19,20].

Synchronous demodulation is the signal recovery method of choice when the input
envelope signal is modulated by either a pure sine wave or a square wave [21].

The synchronous detection technique requires that the signal meets certain require-
ments to determine the phase and amplitude of an input signal at a given frequency [22].
The signal can be analyzed by electronic or digital procedures. A procedure of the applica-
tion of synchronous detection in pulse detection can be found in [23], where they present a
low-duty cycle signal which is improved by data processing to achieve optimal pulse.

1.3. Pulse by Plethysmography Method

The photoplethysmography technique is widely known and a wide range of technologies
have been developed around it [24]. One of the main reasons for using the technique is to
avoid the use of additional equipment in signal monitoring [25]. Plethysmography [26–28]
is a technique that allows visualizing the variation in blood volume changes as a result of
low variations, thus allowing the detection and measurement of cardiac pulse, oxygen levels,
and other biomedical variables [26]. The operating principle is very simple: a light source
illuminates the skin then after it interacts with the skin either by transmission or by reflection,
and the results are collected to be processed. The interaction of the light with the skin is
somewhat complex [29]. Many factors affect the quantity of light received by the sensor, for
example, the effect of pressure on the sensor [30]. Although the technique to process the signal
through the plethysmography method is well known, a single light source is used for the
general case of obtaining a cardiac pulse. The photoplethysmography technique allows the
signal to be analyzed by a digital procedure, although extensive instrumentation has already
been developed [24].

1.4. Descriptive Statistics

Descriptive statistics according to the number of attributes analyzed are classified as
univariate and multivariate exploration.

As is known, measures of central tendency are statistical measures that aim to summa-
rize a set of values in a single value. Some examples of these are the mean, the mode, and
the median. On the other hand, dispersion measures are numbers that indicate whether the
variable moves a lot, a little, or more or less than another. Within this research the following
were used [31–34]:

• The mean, which is calculated from the sum of each of the signal data divided by the
total data; see Equation (1):

x =
1
n

n

∑
i=1

xi (1)

where x is each value and n is the amount of data.
And as measures of dispersion, we used the following:

• The standard deviation (σ) is defined as a measure of the dispersion by which points
differ from the mean. And in which a low value indicates that the points are very close
to the mean, while a high deviation shows that the points are spread over a larger
range of values. σ is calculated from Equation (2):

σ =

√
∑n

i=1(xi − x)2

n − 1
(2)
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• The variation coefficient (CV) is used to compare data sets belonging to different
populations, allowing a measure of dispersion that eliminates possible distortions of
the means of two or more populations. CV is calculated from Equation (3):

CV =
σ

x
× 100 (3)

• A scatterplot is one of the most powerful yet simple visual plots available. Scatterplots
can also indicate the existence of patterns or groups of clusters in the data and identify
outliers in the data [31].

• A quantile-to-quantile plot (Q-Q plot) is a graph that tests the conformity between the
empirical distribution and the given theoretical distribution. A Q-Q plot is used to
verify if data follow a particular distribution or if two given data sets have the same
distribution. If the distributions are the same, the graph is a line. The further the
obtained results are from the 45◦ diagonal, the further the empirical distribution from
the theoretical one. The extreme points have a greater variability than those in the
center of the distribution [32].

1.5. Augmented Dickey–Fuller Test

The augmented Dickey–Fuller test is one of the most widely used statistical tests.
The ADF test extends the Dickey–Fuller test equation to include higher-order regressive
terms in the model, this adds more thoroughness to the test. However, the null hypothesis
remains the same as the Dickey–Fuller test. ADF belongs to a category of tests called
“unit root tests” and is used to test whether a given time series is stationary. When a unit
root occurs, it means that the time series is non-stationary. Furthermore, the number of
unit roots contained in the series corresponds to the number of differentiation operations
necessary to make the series stationary. Therefore, it can be said that the series with a trend
is called non-stationary with a unit root and the series without a trend is a stationary series
characterized by not having a unit root [33].

