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Abstract: In this paper, we present a novel family of soft sets named “soft ωδ-open sets”. We find that
this class constitutes a soft topology that lies strictly between the soft topologies of soft δ-open sets
and soft ω0-open sets. Also, we introduce certain sufficient conditions for the equivalence between
this new soft topology and several existing soft topologies. Moreover, we verify several relationships
that contain soft covering properties, such as soft compactness and soft Lindelofness, which are
related to this new soft topology. Furthermore, in terms of the soft interior operator in certain soft
topologies, we define four classes of soft sets. Via them, we obtain new decomposition theorems for
soft δ-openness and soft θ-openness, and we characterize the soft topological spaces that have the soft
“semi-regularization property”. In addition, via soft ωδ-open sets, we introduce and investigate a new
class of soft functions named “soft ωδ-continuous functions”. Finally, we look into the connections
between the newly proposed soft concepts and their counterparts in classical topological spaces.
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1. Introduction and Preleminaries

In today’s complex world, accurate modeling and management of many types of
uncertainty are essential to tackle difficult issues in different fields, including environ-
mental science, economics, engineering, social sciences, and medicine. While well-known
techniques like probability theory, fuzzy sets [1], and rough sets [2] help handle ambiguity
and uncertainty, they are not without limitations. These mathematical methods all share
the same flaw, which is insufficient parameterization capabilities. In 1999, Molodtsov [3]
introduced soft set theory as a solution to the shortcomings of earlier uncertainty-handling
techniques. After that, the interpretation of soft sets for modeling uncertainty has been
conducted; advancements in this area are described in [4,5]. Equipped with soft sets, pa-
rameter sets offer a defined framework that is naturally adaptable, facilitating the modeling
of unclear data. Soft set theory and related fields have advanced greatly as a result very
soon. As may be observed in [6–12], this has led to several applications of soft sets in
real-world fields.

Numerous mathematicians have used soft set theory to introduce various mathe-
matical structures, including soft group theory [13], soft ring theory [14], soft convex
structures [15], and soft ideals [16]. These papers highlight the use of soft set theory in
handling challenging mathematical problems.

Shabir and Naz [17] created soft topology first, and since then, a lot of researchers
have focused on extending the topological concepts to include the field of soft topology.
For instance, soft metric spaces [18–20], soft connected spaces [21], soft covering proper-
ties [22–24], and generalized soft open sets [25–29] are a few of the notions mentioned.
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Recent papers [30–37] show that research in soft topology is currently ongoing and that
there is still an opportunity for important contributions.

The generalizations of soft open sets play an effective role in the structure of soft
topology by using them to redefine and investigate some soft topological concepts such as
soft continuity, soft compactness, and soft separation axioms. This paper follows this area
of research.

The arrangement of this article is as follows:
In Section 2, we define soft ωδ-open sets. We study the features of sets and show how

they relate to well-known other classes of soft sets, like soft δ-open sets and soft ω0-open
sets. Furthermore, we investigate the links between this class of soft sets and its classical
topology analogs. We also investigate several relationships that contain soft covering
properties, such as soft compactness and soft Lindelofness.

In Section 3, we define four new classes of soft sets. We use them to provide novel
decomposition theorems for soft δ-openness and soft θ-openness, as well as characterize
semi-regularized soft topological spaces.

In Section 4, via soft ωδ-open sets, we define soft ωδ-continuous functions as a new
class of soft functions and investigate some of their properties. We give several charac-
terizations of it. Also, we investigate the links between this class of soft functions and its
analogs in general topology. Moreover, we show that soft ωδ-continuity is strictly weaker
than soft ω0-continuity.

In Section 5, we give some findings and potential future studies.
Throughout this paper, we will use the concepts and terminology as they appear

in [38,39].
Here, we recall some basic definitions and results that will be needed in this sequel.
Let M be an initial universe and Z be a set of parameters. A soft set over M relative

to Z is a function T : Z −→ P(M), where P(M) is the power set of M. The collection of
all soft sets over M relative to Z is denoted by SS(M, Z). Let G ∈ SS(M, Z). If G(a) = ∅
for every a ∈ Z, then G is called the null soft set over M relative to Z and denoted by 0Z.
If G(a) = M for all a ∈ Z, then G is called the absolute soft set over M relative to Z and
denoted by 1Z. If there exist x ∈ M and a ∈ Z such that G(a) = {x} and G(b) = ∅ for
all b ∈ Z− {a}, then G is called a soft point over M relative to Z and denoted by ax. The
collection of all soft points over M relative to Z is denoted by SP(M, Z). If for some a ∈ Z
and X ⊆ M, G(a) = X and G(b) = ∅ for all b ∈ Z− {a}, then G will be denoted by aX.
If for some X ⊆ M, G(a) = X for all a ∈ Z, then G will be denoted by CX. G is called a
countable soft set over M relative to Z if G(a) is countable for all a ∈ Z. The collection of
all countable soft sets over M relative to Z will be denoted by C(M, Z). If G ∈ SS(M, Z)
and ax ∈ SP(M, Z), then ax is said to belong to G (notation: ax∈̃G) if x ∈ G(a).

Soft topological spaces were defined in [17] as follows: A triplet (M,Y , Z), where
Y ⊆ SS(M, Z), is called a soft topological space if 0Z, 1Z ∈ Y , and Y is closed under finite
soft intersections and arbitrary soft unions.

Let (M,Y , Z) be a soft topological space, and let H ∈ SS(M, Z). Then the members
of Y are called soft open sets. The soft complements of the members of Y are called soft
closed sets in (M,Y , Z). The family of all soft closed sets in (M,Y , Z) will be denoted by
Y c. The soft interior and the soft closure of H in (M,Y , Z) will be denoted by IntY (H) and
ClY (H), respectively. Let (M, λ) be a topological space, and let U ⊆ M. The interior and
the closure of U in (M, λ) will be denoted by Intλ(U) and Clλ(U), respectively.

Definition 1 ([40]). Let (M, λ) be a topological space, and V ⊆ M. Then V is said to be a δ-open
set in (M, λ) if for every x ∈ V, we find D ∈ λ such that x ∈ D ⊆ Intλ(Clλ(D)) ⊆ V. λδ

denotes the family of all δ-open sets in (M, λ).

It is well known that (M, λδ) is a topological space with λδ ⊆ λ.
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Definition 2 ([41]). Let (M, λ) be a topological space, and V ⊆ M. Then V is said to be a ωδ-open
set in (M, λ) if for every x ∈ V, we find D ∈ λ such that x ∈ D and D− Intλδ

(V) is a countable
set. λωδ

denotes the family of all ωδ-open sets in (M, λ).

It is proved in [41] that (M, λωδ
) is a topological space.

Definition 3 ([41]). A function g : (M, λ) −→ (N, γ) between the topological spaces (M, λ)
and (N, γ) is called ωδ-continuous if g−1(V) ∈ λωδ

for every V ∈ γ.

Definition 4 ([39]). Let (M,Y , Z) be a soft topological space and K ∈ SS(M, Z). Then
(a) K is a soft ω-open set in (M,Y , Z) if for any zm∈̃K, we find G ∈ Y such that zm∈̃G and

G− K ∈ C(M, Z). Yω will denote the family of all soft ω-open sets in (M,Y , Z).
(b) K is a soft ω-closed set in (M,Y , Z) if 1Z − K ∈ Yω.

It is proved in [39] that (M,Yω, Z) is a soft topological space, Y ⊆ Yω, and Y 6= Yω

in general.

Definition 5. Let (M,Y , Z) be a soft topological space and H ∈ SS(M, Z). Then
Ref. [42] (a) H is a soft θ-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G⊆̃ClY (G)⊆̃H. The family of all soft θ-open sets in (M,Y , Z) will be denoted by Yθ .
Ref. [43] (b) H is a soft δ-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G⊆̃IntY (ClY (G))⊆̃H.
Ref. [39] (c) H is a soft ω-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G and G− H ∈ C(M, Z).
Ref. [44] (d) H is a soft ω0-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G and G− IntY (H) ∈ C(M, Z).
Ref. [45] (e) H is a soft ωθ-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G and G− IntYθ
(H) ∈ C(M, Z).

Ref. [46] (f) H is a soft regular-open set in (M,Y , Z) if H = IntY (ClY (H)).

Yδ (Yω , Yω0 , Yωθ
, and RO(Y)) will denote the family of all soft δ-open (resp. ω-open,

ω0-open, ωθ-open, and regular open) sets in (M,Y , Z).
It is known that Yθ , Yδ, Yω, Yω0 , and Yωθ

are all soft topologies such that Yθ ⊆ Yδ ⊆
Y ⊆ Yω0 ⊆ Yω and Yθ ⊆ Yωθ

⊆ Yω0 .

Definition 6. A soft topological space (M,Y , Z) is called:
Ref. [39] (a) Soft locally countable if it has a soft base K ⊆ C(M, Z).
Ref. [39] (b) Soft anti-locally countable (soft A-L-C) if Y ∩ C(M, Z) = {0Z}.
Ref. [24] (c) Soft Lindelof if for every H ⊆ Y such that ∪̃H∈HH = 1Z, there is a countable

subcollectionH1 ⊆ H such that ∪̃H∈H1 H = 1Z.
Ref. [47] (d) Soft nearly compact if for everyH ⊆ RO(Y) such that ∪̃H∈HH = 1Z, there is a

finite subcollectionH1 ⊆ H such that ∪̃H∈H1 H = 1Z.
Ref. [47] (e) Soft nearly Lindelof if for everyH ⊆ RO(Y) such that ∪̃H∈HH = 1Z, there is a

countable subcollectionH1 ⊆ H such that ∪̃H∈H1 H = 1Z.
Ref. [48] (f) Soft regular if for every ax ∈ SP(M, Z) and every G ∈ Y such that ax∈̃G, there

exists H ∈ Y such that ax∈̃H⊆̃ClY (H)⊆̃G.
Ref. [49] (g) Soft semi-regularization topology if Y = Y δ.

Definition 7 ([50]). A soft function fqv : (M,Y , Z) −→ (N,X , W) is called soft ω0-continuous
if f−1

qv (K) ∈ Yω0 for every K ∈ X .

Theorem 1 ([17]). For any soft topological space (M,Y , Z) and any a ∈ Z, the family

{G(a) : G ∈ Y}
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forms a topology on M. This topology is denoted by Ya.

Theorem 2 ([38]). For any family of topological spaces {(M, βa) : a ∈ A}, the family

{G ∈ SS(M, A) : G(a) ∈ βa for all a ∈ A}

forms a soft topology on M relative to A. This soft topology is denoted by ⊕a∈Aβa.

Theorem 3 ([38]). For any topological space (M, λ) and any set of parameters Z, the family
{G ∈ SS(M, Z) : G(z) ∈ λ for all z ∈ Z} defines a soft topology on M relative to Z. τ(λ) denotes
this soft topology.

2. Soft ωδ-Open Sets

Definition 8. Let (M,Y , Z) be a soft topological space and K ∈ SS(M, Z). Then
(a) K is a soft ωδ-open set in (M,Y , Z) if for any zm∈̃K, we find G ∈ Y such that zm∈̃G and

G− IntYδ
(K) ∈ C(M, Z). Yωδ

will denote the family of all soft ωδ-open sets in (M,Y , Z).
(b) K is a soft ωδ-closed set in (M,Y , Z) if 1Z − K ∈ Yωδ

.

Theorem 4. Let (M,Y , Z) be a soft topological space and H ∈ SS(M, Z). Then H ∈ Yωδ
if and

only if for each zm∈̃H, we find G ∈ Y and R ∈ C(M, Z) such that zm∈̃G and G− R⊆̃IntYδ
(H).

Proof. Necessity. Suppose that H ∈ Yωδ
. Let zm∈̃H. Then we find G ∈ Y such that

zm∈̃G and G − IntYδ
(H) ∈ C(M, Z). Let R = G − IntYδ

(H). Then R ∈ C(M, Z) and
G− R = IntYδ

(H)⊆̃IntYδ
(H).

Sufficiency. Suppose that for each zm∈̃H, we find G ∈ Y and R ∈ C(M, Z) such
that zm∈̃G and G − R⊆̃IntYδ

(H). Let zm∈̃H. Then, by assumption, we find G ∈ Y
and R ∈ C(M, Z) such that zm∈̃G and G − R⊆̃IntYδ

(H). Since G − R⊆̃IntYδ
(H), then

G− IntYδ
(H)⊆̃R ∈ C(M, Z), and thus, G− IntYδ

(H) ∈ C(M, Z). Therefore, H ∈ Yωδ
.

Theorem 5. For any soft topological space (M,Y , Z), Yδ ⊆ Yωδ
⊆ Yω0 .

Proof. To see that Yδ ⊆ Yωδ
, let G ∈ Yδ and zm∈̃G. Since G ∈ Yδ, then IntYδ

(G) = G.
Thus, we have zm∈̃G ∈ Y such that G− IntYδ

(G) = 0Z ∈ C(M, Z), and hence G ∈ Yωδ
.

To prove that Yωδ
⊆ Yω0 , let G ∈ Yωδ

and zm∈̃G. Then we find H ∈ Y such that zm∈̃H
and H− IntYδ

(G) ∈ C(M, Z). Since IntYδ
(G)⊆̃IntY (G), then H− IntY (G)⊆̃H− IntYδ

(G),
and so H − IntY (G) ∈ C(M, Z). Hence, G ∈ Yω0 .

Theorem 6. For any soft topological space (M,Y , Z), (M,Yωδ
, Z) is a soft topological space.

Proof. Since by Proposition 4.2 of [43], (M,Yδ, A) is a soft topological space, then 0Z,
1Z ∈ Yδ. Thus, by Theorem 5, 0Z, 1Z ∈ Yωδ

.
Let K, N ∈ Yωδ

and zm∈̃K∩̃N. Then zm∈̃K ∈ Yωδ
and zm∈̃N ∈ Yωδ

. So, we find
H, L ∈ Y such that zm∈̃H∩̃L ∈ Y and H − IntYδ

(K), L − IntYδ
(N) ∈ C(M, Z). Since

IntYδ
(K∩̃N) = IntYδ

(K)∩̃IntYδ
(N), then(

H∩̃L
)
−
(

IntYδ
(K∩̃N)

)
=

(
H∩̃L

)
−
(

IntYδ
(K)∩̃IntYδ

(N)
)

=
((

H∩̃L
)
− IntYδ

(K)
)
∪̃
((

H∩̃L
)
− IntYδ

(N)
)
∈ C(M, Z).

Hence, K∩̃N ∈ Yωδ
.

Let {Gα : α ∈ ∆} ⊆ Yωδ
and zm∈̃ ∪α∈∆ Gα. Then there exists α◦ ∈ ∆ such that

zm∈̃Gα◦ . So, by Theorem 4 , we find H ∈ Y and R ∈ C(M, Z) such that zm∈̃H and
H − R⊆̃IntYδ

(Gα◦)⊆̃IntYδ
(∪̃α∈∆Gα◦). Hence, ∪̃α∈∆Gα◦ ∈ Yωδ

.

Theorem 7. If (M,Y , Z) is soft locally countable, then Yωδ
= SS(M, Z).
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Proof. Let (M,Y , Z) be soft locally countable. Let H ∈ SS(M, Z) and zm∈̃H. Choose
K ∈ C(M, Z) ∩ Y such that zm∈̃K⊆̃H. Thus, we have K ∈ C(M, Z), zm∈̃K ∈ Y , and
K− IntYδ

(H) ∈ C(M, Z). Hence, H ∈ Yωδ
.

Theorem 8. If (M,Y , Z) is a soft semi-regularization topology, then Yωδ
= Yω0 .

Proof. By Theorem 5, it is sufficient to see that Yω0 ⊆ Yωδ
. Let H ∈ Yω0 and zm∈̃H. Then

we find G ∈ Y such that zm∈̃G and G − IntY (H) ∈ C(M, Z). Since (M,Y , Z) is a soft
semi-regularization topology, then Yδ = Y , and so IntYδ

(H) = IntY (H). This shows that
H ∈ Yωδ

.

Theorem 9. For any soft topological space (M,Y , Z), Yωθ
⊆ Yωδ

.

Proof. Let G ∈ Yωθ
and zm∈̃G. Then we find H ∈ Y such that zm∈̃H and H − IntYθ

(G)

∈ C(M, Z). Since IntYθ
(G)⊆̃IntYδ

(G), then H − IntYδ
(G)⊆̃H − IntYθ

(G), and so H −
IntYδ

(G) ∈ C(M, Z). Hence, G ∈ Yωδ
.