The following is also known [34]:
The null hypothesis should be rejected when the p-value ≤ significance level or if the

test statistic ≤ critical value. Therefore, the data provide evidence that they are stationary.
The null hypothesis should not be rejected when the p-value > significance level

or if the test statistic > critical value. Therefore, the data provide no evidence that they
are stationary.

1.6. Hurst Exponent

The Hurst exponent is used in time series analysis and fractal analysis as a measure of
the long-term memory of a time series. H quantifies the relative tendency of a time series to
regress strongly from the mean or to cluster in one direction. In other words, measures how
chaotic or unpredictable a time series is, allowing one to quantify how persistent a pattern
remains over time by measuring its degree of autocorrelation [38]. H ranges between 0 and
1 [36–38], where the following applies.

If 0 ≤ H ≤ 0.5, we have an anti-persistent series, which is often called mean-reverting.
That is, if the series has been above a certain value that serves as the long-term average
in the previous period, it is more likely that it will be below in the following period and
vice versa. This series is considered to have pink noise, which is common in nature and is
related to relaxation processes (dynamic equilibrium) as well as turbulence. Then, the time
series represents an anti-persistent process with oscillations. An anti-persistent time series
exhibits volatility.

If H = 0.5 is uncorrelated. The data is independent; therefore, it is said that there is
no memory. If it is a random series that meets all the characteristics of standard Brownian
motion, then it is said to have white noise. Therefore, the time series represents a process
without dependencies or a random bed.
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If 0.5 < H ≤ 1, the series is persistent, and it reinforces the trend. That is, if the series
was above (or below) its long-term average in the previous period, it is most likely that it
will continue above (or below) in the following period. Therefore, the time series represents
a persistent process in which the trend of previous stages is maintained. That is, the time
series is self-similar.

If H = 1, the series is deterministic. In this interval, the noise color is black. It represents
a long-term cyclical processes.

1.7. Metrics to Measure the Error between Two Series

The comparison between two series is important because it allows us to recognize
those characteristics that match or differ. In this section, some of the parameters most
commonly used for this purpose are mentioned in [40,41]. A quantification of performance
metrics is presented in [18]. These parameters have been used separately in the comparison
of scenarios of multiple areas and purposes, some of which can be seen in [43–48].

For the comparison of the error (residual) between two time series, if xt corresponds
to the values of the time series 1 and yt corresponds to the time series 2 (where t is the time
period), the error between the both series is as follows (see Equation (4)):

et= xt − yt (4)

When evaluating the performance for multiple observations, say n, there will be n
error terms. We can define the following standard error measures as below.

The mean squared error (MSE) measures the mean error between the series x and
series y; see Equation (5). The range of the MSE is (0, α); the perfect value of MSE is 0,
indicating total similitude between the series that were compared.

MSE =
1
n

n

∑
t=1

(et)
2 (5)

The root mean square error (RMSE) measures the average magnitude of error between
the series x and series y (see Equation (6)). The range for RMSE is (0, α); the smaller the
RMSE value is, the higher the similarity between the two compared series. The units of
RMSE are the same as the original units.

RMSE=
[
∑n

t=1 (et)
2 /n

]1/2
(6)

The mean absolute error (MAE) is a metric used to measure the average magnitude
of the absolute errors between the series x with respect to series y; see Equation (7). The
MAE range is (0, α); the smaller the MAE value is, the higher the accuracy of the prediction
model. The units of MAE are the same as the original units.

MAE =
1
n

n

∑
t=1

|et| (7)

The mean error (ME) measures the mean error between the series that were compared
(see Equation (8)). The ME range is (−α, +α). The perfect value of the ME is 0. Other values
indicate little similarity as they move further from the origin. The percentage-dependent
metrics measure the size of the error in percentage terms of similarity between two series.

ME =
n

∑
t=1

et/n (8)
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The mean absolute percentage error (MAPE) is a measure of the prediction accuracy
of a forecasting method in statistics. It usually expresses the accuracy as a ratio, defined by
Equation (9):

MAPE =
n

∑
t=1

(xt − yt)

yt
· 100

n
(9)

The mean percentage error (MPE) measures the percentage error between two series;
see Equation (10).