Lemma 1. Let (M,Y , Z) be a soft topological space, and K ∈ SS(M, Z). Then, for each a ∈ Z,(
IntYδ

(K)
)
(a) ⊆ Int(Ya)δ

(K(a)).

Proof. Let m ∈
(

IntYδ
(K)
)
(a). Then am∈̃IntYδ

(K), and so, we find G ∈ Yδ such that
am∈̃G⊆̃K. Thus, we have m ∈ G(a) ⊆ K(a) and G(a) ∈ (Yδ)a. Since, by Theorem 30
of [51], G(a) ∈ (Ya)δ, then m ∈ Int(Ya)δ

(K(a)).

Theorem 10. Let (M,Y , Z) be a soft topological space. Then, for every a ∈ Z, (Yωδ
)a ⊆ (Ya)ωδ

.

Proof. Let a ∈ Z. Let V ∈ (Yωδ
)a and m ∈ V. Then, there exists K ∈ Yωδ

such that
V = K(a). Thus, am∈̃K ∈ Yωδ

, and by Theorem 4, we find G ∈ Y and R ∈ C(M, Z)
such that am∈̃G and G − R⊆̃IntYδ

(K). So, we have m ∈ G(a) ∈ Ya, R(a) is a countable
set, and G(a) − R(a) = (G− R)(a) ⊆

(
IntYδ

(K)
)
(a). On the other hand, by Lemma 1,(

IntYδ
(K)
)
(a) ⊆ Int(Ya)δ

(K(a)). This shows that V ∈ (Ya)ωδ
.

Corollary 1. Let (M,Y , Z) be a soft topological space, and K ∈ Yωδ
. Then K(a) ∈ (Ya)ωδ

for all
z ∈ Z.

Proof. Let s ∈ S. Since G ∈ Yωδ
, then G(s) ∈ (Yωδ

)s. Thus, by Theorem 9, G(s) ∈
(Ys)ωδ

.

Theorem 11. Let {(M, βz) : z ∈ Z} be a collection of topological spaces. Then (⊕z∈Zβz)ωδ
=

⊕z∈Z(βz)ωδ
.

Proof. To show that (⊕z∈Zβz)ωδ
⊆ ⊕z∈Z(βz)ωδ

, let H ∈ (⊕z∈Zβz)ωδ
. Let b ∈ Z. We

will show that H(b) ∈ (βb)ωδ
. Let m ∈ H(b). Then bm∈̃H. Since H ∈ (⊕z∈Zβz)ωδ

, we
find G ∈ ⊕z∈Zβz and R ∈ C(M, Z) such that bm∈̃G and G − R⊆̃Int(⊕z∈Z βz)δ

(H). Now,
by Theorem 31 of [51], (⊕z∈Zβz)δ = ⊕z∈Z(βz)δ. Thus, G − R⊆̃Int⊕z∈Z(βz)δ

(H) and so

G(b) − R(b) = (G− R)(b) ⊆
(

Int⊕z∈Z(βz)δ
(H)

)
(b). In contrast, by Lemma 4.9 of [52],(

Int⊕z∈Z(βz)δ
(H)

)
(b) = Int(βb)δ

(H(b)). Therefore, we have m ∈ G(b) ∈ βb, R(b) is a
countable set, and G(b)− R(b) = Int(βb)δ

(H(b)). Hence, H(b) ∈ (βb)ωδ
.

To show that ⊕z∈Z(βz)ωδ
⊆ (⊕z∈Zβz)ωδ

, let H ∈ ⊕z∈Z(βz)ωδ
. Let bm∈̃H. Then

m ∈ H(b) ∈ (βb)ωδ
. So, we find V ∈ βb such that m ∈ V and V − Int(βb)δ

(H(b))

is a countable set. By Lemma 4.9 of [52],
(

Int⊕z∈Z(βz)δ
(H)

)
(b) = Int(βb)δ

(H(b)) and

so
(

bV −
(

Int⊕z∈Z(βz)δ
(H)

))
(b) = V −

(
Int⊕z∈Z(βz)δ

(H)
)
(b) is a countable set. There-
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fore, we have bm∈̃bV ∈ ⊕z∈Zβz and bV −
(

Int⊕z∈Z(βz)δ
(H)

)
∈ C(M, Z). This shows that

H ∈ (⊕z∈Zβz)ωδ
.

Corollary 2. For any topological space (M, β) and any set of parameters Z, (τ(β))ωδ
= τ(βωδ

).

Proof. Let βz = β for every z ∈ Z. Then τ(β) = ⊕z∈Zβz. Thus, by Theorem 11,

(τ(β))ωδ
= (⊕z∈Zβz)ωδ

= ⊕z∈Z(βz)ωδ

= τ(βωδ
).

The following examples show that equality cannot be used to replace either of the two
soft inclusions in Theorem 5:

Example 1. Let M = Q, A = N, Y = {0A} ∪ {K ∈ SS(M, A) : M− K(a) is a finite set for
every a ∈ A}. Since (M,Y , A) is soft locally countable, then by Theorem 7, Yωδ

= SS(M, A).
Therefore, CZ ∈ Yωδ

−Yδ.

Example 2. Let M = R, Z = {a, b, d}, andY =
{

0Z, 1Z, b(0,∞)

}
. Suppose that IntYδ

(
b(0,∞)

)
6=

0Z. Then we find m ∈ (0, ∞) such that bm∈̃IntYδ

(
b(0,∞)

)
. So, we find K ∈ Y such that

bm∈̃K⊆̃IntY (ClY (K))⊆̃b(0,∞). Thus, K = b(0,∞), and so IntY (ClY (K)) = IntY (1Z) =

1Z⊆̃b(0,∞). Hence, IntYδ

(
b(0,∞)

)
= 0Z. Suppose that b(0,∞) ∈ Yωδ

, then we find H ∈ Y

such that b1∈̃H and H − IntYδ

(
b(0,∞)

)
= H ∈ C(M, Z). Since H ∈ Y−{0Z}, then H ∈{

1Z, b(0,∞)

}
. But

{
1Z, b(0,∞)

}
∩ C(M, Z) = ∅. Therefore, b(0,∞) /∈ Yωδ

. In contrast, by
Theorem 5 of [44], b(0,∞) ∈ Yω0 .

Additionally, Example 2 demonstrates that Y need not always be a subset of Yωδ
.

The inclusion in Theorem 9 need not be equality in general:

Example 3. Let M = R, Z = N, and
Y = {K ∈ SS(M, Z) : K(a) ∈ {∅, M,Q∩ (1, 2),R−Q, (Q∩ (1, 2)) ∪ (R−Q)} for all

a ∈ Z}.
Then CR−Q ∈ Yωδ

−Yωθ
.

Theorem 12. Let (M,Y , Z) be a soft topological space. If CV ∈ (Y ∩ Yωδ
) − {0Z}, then

(Yωδ
)V ⊆ (YV)ωδ

.

Proof. Let K ∈ (Yωδ
)V and zm∈̃K. Choose T ∈ Yωδ

such that K = T∩̃CV . Since CV ∈ Yωδ
,

then K ∈ Yωδ
. So, we find D ∈ Y and E ∈ C(M, Z) such that zm∈̃D and D− E ⊆̃IntYδ

(K).
So, we have zm∈̃D∩̃CV ∈ YV , E∩̃CV ∈ C(V, A), and

(
D∩̃CV

)
−
(
E∩̃CV

)
⊆̃(D− E)∩̃CV

⊆̃IntYδ
(K)∩̃CV⊆̃Int(YV)δ

(K). This shows that K ∈ (YV)ωδ
.

Corollary 3. Let (M,Y , Z) be a soft topological space. If CV ∈ Yδ − {0Z}, then (Yωδ
)V ⊆

(YV)ωδ
.

Theorem 12 requires the condition “CV ∈ Y ∩ Yωδ
”, as the following example

demonstrates.
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Example 4. Let M = R, V = R − Q, Z = N, λ be the usual topology on M, and Y =
{CW : W ∈ λ}. Since C(3,∞) ∈ Y , then by Theorem 5 of [44], C(3,∞) ∈ Yω0 . Since (M,Y , Z)
is soft regular and C(3,∞) ∈ Y , then by Theorem 8, C(3,∞) ∈ Yωδ

. Thus, C(3,∞)∩̃CV =
C(3,∞)∩(R−Q) ∈ (Yωδ

)V . Suppose that C(3,∞)∩(R−Q) ∈ (YV)ωδ
. Let a = 1. Then we find

W ∈ λ and K ∈ C(V, A) such that a√11 ∈ CW and CW − K⊆̃Int(YV)δ

(
C(3,∞)∩(R−Q)

)
⊆̃IntYV(

C(3,∞)∩(R−Q)

)
= 0Z. Thus, CW⊆̃K, and hence CW ∈ C(V, A). Therefore, W is a countable set,

which is impossible. This shows that C(3,∞)∩(R−Q) /∈ (YV)ωδ
.