MPE =
n

∑
t=1

abs
[
(xt − yt)

xt

]
· 100

n
(10)

2. Statistical Method for Analysis of Signal

The method proposed for the statistical analysis of the signals generated by the AC
consists of three steps (see Figure 1).
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Step 1. Dataset description and preparation

In this study, an AC designed for pulse measurement was used. Its operation includes
the microprocessor (PIC16F1615), through the pulse width modulation (PWM) function,
generates a pulses train with a frequency of 122 Hz that forms a square wave composed
of 8 pulses of red light and 8 pulses of infrared light spaced by 5.12 × 10−4 s; its capacity
allows the storage of 127,984 units of data. The same microprocessor controls an infrared
led on/off system (VSMD6694). This control allowed one led to remain on for a period of
8 pulses, while another remained on and vice versa. The emission of the beams hits the
surface of the environmental signal through the optical fiber. Once it interacts with the
environmental signal, the reflected light is collected by another optical fiber and processed
by a sensor (TEMD7000) connected to a trans-impedance circuit (ADA4505-2AEMZ) and
amplified to convert it into a digital signal (s1). s1 is the signal from the interaction of
the beam with the skin: it is square and noisy. The processor sent the data to memory
(CY15V104QN). The LED control process, data collection, and storage were carried out
for 65.52 s (1.09 min). The signal sampling frequency was 1950 Hz. Once stored, the data
were retrieved and emptied into a computer and processed. At this point, a low-pass filter
was applied (s2) (the filter has a dual purpose: to eliminate noise and transform the square
signal into a sine wave to apply the synchronous detection technique) to later define the
sine function with the same frequency of the analyzed signal (s3), as well as the cosine
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function (s4), and to also later calculate the pulse by direct synchronization (s5). With
the objective of a comparison between the signals of the pulse by the methods of direct
synchronization and plethysmography, (s6) was calculated too. See Figure 2, where the
fluxes of the signal were calculated by both methods. Within this work, the signals of the
time series generated by AC for an environmental signal were analyzed, this signal was
taken under normal conditions of pressure and temperature.
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The AC has the characteristic that it can work with or without connection to the
computer since, according to its design, it can be used with individuals from different
ecosystems. For this research, the card has been used connected to the computer (see
Figure 3a). Tera Term 4.105 is the software that AC uses to interact with the computer: this
allows you to work with an interface to obtain information, as well as to manipulate the
AC. Some of the commands it has are as follows: w: write in FRAM 4 Mb; r: read from
FRAM. 4 Mb; etc. (see Figure 3b). The data of s1 were extracted from the AC with a .txt
extension from Tera Term and later processed.

Step 2. Data processing

The data processing was carried out with the software Python; this allowed the
information to be extracted for each of the signals and for us to process the calculation of
each of the statistical parameters (see Table 2).
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Table 2. Statistics evaluated for each signal.

Characteristics Statistical Parameters of Tendency and Dispersion

Descriptive statistical analysis Type of data distribution, Q-Q plots, Histograms, Box and whisker plots x, σ, CV,
Trend analysis ADF
Dynamics of movement H
Metric in measuring the error MSE, RMSE, MAE, ME, MAPE, MPE, residual graphs

Step 3. Signal characterization

Finally, the evolution of each of the signals was described.

3. Results

The behavior of the descriptive statistics used in this research for all signals was
measured in volts. Firstly, the results obtained for the signals by the direct synchronization
method are shown. The graphical methods used to detect the type of distribution in
the signals showed the presence of more than one. Figures 4–6 have been focused on
showing the distribution of the data of the signals processed to obtain the pulse by the
direct synchronization method. In Figure 4, the normal distribution Q-Q plot shows that,
although the signals (s1, . . . , s5) had a normal distribution to the center, this behavior
was different in the right and left tails in all cases. In Figure 5, the Q-Q plots of uniform
distribution show the signals again (s1, . . . , s5). Figure 6 show the histogram of the signals
(s1, . . . , s5). The graphical form of the histograms of signals s2, s5 and s6, could confuse the
reader. Therefore, to correct this, the minimum value with the opposite sign of each series
was added to each value and the Box–Cox transformation was subsequently obtained
(see Table 3). Figures 7–9 show the Box–Cox transformation histogram for s2, s5 and,
s6, respectively.