Theorem 13. Let (M,Y , Z) be soft Lindelof. Then for every W ∈ Yωδ
∩ Y c, we have W −

IntYδ
(W) ∈ C(M, Z).

Proof. Let W ∈ Yωδ
∩ Y c. Since W ∈ Yωδ

, for every zm∈̃W, we find Tzm ∈ Y such that
zm∈̃Tzm and Tzm − IntYδ

(W) ∈ C(M, Z). Since W ∈ Y c, W is a soft Lindelof subset of
(M,Y , Z). Set 	 ={Tzm : zm∈̃K}. Since W⊆̃∪̃zm∈̃KTzm , then we find a countable subfam-
ily 	1 ⊆ 	 such that W⊆̃∪̃S∈	1 S. Since 	1 is countable, then ∪̃S∈	1

(
S− IntYδ

(W)
)
∈

C(M, Z). Since W − IntYδ
(W)⊆̃ ∪̃S∈	1

(
S− IntYδ

(W)
)
, W − IntYδ

(W) ∈ C(M, Z).

Theorem 14. Let (M,Y , Z) be a soft topological space, and K ∈ (Yωδ
)c. Then we find H ∈ Y c

and T ∈ C(M, Z) such that ClYδ
(K)⊆̃H∪̃T.

Proof. If K = 1Z, then K⊆̃1Z∪̃0Z with 1Z ∈ Y c and 0Z ∈ C(M, Z). If K 6= 1Z, then
we find zm∈̃1Z − K ∈ Yωδ

. So, we find G ∈ Y and T ∈ C(M, Z) such that zm∈̃G and
G − T⊆̃IntYδ

(1Z − K) = 1Z − ClYδ
(K) and thus ClYδ

(K)⊆̃1Z − (G− T) = (1Z − G)∪̃T.
Let H = 1Z − G. Then H ∈ Y c and ClYδ

(K)⊆̃H∪̃T.

Theorem 15. A soft topological space (M,Y , Z) is soft A-L-C if and only if (M,Yωδ
, A) is soft

A-L-C.

Proof. Necessity. Let (M,Y , Z) be soft A-L-C. To show that (M,Yωδ
, A) is soft A-L-C, on

the contrary, we find K ∈ (Yωδ
∩ C(M, Z))− {0Z}. Pick zm∈̃K. Since K ∈ Yωδ

, then we
find T ∈ Y and N ∈ C(M, Z) such that zm∈̃T and T − N⊆̃IntYδ

(K)⊆̃K. Thus, T⊆̃K∪̃N,
and hence T ∈ C(M, Z). Since zm∈̃T, then T ∈ Y − {0Z}. Since (M,Y , Z) is soft A-L-C,
then T /∈ C(M, Z), a contradiction.

Sufficiency. Clear.

Theorem 16. Let (M,Y , Z) be soft A-L-C. Then, for every K ∈ Yωδ
, ClY (K)⊆̃ClYωδ

(K).

Proof. Let K ∈ Yωδ
. By Theorem 5, Yωδ

⊆ Yω0 , and thus ClY
ω0 (K)⊆̃ClYωδ

(K). Since
(M,Y , Z) is soft A-L-C and H ∈ Yωδ

⊆ Yω0 , then by Theorem 21 of [44], ClY
ω0 (K) =

ClY (K). Hence, ClY (K)⊆̃ClYωδ
(K).

Corollary 4. Let (M,Y , Z) be soft A-L-C. Then for each K ∈ (Yωδ
)c, then IntYωδ

(K)⊆̃IntY (K).

Theorem 17. If (M,Y , Z) is soft Lindelof, then (M,Yωδ
, Z) is soft Lindelof.

Proof. Let K ⊆ Yωδ
such that 1Z = ∪̃K∈KK. For each zm∈̃1Z, choose Kzm ∈ K such that

zm∈̃Kzm . For each zm∈̃1Z, choose Hzm ∈ Y and Tzm ∈ C(M, Z) such that zm∈̃Hzm and
Hzm − Tzm⊆̃IntYωδ

(Kzm)⊆̃Kzm . Since (M,Y , Z) is soft Lindelof and 1Z = ∪̃zm∈̃1Z
Hzm , then

there exists a countable subset R ⊆ SP(M, Z) such that 1Z = ∪̃zm∈̃RHzm and so
1Z = ∪̃zm∈̃RHzm =

(
∪̃zm∈̃R(Hzm − Tzm)

)
∪̃
(
∪̃zm∈̃RTzm

)
⊆̃
(
∪̃zm∈̃RKzm

)
∪̃
(
∪̃zm∈̃RTzm

)
.
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Put S = ∪̃zm∈̃RTzm . Then S ∈ C(M, Z). For each bx∈̃S, choose Kbx ∈ K such that
bx∈̃Kbx . PutN ={Kzm : zm ∈ R} ∪

{
Kbx : bx∈̃S

}
. ThenN is a countable subcollection of K

such that 1Z = ∪̃N∈NN. Therefore, (M,Yωδ
, Z) is soft Lindelof.

But the converse of Theorem 17 is not always true:

Theorem 18. Let M = R, Z = N, and Y = {0Z}∪̃{K ∈ SS(M, Z) : (−∞, 1) ⊆ K(z) for all
z ∈ Z}. Let H =

{
C(−∞,1)∪{m} : m ∈ [1, ∞)

}
. Then H ⊆ Y , ∪̃H∈HH = 1Z, and for any

countable subcollection H1 ⊆ H, ∪̃H∈H1 H 6= 1Z. Therefore, (M,Y , Z) is not soft Lindelof. In
contrast, since for any G ∈ Y−{0Z}, ClY (G) = 1Z, then Yδ = {0Z, 1Z} and so Yωδ

= {0Z, 1Z}.
Hence, (M,Yωδ

, Z) is soft Lindelof.

Theorem 19. If (M,Yωδ
, Z) is soft Lindelof, then (M,Y , Z) is soft nearly Lindelof.

Proof. Let K ⊆RO(Y) such that 1Z = ∪̃K∈KK. Then K ⊆ Y δ, and by Theorem 5, K ⊆ Yωδ
.

Since (M,Yωδ
, Z) is soft Lindelof, then we find a countable subfamily K1⊆ K such that

1Z = ∪̃K∈K1 K. This shows that (M,Y , Z) is soft nearly Lindelof.

In general, Theorem 19 cannot be reversed:

Theorem 20. Let M = R, Z = N, and
Y = {0Z}∪̃{K ∈ SS(M, Z) : 1 ∈ K(z) for all z ∈ Z}.
Since Yδ = {0Z, 1Z}, then (M,Y , Z) is soft nearly Lindelof. Since for each zm ∈ SP(M, Z),

zm∈̃z{1,m} ∈ Y∩C(M, Z), then (M,Y , Z) is soft locally countable. Thus, by Theorem 7, Yωδ
=

SS(M, Z). Since 1Z = ∪̃zm∈SP(M,Z)zm and for any countable subfamily H ⊆SP(M, Z), 1Z 6=
∪̃zm∈Hzm, then (M,Yωδ

, Z) is not soft Lindelof.

Theorem 21. If (M,Yωδ
, Z) is soft compact, then (M,Y , Z) is soft nearly compact.

Proof. Let K ⊆RO(Y) such that 1Z = ∪̃K∈KK. Then K ⊆ Y δ, and by Theorem 5, K ⊆ Yωδ
.

Since (M,Yωδ
, Z) is soft compact, then we find a finite subfamily K1⊆ K such that

1Z = ∪̃K∈K1 K. This shows that (M,Y , Z) is soft nearly compact.

In general, Theorem 21 cannot be reversed.

Example 5. Let M = Q, Z = {a, b}, and Y = {0Z, 1Z}. Then Yδ = {0Z, 1Z}, and thus
(M,Y , Z) is soft nearly compact. Since (M,Y , Z) is soft locally countable, then by Theorem 7,
Yωδ

= SS(M, Z). Since 1Z = ∪̃zm∈SP(M,Z)zm and for any finite subfamily H ⊆SP(M, Z),
1Z 6= ∪̃zm∈Hzm, then (M,Yωδ

, Z) is not soft compact.

Example 5 and the following example show that the soft compactness of a soft topolog-
ical space (M,Y , Z) is neither implied nor imply by the soft compactness of (M,Yωδ

, Z).

Example 6. Let M = R, Z = {a} and
Y = {0Z}∪̃{K ∈ SS(M, Z) : R− K(a) is countable}.
Since Yδ = {0Z, 1Z} = Yωδ

, then (M,Yωδ
, Z) is soft compact. In contrast, it is clear that

(M,Y , Z) is not soft compact.

3. Decompositions

Definition 9. Let (M,Y , Z) be a soft topological space and K ∈ SS(M, Z). Then K is
(a) Soft ωδ

δ-open set in (M,Y , Z) if IntYωδ
(K) = IntYδ

(K).
(b) Soft ω0

δ-open set in (M,Y , Z) if IntYωδ
(K) = IntY (K).

(c) Soft ωθ
δ-open set in (M,Y , Z) if IntYωδ

(K) = IntYθ
(K).

(d) Soft ωω
δ -open set in (M,Y , Z) if IntYωδ

(K) = IntYω
(K).
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In a soft topological space (M,Y , Z), the collections of soft ωδ
δ-open sets, soft ω0

δ-open
set, soft ωθ

δ-open sets, and soft ωω
δ -open sets will be denoted by ωδ

δ(Y), ω0
δ(Y), ωθ

δ(Y), and
ωω

δ (Y), respectively.

Theorem 22. Let (M,Y , Z) be a soft topological space. Then
(a) Yωδ

⊆ ωω
δ (Y).

(b) Yδ ⊆ ωω
δ (Y) ∩ωδ

δ(Y) ∩ω0
δ(Y).

(c) Yθ ⊆ ωδ
δ(Y) ∩ω0

δ(Y) ∩ωω
δ (Y) ∩ωθ

δ(Y).
(d) ωθ

δ(Y) ⊆ ωδ
δ(Y).

Proof. (a) Let K ∈ Yωδ
. Then IntYωδ

(K) = K. Also, by Theorem 5 and Theorem 5 of [44],
K ∈ Yω, and so IntYω

(K) = K. Therefore, IntYωδ
(K) = IntYω

(K). Hence, K ∈ ωω
δ (Y).

(b) Since by Theorem 5, Yδ ⊆ Yωδ
. Then, by (a), Yδ ⊆ ωω

δ (Y). Let K ∈ Yδ. Then
IntYδ

(K) = K. By Theorem 5, K ∈ Yωδ
, and thus, IntYωδ

(K) = K. Also, since Yδ ⊆ Y , then
K ∈ Y , and so IntY (K) = K. Therefore, we have IntYω

(K) = IntYδ
(K) = IntY (K). This

shows that K ∈ ωδ
δ(Y) ∩ω0

δ(Y).
(c) Since Yθ ⊆ Yδ, then by (c), Yθ ⊆ ωδ

δ(Y) ∩ ω0
δ(Y) ∩ ωω

δ (Y). Let K ∈ Yθ . Then
IntYθ

(K) = K. Since Yθ ⊆ Yδ, then by Theorem 2.3, K ∈ Yωδ
, and so IntYωδ

(K) = K.

Therefore, IntYωδ
(K) = IntYθ

(K), and hence K ∈ ωθ
δ(Y).

(d) Let K ∈ ωθ
δ(Y). Then IntYωδ

(K) = IntYθ
(K). In contrast, by Theorem 5, we have

Yθ ⊆ Yδ ⊆ Yωδ
, then IntYθ

(K)⊆̃IntYδ
(K)⊆̃IntYωδ

(K). Therefore, we have IntYδ
(K) =

IntYωδ
(K) and hence K ∈ ωδ

δ(Y).

As the next two examples show, in general, none of the inclusions in Theorem 22 can
be replaced by equality:

Example 7. Let M = R, A = {a}, and Y = {0A, 1A, aR−Q}. Let K = aN. Suppose that
IntYω

(K) 6= 0A. Then there exists x ∈ M such that ax∈̃IntYω
(K) ∈ Yω . So, we find G ∈ Y such

that ax∈̃G and G− K ∈ C(M, A), which is impossible. Therefore, IntY (K) = IntYω
(K) = 0A.

In contrast, since Yδ = Yθ = Yωδ
= {0A, 1A}, then IntYωδ

(K) = IntYδ
(K) = IntYθ

(K) = 0A
and K /∈ Yθ ∪ Yδ ∪ Yωδ

. This shows that none of the inclusions in Theorem 22 (a), (b), and (c),
cannot be replaced by equality in general.

Example 8. Let M = R, Z = {a}, and
Y = {K ∈ SS(M, Z) : K(a) ∈ {∅, M,Q∩ (1, 2),R−Q, (Q∩ (1, 2)) ∪ (R−Q)}}.
Then aR−Q ∈ ωδ

δ(Y)−ωθ
δ(Y). As a result, equality in general cannot replace the inclusion

in Theorem 22 (d).

For a soft topological space (M,Y , Z), the first and second components of each of the
ordered pairs of classes of soft sets below are not comparable in general, as demonstrated
by the following three examples:

1.
(
Y , ωδ

δ(Y)
)
.

2.
(
Y , ω0

δ(Y)
)
.

3.
(
Y , ωθ

δ(Y)
)
.

4.
(
ωδ

δ(Y), ω0
δ(Y)

)
.

5.
(
ωδ

δ(Y), ωω
δ (Y)

)
.

6.
(
ωδ(Y), ωδ

δ(Y)
)
.

7.
(
ωδ(Y), ω0

δ(Y)
)
.

8.
(
ωδ(Y), ωθ

δ(Y)
)
.

9.
(
ω0

δ(Y), ωω
δ (Y)

)
.

10.
(
Yω, ωω

δ (Y)
)
.
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Example 9. Let M = {1, 2}, Z = {a}, and Y = {K ∈ SS(M, Z) : K(a) ∈ {∅, M, {1}}}.
Then a{1} ∈

(
Y ∩ωδ(Y) ∩ω0

δ(Y) ∩ωω
δ (Y)

)
−
(
ωθ

δ(Y) ∪ωδ
δ(Y)

)
and a{2} ∈ ωδ(Y) −(

ω0
δ(Y) ∪ωδ

δ(Y)
)
.

Example 10. Let (M,Y , Z) be as in Example 6. Then aR−N ∈ ωδ
δ(Y)−

(
ω0

δ(Y) ∪ωω
δ (Y)

)
.

Example 11. Let M = {1, 2}, Z = {a}, β be the usual topology onR, andY = {K ∈ SS(M, Z) :
K(a) ∈ β}. Then a{1} ∈

(
ωδ

δ(Y) ∩ω0
δ(Y) ∩ωω

δ (Y) ∩ωθ
δ(Y)

)
−Yω.

Theorem 23. Let (M,Y , Z) be a soft topological space. Then
(a) Yωδ

= Yω ∩ωω
δ (Y).

(b) Yδ = Yωδ
∩ωδ

δ(Y).
(c) Yθ = Yωδ

∩ωθ
δ(Y).

(d) Yθ = Yωθ
∩ωθ

δ(Y).
(e) Y ∩ω0

δ(Y) ⊆ Yωδ
.

(f) Yωδ
∩ω0

δ(Y) ⊆ Y .
(g) Y ∩ω0

δ(Y) = Yωδ
∩ω0

δ(Y).

Proof. (a) By Theorem 5 and Theorem 5 of [44], Yωδ
⊆ τω. In contrast, by Theorem

22 (a), Yωδ
⊆ ωω

δ (Y). Thus, Yωδ
⊆ Yω ∩ ωω

δ (Y). To see that Yω ∩ ωω
δ (Y) ⊆ Yωδ

, let
K ∈ Yω ∩ωω

δ (Y). Since K ∈ τω, then K = IntYω
(K). Since K ∈ ωω

δ (Y), then IntYωδ
(K) =

IntYω
(K). Thus, IntYωδ

(K) = K, and hence K ∈ Yωδ
.