Table 3. Box–Cox transformation of the signal.

Signal Minimum Value Box-Cox Transformation

S2 −0.98 s3.3
2(t)

S5 −0.00000000001 s1.35
5(t)

S6 −0.98 s1.44
6(t)
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Once the existence of more than one distribution in the data was known, the signal
data were analyzed with Promodel’s stat fit tool from 30 samples of 50 data. The identified
distribution is shown in Table 4. Distributions were presented in all signals except in s1,
where the exponential distribution was not presented. Figure 10 shows the box and whisker
plot for the signals, respectively (s1, . . . , s5), starting from s1 with xs1 = 0.5224, which, when
normalized, takes average values tending to zero

(
xs2 = −1.23 × 10−8, xs3 = 1.04 × 10−6,

xs4 = 1.01 × 10−6) to finish taking values for the pulse distribution, with xs5 = 7.67× 10−4.
In Figure 10, it can be seen that the distribution of the data is centered for all cases and
tends towards zero for the signals s2, . . . , s5. In the cases of signals s2 and s5, extreme points
are shown in the lower whisker (represented graphically as a sequence of asterisks).

To compare the dispersion between the evaluated signals, CV was used in this research
(see Table 4). CV-values were for s1 = 3.4 and s5 = 2.16. Therefore, s5 presents less dispersion
than s1; this is because s5 has already been treated. Concerning CV-values for s2, s3, s4, and
s6, this parameter becomes misleading because the small values of the mean make it highly
sensitive. Therefore, in these cases, its use is not recommended.

The trend analysis was calculated by the augmented Dickey–Fuller Test and is shown
in Table 5 for each of the signals. Therefore, when p-values ≤ 0.05, the decision is to reject
the null hypothesis. As a consequence, in all signals, the results provide evidence that the
signs were stationary. This same thing can be concluded when observing the critical values.
In the same table (third column), H is calculated. The dynamics of movement with H < 0.5
for all the signals shows that the memory of each of these is anti-persistent. Therefore, such
characteristic exhibits oscillations and high volatility. That is, if the series has been above a
certain value that serves as the long-term average in the previous period, it is more likely
that it will be below it in the following period or vice versa. In other words, all signals have
pink noise.
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Table 4. CV-value and detected distribution for the signals obtained by direct synchronization
method.

Signal CV-Value Detected Distribution

s1 3.4
Normal
Lognormal
Uniform

s2 −127 × 106

Uniform
Normal
Lognormal
Exponential (oscillating)

s3 3 × 106

Uniform
Normal
Lognormal
Exponential (oscillating)

s4 3 × 106

Normal
Lognormal
Uniform
Exponential (oscillating)

s5 2.16

Uniform
Normal
Lognormal
Exponential (oscillating)

Table 5. Augmented Dickey–Fuller test and Hurt exponent for the signals obtained by direct synchro-
nization method.

Signal ADF Calculated ADF Result H Calculated H Results

s1

Test: −113.15556052161811 p-value: 0.0
Critical values:

{‘1%’: −3.4304010901041226,
‘5%’: −2.8615625810800256,
‘10%’: −2.566782019109249}

s1 is stationary 0.01 The memory of s1 is
anti-persistent.

s2

Test: −1068.923788266477 p-value: 0.0
Critical values:

{‘1%’: −3.4304010905032816,
‘5%’: −2.8615625812564462,
‘10%’: −2.566782019203152}

s2 is stationary 0.32 The memory of s2 is
anti-persistent.

s3

Test: −13585028329382.6 p-value: 0.0
Critical values:

{‘1%’: −3.4304010905032816,
‘5%’: −2.8615625812564462,
‘10%’: −2.566782019203152}

s3 is stationary 0.00 The memory of s3 is
anti-persistent.

s4

Test: −13583953241809.928 p-value: 0.0
Critical values:

{‘1%’: −3.4304010905032816,
‘5%’: −2.8615625812564462,
‘10%’: −2.566782019203152}

s4 is stationary 0.00 The memory of s4 is
anti-persistent.

s5

Test: −311.9388497424053 p-value: 0.0
Critical values:

{‘1%’: −3.4304010913016176,
‘5%’: −2.8615625816092964,
‘10%’: −2.566782019390962}

s5 is stationary 0.33 The memory of s5 is
anti-persistent.
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Table 6 shows the comparison between signals of the MSE, RMSE, MAE, and ME
metrics (in vertical order). We decided to show the complete table considering that the
ME values vary in sign due to the order in which the signals were compared. Regarding
the values that these parameters take, in general, there is a tendency to decrease as the
signals evolve.
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Table 6. Comparative of MSE, RMSE, MAE, and ME values between the signals obtained by direct
synchronization method.

Statistical
Signal

s1 s2 s3 s4 s5

s1

0.273 0.274 0.274 0.272

0.522 0.523 0.523 0.523

0.522 0.522 0.522 0.522

0.522 0.522 0.522 0.521

s2

0.273 0.001 0.001 0.0002

0.522 0.034 0.035 0.016

0.522 0.029 0.029 0.013

−0.522 −1.052 × 10−6 −1.022 × 10−6 −7.77 × 10−4

s3

0.274 0.001 0.002 0.001

0.523 0.034 0.044 0.031

0.522 0.029 0.039 0.028

−0.522 1.052 × 10−6 −3.037 × 10−8 −7.65 × 10−4

s4

0.274 0.001 0.002 0.001

0.523 0.035 0.044 0.031

0.522 0.029 0.039 0.028

−0.522 1.022 × 10−6 3.037 ×10−8 −7.65 × 10−4

s5

0.272 0.0002 0.001 0.001

0.523 0.016 0.031 0.031

0.522 0.013 0.028 0.028

−0.521 7.77 × 10−4 7.65 × 10−4 7.65 × 10−4

Table 7 shows MAPE and MPE values for the signals s1, .., s5; some of the values could
not be calculated because, as is known, “division by zero is a division in which the divisor
is equal to zero”, and it does not have a well-defined result. Therefore, the result was
what has been named in the table as DIV/0”. On the other hand, the calculated values
lacked objectivity due to the sensitivity of these parameters to small values. Regarding the
comparison between the same signals, the values were not placed in Tables 6 and 7 because,
logically, these show total similarity while MAPE and MPE showed the same incidence of
sensitivity already mentioned.

Secondly, the results obtained for the signals by the plethysmography method are
shown. Table 8 shows that the signal of pulse for plethysmography is anti-persistent.
Therefore, this signal has pink noise.

Figure 11a–c show that data have more than one distribution. Therefore, his fit was
verified with Promodel´s stat fit and the distribution of s6 is shown in Table 9. The distri-
butions for s6 are uniform, normal, lognormal, and in the center exponential. Figure 11d
shows the existence of extreme points on the lower whisker.

Finally, the results obtained for both signals are compared. Table 9 shows the compar-
ative statistical parameters between the signals of pulse by the direct synchronization (s5)
and plethysmography (s6) methods. Both methods show normal, uniform, lognormal, and
exponential distribution (in this case, samples were taken of the total data of the signals,
defining them in three categories: initial data, central data, and final data). On the other
hand, the behavior of the means is close to zero with a low standard deviation. And the
signals are stationary and anti-persistent. The errors between the series have the following
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values: MSE = 0.0004, RMSE = 0.021, MAE = 0.013, ME = −7.67×10−4, MAPE = DIV/0 and
MPE = 102.86, the latter being little use.