(b) By Theorem 5 and Theorem 22 (b), we have Yδ ⊆ Yωδ
∩ ωδ

δ(Y). To see that
Yωδ
∩ωδ

δ(Y) ⊆ Yδ, let K ∈ Yωδ
∩ωδ

δ(Y). Then K = IntYωδ
(K) and IntYωδ

(K) = IntYδ
(K).

Thus, K = IntYδ
(K), and hence K ∈ Yδ.

(c) By Theorem 5, we have Yθ ⊆ Yδ ⊆ Yωδ
. Also, by Theorem 22 (c), Yθ ⊆ ωθ

δ(Y).
Thus, Yθ ⊆ Yωδ

∩ ωθ
δ(Y). To see that Yωδ

∩ ωθ
δ(Y) ⊆ Yθ , let K ∈ Yωδ

∩ ωθ
δ(Y). Then

K = IntYωδ
(K) and IntYωδ

(K) = IntYθ
(K). Thus, K = IntYθ

(K), and hence K ∈ Yθ .

(d) By Theorem 5 of [45], Yθ ⊆ Yωθ
. Also, by (c), Yθ ⊆ ωθ

δ(Y). Thus, Yθ ⊆ Yωθ
∩

ωθ
δ(Y). In contrast, by Theorem 9 and (c), Yωθ

∩ωθ
δ(Y) ⊆ Yωδ

∩ωθ
δ(Y) = Yθ .

(e) Let K ∈ Y ∩ ω0
δ(Y). Then K = IntY (K) and IntYωδ

(K) = IntY (K). Thus,
K = IntYωδ

(K), and hence K ∈ Yωδ
.

(f) Let K ∈ Yωδ
∩ ω0

δ(Y). Then K = IntYωδ
(K) and IntYωδ

(K) = IntY (K). Thus,
K = IntY (K), and hence K ∈ Y .

(g) We have Y ∩ ω0
δ(Y) ⊆ ω0

δ(Y). Also, by (e), Y ∩ ω0
δ(Y) ⊆ Yωδ

. Hence,
Y ∩ ω0

δ(Y) ⊆ Yωδ
∩ ω0

δ(Y). In contrast, we have Yωδ
∩ ω0

δ(Y) ⊆ ω0
δ(Y). Also, by (f),

Yωδ
∩ω0

δ(Y) ⊆ Y . Hence, Yωδ
∩ω0

δ(Y) ⊆ Y ∩ω0
δ(Y).

Corollary 5. Let (M,Y , Z) be a soft topological space and K ∈ ω0
δ(Y). Then K ∈ Y if and only

if K ∈ Yωδ
.

Proof. The proof follows from Theorem 23 (g).

Theorem 24. Let (M,Y , Z) be a soft topological space. Then (M,Y , Z) is a soft semi-regularization
topology if and only if Y ⊆ω0

δ(Y) ∩ωδ
δ(Y).

Proof. Necessity. Let (M,Y , Z) be a soft semi-regularization topology. Then
Yδ = Y . Thus, by Theorem 22 (b), Y ⊆ω0

δ(Y) ∩ωδ
δ(Y).

Sufficiency. Let Y ⊆ω0
δ(Y) ∩ ωδ

δ(Y). To see that Y ⊆ Yδ, let K ∈ Y . Then
K ∈ Y∩ω0

δ(Y)∩ωδ
δ(Y). So, we have IntY (K) = K, IntYωδ

(K) = IntY (K), and IntYωδ
(K) =

IntYδ
(K). Thus, IntYδ

(K) = K. Hence, K ∈ Yδ.

Theorem 25. A soft topological space (M,Y , Z) is soft regular if and only if Y ⊆ω0
δ(Y)∩ωθ

δ(Y).
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Proof. Necessity. Let (M,Y , Z) be soft regular. Then Yθ = Y . Thus, by Theorem 22 (c),
Y ⊆ω0

δ(Y) ∩ωθ
δ(Y).

Sufficiency. Let Y ⊆ω0
δ(Y) ∩ ωθ

δ(Y). To see that Y ⊆ Yθ , let K ∈ Y . Then
K ∈ Y∩ω0

δ(Y)∩ωθ
δ(Y). So, we have IntY (K) = K, IntYωδ

(K) = IntY (K), and IntYωδ
(K) =

IntYθ
(K). Thus, IntYθ

(K) = K. Hence, K ∈ Yθ .

4. Soft ωδ-Continuity

Definition 10. A soft function fqv : (M,Y , Z) −→ (N,X , W) is called soft ωδ-continuous if
f−1
qv (K) ∈ Yωδ

for every K ∈ X .

Theorem 26. For a soft function fqv : (M,Y , Z) −→ (N,X , W), the following are equivalent:
(1) fqv : (M,Y , Z) −→ (N,X , W) is soft ωδ-continuous.
(2) f−1

qv (T) ∈ (Yωδ
)c for every T ∈ X c.

(3) ClYωδ

(
f−1
qv (A)

)
⊆̃ f−1

qv (ClX (A)) for each A ∈ SS(N, W).

(4) f−1
qv (IntX (A))⊆̃IntYωδ

(
f−1
qv (A)

)
for each A ∈ SS(N, W).

(5) fqv : (M,Yωδ
, Z) −→ (N,X , W) is soft continuous.

(6) For each zm ∈ SP(M, Z) and each G ∈ X such that fqv(zm)∈̃G, we find H ∈ Yωδ
such

that zm∈̃H and fqv(H)⊆̃G.

Proof. (1)−→(2): Let T ∈ X c. Then 1W − T ∈ X . So, by (1), f−1
qv (1W − T) = 1Z − f−1

qv (T) ∈
Yωδ

. Hence, f−1
qv (T) ∈ (Yωδ

)c.
(2)−→(3): Let A ∈ SS(N, W). Then ClX (A) ∈ X c. So, by (2), f−1

qv (ClX (A)) ∈ (Yωδ
)c.

Since f−1
qv (A)⊆̃ f−1

qv (ClX (A)) ∈ (Yωδ
)c, then ClYωδ

(
f−1
qv (A)

)
⊆̃ f−1

qv (ClX (A)).
(3)−→(4): Let A ∈ SS(N, W). Then, by (3),

1Z − IntYωδ

(
f−1
qv (A)

)
= ClYωδ

(
1Z − f−1

qv (A)
)

= ClYωδ

(
f−1
qv (1W − A)

)
⊆̃ f−1

qv (ClX (1W − A))

= f−1
qv (1W − IntX (A))

= 1Z − f−1
qv (IntX (A))

and so f−1
qv (IntX (A))⊆̃IntYωδ

(
f−1
qv (A)

)
.

(4)−→(5): Let K ∈ X . Then IntX (K) = K, and by (4), f−1
qv (K)⊆̃IntYωδ

(
f−1
qv (K)

)
. Thus,

f−1
qv (K) = IntYωδ

(
f−1
qv (K)

)
. Hence, f−1

qv (K) ∈ Yωδ
. This shows that fqv : (M,Yωδ

, Z) −→
(N,X , W) is soft continuous.

(5)−→(6): Let zm ∈ SP(M, Z) and G ∈ X such that fqv(zm)∈̃G. Then, by (5), f−1
qv (G) ∈

Yωδ
. Put H = f−1

qv (G). Then H ∈ Yωδ
such that zm∈̃H and fqv(H) = fqv

(
f−1
qv (G)

)
⊆̃G.

(6)−→(1): Let K ∈ X . To show that f−1
qv (K) ∈ Yωδ

, let zm∈̃ f−1
qv (K). Then fqv(zm)∈̃K,

and by (6), we find H ∈ Yωδ
such that zm∈̃H and fqv(H)⊆̃K. Thus, we have zm∈̃H⊆̃ f−1

qv(
fqv(H)

)
⊆̃ f−1

qv (K). Hence, f−1
qv (K) ∈ Yωδ

.

Theorem 27. If fqv : (M,Y , Z) −→ (N,X , W) is soft ωδ-continuous, then q : (M,Ya) −→(
N,Xv(a)

)
is ωδ-continuous for every a ∈ Z.

Proof. Suppose that fqv : (M,Y , Z) −→ (N,X , W) is soft ωδ-continuous, and let a ∈ Z. By
Theorem 4.2 (5), fqv : (M,Yωδ

, Z) −→ (N,X , W) is soft continuous. So, by Proposition 3.8

of [38], q :
(

M, (Yωδ
)a
)
−→

(
N,Xv(a)

)
is continuous. Since, by Theorem 10, (Yωδ

)a ⊆
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(Ya)ωδ
, then q : (M, (Ya)ωδ

) −→
(

N,Xv(a)

)
is continuous. Hence, by Theorem 4.2 (5)

of [41], q : (M,Ya) −→
(

N,Xv(a)

)
is ωδ-continuous.