Table 7. Comparative of MAPE and MPE values between the signals obtained by direct synchroniza-
tion method.

Statistical
Signal

s1 s2 s3 s4 s5

s1
9966.33 4950.28 DIV/0 DIV/0

100.02 99.99 99.99 99.85

s2
100.02 175.08 DIV/0 DIV/0

9966.23 547.6 547.5 100.25

s3
99.99 547.6 +DIV/0 DIV/0

4650.28 175.08 402.7 101.23

s4
99.99 547.5 402.7 DIV/0

DIV/0 DIV/0 DIV/0 DIV/0

s5
99.85 100.25 101.73 DIV/0

DIV/0 DIV/0 DIV/0 DIV/0

Table 8. Augmented Dickey–Fuller test and Hurt exponent for signals of plethysmography (s6).

Signal ADF Calculated ADF Result H Calculated H Results

s6

Test: −311.93884974369644
p-value: 0.0

Critical values
{‘1%’: −3.4304010913016176,
‘5%’: −2.8615625816092964,
‘10%’: −2.566782019390962}

s6 is stationary 0.33 The memory of s1 is
anti-persistent.

Table 9. Comparative statistical parameter between the signals of pulse by direct synchronization (s5)
and plethysmography (s6) methods.

Characteristic Pulse by Synchronization Method (s5) Pulse by Plethysmography Method (s6)

Descriptive
Analysis

Statistical Value Statistical Value

x 7.67 × 10−4 x −4.97 × 10−7

σ 1.67 × 10−5 σ 0.02117

CV 2.16 CV Non-robust

Detected
distribution

Initial data
Lognormal
Normal
Uniform

Detected
distribution

Initial data
Lognormal
Normal
Uniform

Central data

Uniform
Normal
Lognormal
Exponential

Central data

Uniform
Normal
Lognormal
Exponential

Final data
Uniform
Normal
Lognormal

Final data
Uniform
Normal
Lognormal

Distribution
dates

Box and whisker plot shows outlier
data in the bottom tail

Distribution
dates

Box and whisker plot shows outlier
data in the bottom tail
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Table 9. Cont.

Characteristic Pulse by Synchronization Method (s5) Pulse by Plethysmography Method (s6)

Trend analysis Stationary Stationary

Dynamics of
movement

Anti-persistent
(The signals have pink noise)

Anti-persistent
(The signals have pink noise)

Measuring the
error

Error Value

MSE 0.0004

RMSE 0.021

MAE 0.013

ME −7.67 × 10−4

MAPE DIV/0

MPE 102.86
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Figure 12 shows the histogram of the et whit Box–Cox transformation. For this, first the
smallest value of the series was added to each residue and then the transformation Box–Cox
was applied = e1.44

t . For this data the parameters statistics were x = 0.97044, Q1 = 0.94984,
median = 0.96882, Q3 = 0.98948, range = 0.99917, σ = 0.02701, σ2 = 0.000729 and
CV = 2.78.
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4. Discussion

In this study, the novelty lies in the application of topics commonly used in the field
of study of time series and demand management models, now focused on the analysis
of signals based on a useful and simple method. So the added value lies in the findings
we have had regarding the robustness of the statistics parameters used here, as well as in
the following, in which these parameters will allow scrutinizing the characteristics of the
signals studied.

In a time series self-similarity can be found, defined, and quantified. In this case, the
number of data that made up the time series studied in this document should be increased
since the current capacity of the AC limits the amount of data. Therefore, a greater number
of data would open the possibility that patterns or behaviors can be identified, considering
that self-similarity can occur in a longer time horizon.

In this document, the study of a series of signals was presented in which their descrip-
tive characteristics, trends, and movement dynamics could be known using the following
topic: x, σ, CV, data distribution, ADF, and H, as well as a Q-Q plot, histogram, and box
and whisker plot. Additionally, MSE, RMSE, MAE, and ME were applied. It was possible
to calculate the change that each signal, as well as compare the pulses obtained by direct
synchronization and plethysmography. Regarding the metrics MAPE and MPE, their scope
must be improved and, far from allowing the quantification of the error between two series,
they should be able to be comparable regardless of the population in which they have been
applied, adhering to strategies that strengthen work with small values. The next studies
are focused on the development of a set of metrics where data normalization plays an
important role in strengthening these parameters.
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The use of graphical enriched the analysis in such a way that in future research the
behaviors of the distribution could be used as fingerprints regarding time to relate them to
the response of the signals to various controllable variables.

The advantages of the proposed method are as follows:

• It is easy to use and interpret;
• Allows you to describe the signals in a simple way;
• Enables developers to have a tuning tool during the development stages;
• It is an alternative to evaluate the function of systems that emit, process, or collect

signals before being implemented in the system or ecosystem of the study individuals;
• As it is a methodology made up of solid statistical tools, its efficient use is supported.

The disadvantages of the proposed method are as follows:

• The metric evaluated to measure the error between two series, MAPE and MPE, are
not satisfactory when taking values such as 0, or very small ones; therefore, is not
recommended in this scenario. And ME values vary in sign due to the order in which
the signals were compared. Therefore, evaluating it once in the series comparison
is enough.

The experience regarding the introduction of topics from one field of study to another
that this project allowed is satisfactory. It implies an immediate strengthening of the area
of application, so the migration of statistical tools in this project aims to influence the
development of instruments that work with the principle of using signals.

5. Conclusions

In recent decades, the use of portable devices that allow the acquisition of vital
parameters through signals has increased significantly. Market research forecasts growth
with heavy future investment in terms of industrial research, to improve the sensors in
terms of flexibility, motion, and smart textiles. The use of validity protocols within the
validation of this equipment should be of interest to developers, manufacturers, consumers
and scientists to evaluate the characteristics of the device and its accuracy.

This document shows a method for the statistical analysis of signals generated by
an acquisition card for pulse measurement. This method can be applied as a protocol for
validating the behavior of systems in which the inputs and outputs are signals because it
proposes a series of steps that can be applied in an economical and simple way.

At the end of this research, it was possible to demonstrate that the signals obtained
by direct synchronization and plethysmography methods present similar behaviors. The
study of each signal consisted of a descriptive statistical analysis, followed by the analy-
sis of the trend and dynamics of the movement using the Dickey–Fuller test and Hurst
exponent, respectively.

Within this investigation, it was possible to analyze several descriptive statistics
parameters for each signal among which stand out: histograms (Box–Cox transformations),
Q-Q plots, and box and whisker plots, x, σ, CV. ADF allowed us to statistically reiterate
that the signals evaluated here are seasonal, while H showed that the memory of all the
evaluated signals was anti-persistent, which exhibited oscillations and high volatility, a
situation that did not allow for knowing the self-similarity. On the other hand, metrics for
the comparison of the behavior of the series were used, and below we comment on their
contribution. Regarding MSE, RMSE, MAE, and ME in general, there was a tendency to
decrease. ME presented positive and negative values according to the position that the
series took. MAPE and MPE showed little robustness to the small values of the signals and
its use did not add value to the study. The use of residual graphs turned out to be very
beneficial in evaluating the behavior of the error over time for the comparison of two series.
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Abbreviations

Notation Interpretation
AC Acquisition card
x Mean
σ Standard deviation
CV Coefficient of variation
ADF Augmented Dickey–Fuller test
H Hurst exponent
MSE Mean-squared error
RMSE Root-mean-square error
MAE Mean absolute error
ME Mean error
MAPE Mean absolute percentage error
MPE Mean percentage error
X Each value in the sample
N Amount of data
et Error between two-time series (residual)
s1 Digital signal
s2 Signal after that the pass filter was applied
s3 Sine function with the same frequency of the analyzed signal
s4 Cosine function with the same frequency of the analyzed signal
s5 Pulse by direct synchronization method
s6 Pulse by plethysmography method
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