Theorem 28. Let {(M, βz) : z ∈ Z} and {(N, αw) : w ∈W} be two collections of topological
spaces. Let q : M −→ N and v : Z −→ W be functions where v is bijective. Then fqv :
(M,⊕z∈Zβz, Z) −→ (N,⊕w∈Wαw, W) is soft ωδ-continuous if and only if q : (M, βa) −→(

N, αv(a)

)
is ωδ-continuous for all a ∈ Z.

Proof. Necessity. Let fqv : (M,⊕z∈Zβz, Z) −→ (N,⊕w∈Wαw, W) be soft ωδ-continuous.

Let a ∈ Z. Then, by Theorem 27, q : (M, (⊕z∈Zβz)a) −→
(

N, (⊕w∈Wαw)v(a)

)
is ωδ-

continuous. But by Theorem 3.11 of [38], (⊕z∈Zβz)a = βa and (⊕w∈Wαw)v(a) = αv(a).

Hence, q : (M, βa) −→
(

N, αv(a)

)
is ωδ-continuous.

Sufficiency. Let q : (M, βa) −→
(

N, αv(a)

)
be ωδ-continuous for all a ∈ Z. Let

K ∈ ⊕w∈Wαw. By Theorem 11, it is sufficient to show that
(

f−1
qv (K)

)
(a) ∈ (βa)ωδ

for all

a ∈ Z. Let a ∈ Z. Since q : (M, βa) −→
(

N, αv(a)

)
is ωδ-continuous and K(v(a)) ∈ αv(a),

then
(

f−1
qv (K)

)
(a) = q−1(K(v(a))) ∈ (βa)ωδ

.

Corollary 6. Let q : (M, ξ) −→ (N, φ) and v : Z −→W be two functions where v is a bijection.
Then q : (M, ξ) −→ (N, φ) is ωδ-continuous if and only if fqv : (M, τ(ξ), Z) −→ (N, τ(φ), W)
is soft ωδ-continuous.

Proof. For each z ∈ Z and w ∈ W, put βz = ξ and αw = φ. Then τ(α) = ⊕z∈Zβz and
τ(φ) = ⊕w∈Wαw. By using Theorem 28, we get the result.

Theorem 29. Let fqv : (M,Y , Z) −→ (N,X , W) be soft ωδ-continuous and surjective. If
(M,Yωδ

, Z) is soft Lindelof, then (N,X , W) is soft Lindelof.

Proof. Let H ⊆ X such that ∪̃H∈HH = 1W . Then f−1
qv
(
∪̃H∈HH

)
= ∪̃H∈H f−1

qv (H) =

f−1
qv (1W) = 1Z. Since fqv : (M,Y , Z) −→ (N,X , W) is soft ωδ-continuous, then{
f−1
qv (H) : H ∈ H

}
⊆ Yωδ

. Since (M,Yωδ
, Z) is soft Lindelof, then we find a countable sub-

familyH1 ⊆ H such that ∪̃H∈H1 f−1
qv (H) = f−1

qv
(
∪̃H∈H1 H

)
= 1Z. So, fqv

(
f−1
qv
(
∪̃H∈H1 H

))
=

fqv(1Z). Since fqv is surjective, then fqv(1Z) = 1W. Thus, 1W = fqv

(
f−1
qv
(
∪̃H∈H1 H

))
⊆̃∪̃H∈H1 H,

and hence 1W = ∪̃H∈H1 H. This shows that (N,X , W) is soft Lindelof.

Corollary 7. Let fqv : (M,Y , Z) −→ (N,X , W) be soft ωδ-continuous and onto. If (M,Y , Z)
is soft Lindelof, then (N,X , W) is soft Lindelof.

Proof. The proof follows from Theorems 17 and 29.

Theorem 30. Every soft ωδ-continuous function is soft ω0-continuous.

The following illustration shows that Theorem 30 ’s converse need not always hold
true:

Example 12. Let (M,Y , Z) be as in Example 2.14. Let q : M −→ M and v : Z −→ Z be
the identity functions. Since f−1

qv

(
b(0,∞)

)
= b(0,∞) ∈ Yω0 − Yωδ

, then fqv : (M,Y , Z) −→
(M,Y , Z) is soft ω0-continuous but not soft ωδ-continuous.
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5. Conclusions

We introduced five types of soft sets. Also, we introduced soft ωδ-continuous functions
as a new class of soft functions. We gave several characterizations, relationships, and
decomposition theorems. In addition, we investigated the links between our novel soft
topological notions and their classical topological analogs.

We intend to do the following in the next work: (1) To define soft separation axioms
via our new classes of soft sets; (2) To define new soft classes of functions via our new
classes of soft sets.

Author Contributions: Conceptualization, D.A., S.A.-G. and M.N.; Methodology, D.A., S.A.-G. and
M.N.; Formal analysis, D.A., S.A.-G. and M.N.; Writing—original draft, D.A., S.A.-G. and M.N.;
Writing—review and editing, D.A., S.A.-G. and M.N.; Funding acquisition, S.A.-G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created in this study. Data sharing does not apply
to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
3. Molodtsov, D. Soft set theory—First results. Comput. Math. Appl. 1999, 37, 19–31.
4. Yang, J.; Yao, Y. Semantics of soft sets and three-way decision with soft sets. Knowl. Based Syst. 2020, 194, 105538. [CrossRef]
5. Alcantud, J.C.R. The semantics of N-soft sets, their applications, and a coda about three-way decision. Inf. Sci. 2022, 606, 837–852.

[CrossRef]
6. Akguller, O. A soft set theoretic approach to network complexity and a case study for Turkish Twitter users. Appl. Soft Comput.

2023, 143, 110344. [CrossRef]
7. Gwak, J.; Garg, H.; Jan, N. Hybrid integrated decision-making algorithm for clustering analysis based on a bipolar complex fuzzy

and soft sets. Alex. Eng. J. 2023, 67, 473–487. [CrossRef]
8. Dalkılıc O.; Demirta¸s, N. Algorithms for COVID-19 outbreak using soft set theory: Estimation and application. Soft Comput.

2022, 27, 3203–3211. [CrossRef]
9. Qin, H.; Fei, Q.; Ma, X.; Chen, W. A new parameter reduction algorithm for soft sets based on chi-square test. Appl. Intell. 2021,

51, 7960–7972. [CrossRef]
10. Ma, X.; Qin, H. Soft set based parameter value reduction for decision making application. IEEE Access 2019, 7, 35499–35511.

[CrossRef]
11. Yuksel, S.; Dizman, T.; Yildizdan, G.; Sert, U. Application of soft sets to diagnose the prostate cancer risk. J. Inequal. Appl. 2013,

2013, 229. [CrossRef]
12. Maji, P.; Roy, A.R.; Biswas, R. An application of soft sets in a decision making problem. Comput. Math. Appl. 2002, 44, 1077–1083.

[CrossRef]
13. Aktas, H.; Çagman, N. Soft sets and soft groups. Inf. Sci. 2007, 177, 2726–2735. [CrossRef]
14. Acar, U.; Koyuncu, F.; Tanay, B. Soft sets and soft rings. Comput. Math. Appl. 2010, 59, 3458–3463. [CrossRef]
15. Alcantud, J.C.R. Convex soft geometries. J. Comput. Cogn. Eng. 2022, 1, 2–12. [CrossRef]
16. Kandil, A.; Tantawy, O.A.E.; El-Sheikh, S.A.; M Abd El-latif, A. Soft ideal theory soft local function and generated soft topological

spaces. Appl. Math. Inf. Sci. 2014, 8, 1595–1603. [CrossRef]
17. Shabir, M.; Naz, M. On soft topological spaces. Comput. Math. Appl. 2011, 61, 1786–1799. [CrossRef]
18. Das, S.; Samanta, S.K. Soft metric. Ann. Fuzzy Math. Inform. 2013, 6, 77–94.
19. Cetkin, V.; Guner, E.; Aygün, H. On 2S-metric spaces. Soft Comput. 2020, 24, 12731–12742. [CrossRef]
20. Badyakar, U.; Nazmul, S. Some fixed soft point results on soft S-metric spaces. Math. Sci. 2021, 15, 283–291. [CrossRef]
21. Lin, F. Soft connected spaces and soft paracompact spaces. Int. J. Math. Comput. Sci. 2013, 7, 277–283.
22. Al-shami, T.M.; Kocinac, L.D. Almost soft Menger and weakly soft Menger spaces. Appl. Comput. Math. 2022, 21, 35–51.
23. Al-shami, T.M.; Mhemdi, A.; Rawshdeh, A.A.; Al-Jarrah, H.H. Soft version of compact and Lindelof spaces using soft somewhere

dense sets. AIMS Math. 2021, 6, 8064–8077. [CrossRef]
24. Aygunoglu, A.; Aygun, H. Some notes on soft topological spaces. Neural Comput. Appl. 2012, 21, 113–119. [CrossRef]
25. Chen, B. Soft semi-open sets and related properties in soft topological spaces. Appl. Math. Inf. Sci. 2013, 7 , 287–294. [CrossRef]
26. Akdag, M.; Ozkan, A. Soft α-open sets and soft α -continuous functions. Abstr. Appl. Anal. 2014, 2014, 891341. [CrossRef]
27. Al-shami, T.M. Soft somewhere dense sets on soft topological spaces. Commun. Korean Math. Soc. 2018, 33, 1341–1356.

http://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1016/j.knosys.2020.105538
http://dx.doi.org/10.1016/j.ins.2022.05.084
http://dx.doi.org/10.1016/j.asoc.2023.110344
http://dx.doi.org/10.1016/j.aej.2022.12.003
http://dx.doi.org/10.1007/s00500-022-07519-5
http://dx.doi.org/10.1007/s10489-021-02265-x
http://dx.doi.org/10.1109/ACCESS.2019.2905140
http://dx.doi.org/10.1186/1029-242X-2013-229
http://dx.doi.org/10.1016/S0898-1221(02)00216-X
http://dx.doi.org/10.1016/j.ins.2006.12.008
http://dx.doi.org/10.1016/j.camwa.2010.03.034
http://dx.doi.org/10.47852/bonviewJCCE597820
http://dx.doi.org/10.12785/amis/080413
http://dx.doi.org/10.1016/j.camwa.2011.02.006
http://dx.doi.org/10.1007/s00500-020-05134-w
http://dx.doi.org/10.1007/s40096-021-00374-9
http://dx.doi.org/10.3934/math.2021468
http://dx.doi.org/10.1007/s00521-011-0722-3
http://dx.doi.org/10.12785/amis/070136
http://dx.doi.org/10.1155/2014/891341


Mathematics 2024, 12, 924 14 of 14

28. Al-shami, T.M.; Mhemdi, A. On soft parametric somewhat-open sets and applications via soft topologies. Heliyon 2023, 9, e21472.
[CrossRef]

29. Al-shami, T.M.; Mhemdi, A.; Rawshdeh, A.; Al-Jarrah. H.H. On weakly soft somewhat open sets. Rocky Mountain J. Math. 2024 ,
54, 13–30. [CrossRef]

30. Al-Mufarrij, J.; Saleh, S. New results on soft generalized topological spaces. J. Math. Comput. Sci. 2024, 32, 43–53. [CrossRef]
31. Goldar, S.; Ray, S. On soft Lebesgue measure. J. Uncertain Syst. 2023, 16, 2350005. [CrossRef]
32. Bayramov, S.; Aras, C.G.; Kocinac, L.D.R. Interval-Valued Topology on Soft Sets. Axioms 2023, 12, 692. [CrossRef]
33. Al-shami, T.M.; Mhemdi, A. A weak form of soft α-open sets and its applications via soft topologies. AIMS Math. 2023, 8,

11373–11396. [CrossRef]
34. Demir, I.; Okurer, M. A new approach to N-soft topological structers. Rocky Mt. J. Math. 2023, 53, 1789–1805. [CrossRef]
35. Al-shami, T.M.; Mhemdi, A.; Abu-Gdairi, R. A Novel framework for generalizations of soft open sets and its applications via soft

topologies. Mathematics 2023, 11, 840. [CrossRef]
36. Rawshdeh, A.A.; Al-Jarrah, H.H.; Al-shami, T.M. Soft expandable spaces. Filomat 2023, 37, 2845–2858. [CrossRef]
37. Alzahran, S.; EL-Maghrabi, A.I.; AL-Juhani, M.A.; Badr, M.S. New approach of soft M-open sets in soft topological spaces. J. King

Saud Univ. Sci. 2023, 35, 102414. [CrossRef]
38. Al Ghour, S.; Bin-Saadon, A. On some generated soft topological spaces and soft homogeneity. Heliyon 2019, 5, e02061. [CrossRef]
39. Al Ghour, S.; Hamed, W. On two classes of soft sets in soft topological spaces. Symmetry 2020, 12, 265. [CrossRef]
40. Velicko, N.V. H-closed Topological Spaces. Amer. Math. Soc. Trans. 1968, 78, 103–118.
41. Darwesh, H.M. A new topology from an old one. J. Chungcheong Math. Soc. 2012, 25, 401. [CrossRef]
42. Georgiou, D.N.; Megaritis, A.C.; Petropoulos, V.I. On soft topological spaces. Appl. Math. Inf. Sci. 2013, 7 , 1889–1901. [CrossRef]
43. Mohammed, R.A.; Sayed, O.R.; Eliow, A. Some properties of soft delta-topology. Acad. J. Nawroz Univ. 2019, 8, 352–361. [CrossRef]
44. Al Ghour, S. Between the classes of soft open sets and soft omega open sets. Mathematics 2022, 10, 719. [CrossRef]
45. Al Ghour, S. Between soft θ-openness and soft ω0-openness. Axioms 2023, 12, 311. [CrossRef]
46. Yuksel, S.; Tozlu, N.; Ergul, Z.G. Soft regular generalized closed sets in soft topological spaces. Int. J. Math. Anal. 2014, 8, 355–367.

[CrossRef]
47. Debnath, B. A note on soft nearly compact and soft nearly paracompactness in soft topological spaces. Int. J. Innov. Res. Sci. Eng.

Technol. 2017, 6, 15906–15914.
48. Hussain, S.; Ahmad, B. Soft separation axioms in soft topological spaces. Hacet. J. Math. Stat. 2015, 44, 559–568. [CrossRef]
49. Al Salem, S.M. Soft regular generalized b-closed sets in soft topological spaces. J. Linear Topol. Algebra 2014, 3, 195–204.
50. Al Ghour, S. On some weaker forms of soft continuity and their decomposition theorems. J. Math. Comput. Sci. 2023, 29, 317–328.

[CrossRef]
51. Al Ghour, S. Soft Rω-open sets and the soft topology of soft δω-open sets. Axioms 2022, 11 , 177. [CrossRef]
52. Al Ghour, S. Strong form of soft semi-open sets in soft topological spaces. Int. J. Fuzzy Log. Intell. Syst. 2021, 21, 159–168.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.heliyon.2023.e21472
http://dx.doi.org/10.1216/rmj.2024.54.13
http://dx.doi.org/10.22436/jmcs.032.01.04
http://dx.doi.org/10.1142/S1752890923500058
http://dx.doi.org/10.3390/axioms12070692
http://dx.doi.org/10.3934/math.2023576
http://dx.doi.org/10.1216/rmj.2023.53.1789
http://dx.doi.org/10.3390/math11040840
http://dx.doi.org/10.2298/FIL2309845R
http://dx.doi.org/10.1016/j.jksus.2022.102414
http://dx.doi.org/10.1016/j.heliyon.2019.e02061
http://dx.doi.org/10.3390/sym12020265
http://dx.doi.org/10.14403/jcms.2012.25.3.401
http://dx.doi.org/10.12785/amis/070527
http://dx.doi.org/10.25007/ajnu.v8n4a481
http://dx.doi.org/10.3390/math10050719
http://dx.doi.org/10.3390/axioms12030311
http://dx.doi.org/10.12988/ijma.2014.4125
http://dx.doi.org/10.15672/HJMS.2015449426
http://dx.doi.org/10.22436/jmcs.029.04.02
http://dx.doi.org/10.3390/axioms11040177
http://dx.doi.org/10.5391/IJFIS.2021.21.2.159

	Introduction and Preleminaries
	Soft -Open Sets
	Decompositions
	Soft -Continuity
	Conclusions
	References

